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Abstract. In manufacturing processes, the production process may be forced to stop
when, for example, there are uncertain production plans, delays in logistics, cancelations
of orders, etc. In this paper, we mathematically analyze the types of situations that occur
before and after such stops in production. We introduce the concept of a shock wave to
denote the effects these before and after occurrences have on the production process. More
specifically, we define the shock wave here by the propagation of production density flows
in Burgers equation. We propose a propagation flow equation for a production density;
here, the propagation of a shock wave is equal to the change in production density after
production transitions from a stopped state back to a start state. In other words, the
propagation of shock waves is a phenomenon of queuing time constraints due to reten-
tion.
Keywords: Shock wave, Burgers equation, Production density, Process retention, Pro-
duction process

1. Introduction. In a previous study, the problem of reducing construction work and
inventory in the steel industry was reported [1]. Specifically, we investigated the relation-
ship between variations in the rate of construction and delivery rate was interesting.

Moreover, several studies have reported approaches that lead to shorter lead times [2, 3].
From order products, lead time occurs on the work required preparation of the members
for manufacturing.

Many aspects can potentially affect lead time. For example, from order products, the
lead time from the start of development to the completion of a product is called the
time-to-finish time, such as the work required preparation of the members for production
equipments.

Moreover, with respect to reducing customer lead times, the problem of reducing the
production lead time was reported [4].

On the other hand, fluctuations in the supply chain and market demand and the changes
in the production volume of suppliers are propagated to other suppliers, and their effects
are amplified. Therefore, because amounts of stock are large, an increase or decrease of
the suppliers’ stock is modeled using differential equation. This differential equation is
said as Billwhip model, representing a stock congestion [6, 7]. These studies are very
interesting contents.

The theory of constraints (“TOC”) describes the importance of avoiding bottlenecks in
production processes [8]. When using manufacturing equipment, delays in one production
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step are propagated to the next. Hence, the use of manufacturing equipment may lead
to delays. “TOC” gives important suggestions for increasing efficiency of production
projects. There is no research that mathematically models propagation of production
density.

Many currently implemented production systems are mechanized and highly integrated
with information technologies, which creates systems where human intervention is unnec-
essary. In certain aspects of the production system, there is a high volume of build-to-
order manufacturing that requires human intervention in the production process [9, 10].
In small- and medium-sized enterprises, human intervention constitutes a significant part
of the production process, and revenue can sometimes be greatly affected by human be-
havior. Therefore, with respect to human intervention with outside companies, a deep
analysis of the production process and human collaboration is necessary to understand
the potential negative effects of human intervention [9, 10]. Naturally, the effect of hu-
man behavior is not just a problem with small- and medium-sized companies; it must be
regarded as one of the major problems that may occur when humans directly intervene
in the production process [11, 12, 13].

In general, the potential uncertainties should be considered before proceeding with a
system that combines human intervention (Internal force) with outside companies (Exter-
nal force) in the production system [14, 15]. With respect to two elements in a production
system, a total system is formed by connecting the two elements. In this case, a system
with certain uncertainties will be formed when connecting “human intervention” and
“outside companies” in a production system. In general, an important concept in the
production system is to develop the best system that results in efficient production. How-
ever, in most analyses of the production process, researchers have not taken advantage of
the noise inherent in the system. Such noise may have a unique usefulness in the system.

Thus, we have been researching mathematical modeling and system evaluations from a
physical point of view to develop “mathematical production engineering” in order to de-
velop a mathematical system for describing production processes. In a previous study of
stochastic modeling, we considered the internal force and external force as parameters in
a production system. The correlation of lead time vs. throughput is important for imple-
menting the overall synchronization as a strategy. We had reported a production system
with an intervention of workers in the prior study [14, 15]. In case of a production flow
system with human intervention, we need to fulfill an empirical analysis of worker-specific
production ability. Thus, to achieve optimal general production systems, knowledge of
the importance of biological fluctuations in the system is important.

In our previous study, we determined and showed that an on-off intermittency exists
in rate-of-return and lead time deviations of production processes. In physics, an on-
off intermittency is present in power-law distributions, phase transitions, and self-similar
phenomena. In the production process described in the present study, we observed on-
off intermittency on lead time data with respect to time series datasets [16]. In our
previous work, we reported that by creating a state in which the production density of
each process corresponds to their physical propagation, the manufacturing process is most
appropriately described using a diffusion equation [9]. In other words, if the potential
of the production field (i.e., stochastic field) is minimized, the equation is defined by
production density function Si(x, t) and the constraint is described using an advective
diffusion equation to determine transportation speed ρ [9, 17].

Based on results from our previous study, we can observe and link the on-off intermit-
tence in time with fluctuations that we previously reported in 2014 [16]. More specifically,
we reported a stochastic resonance phenomenon in production processes, clarifying that
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intervention by outside companies and workers (i.e., an internal force) was treated as in-
put noise (i.e., stochastic element) to successive processes in the production system [18].
Further, we reported that we analyzed the cause of fluctuations in the lead time of pro-
duction processes by applying a phase-field model, a new approach by which we clarified
that the occurrence factors were attributed to state variables corresponding to an internal
process. Factors of such fluctuations included the uncertainty of logistics, uncertainty of
production planning, and stochastic characteristics of the order and start time series [20].

In this paper, we note that the fluctuation in lead time is caused by the propagation of
the fluctuation of state variables constrained by Burgers’ equation from fluid dynamics.
We derive Burgers’ equation by recognizing the graph of the start time series (i.e., order
time-series) of the lead time period in production processes. Here, we observe in produc-
tion processes a phenomenon similar to that of turbulent flow fields in fluid dynamics [21].
More specifically, we utilize Burgers’ equation to analyze the shock wave propagation of
production processes, where we define our shock wave propagation term further below.
The factors that cause these fluctuations include the following:

• Uncertainty of logistics
• Uncertainty of production planning
• Stochastic characteristics of the order and start time series

In practice, production processes may suddenly stop due to, for example, uncertain pro-
duction plans, delays in logistics, and cancelations of orders. In this paper, we, therefore,
mathematically analyze the phenomena that occur before and after such interruptions
in production. Here, we modeled the propagation of production density using heat con-
duction equations, using Burgers’ equations as a base. We define the shock wave as the
propagation of production density flows using Burgers’ equations. Further, we propose
the propagation flow equation for production density. The propagation of a shock wave
is equal to the change in production density after the production process transitions from
a stopped state to a start state, i.e., the propagation of shock waves is a phenomenon of
queuing time constraints due to retention. From our research results, we note that the
diffusion coefficient affects the fluctuation in turbulent spots just as in fluid mechanics.
When the configuration parameters of the diffusion coefficient are considered as trend
coefficients and volatility, a production process can be modeled as a synchronous pro-
cess, such as laminar flow in fluid dynamics, by reducing the volatility of the production
processes. We also implemented a dynamic simulation to evaluate and confirm the effec-
tiveness of both synchronous and asynchronous processes. To the best of our knowledge,
ours is the first study focusing specifically on fluctuations in production processes.

2. Production Retention Analysis.

2.1. Propagation of production density. Figure 1 shows that connection between
processes can be treated as diffusive propagation of products [9]. In Figure 1, C(t, x)
represents the throughput [9]. In Figure 2, when the advection speed changes, Figure
2(a) shows that the A part moves quickly to the right, and the distance between AB is
shortened gradually because the B part moves slowly. Figure 2(b) shows that the A part
catches up with the B part and overtakes it after a certain time has elapsed, following
which the wave collapses. Figure 2(c) shows that the dissipation area suppresses processes
like the wave until a limited gradient forms when the spatial gradient becomes sharp.

Assumption 2.1. A production flow depends on a production density.

This assumption is the premise of our previous reports [9, 19].
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Definition 2.1.

• S(t, x) denotes a production density.
• C(t, x) denotes a throughput.
• J(t, x) denotes a production flow.

J(t, a) − J(t, b) =
d

dt

∫ b

a

S(t, x)dx (1)

In Equation (1), J(t, a)− J(t, b) denotes a production flow displacement, and the right
hand in Equation (1) denotes as follows.

N(t) =

∫ b

a

S(t, x)dx (2)

where N(T ) denotes the number of production.

Figure 1. Production flow processes Figure 2. Bottleneck phe-
nomenon similar as waves

A production conservation law is established in this production process.

∂S

∂t
+

∂J

∂x
= 0 (3)

Then, Equation (1) is rewritten as follows:

[J(t, x) − J(t, x + dx)]dt = [S(t + dt, x) − S(t, x)]dx (4)

J is proportion to the displacement of S(t, x) as follows:

J ∼ ∂S(t, x)

∂x
(5)

Equation (5) denotes a flow per unit, and the equilibrium equation of production flow is
denoted as follows:

∂J

∂x
∼= −∂S(t, x)

∂x
(6)

Assumption 2.2. A throughput C(t, x) depends on a production density S(t, x) and a
production flow is described as follows.

J(t, x) ≡ C(t, x) · S(t, x) (7)
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From Equation (6), we obtain as follows.

∂S(t, x)

∂t
+

∂J

∂x
= 0 (8)

where the suffix i of S is omitted.
Since throughput depends on production density, we assume as follows:

Assumption 2.3.

C(t, x) ∼= S(t, x), t ≥ 0 (9)

where 0 ≤ S ≤ Smax, and Smax denotes the maximum of production density.

Furthermore, it is assumed that the throughput decreases as the production density
increases.

Assumption 2.4.

dC

dS
≤ 0, C[Smax] = 0 (10)

2.2. Derivation of approximate relational equation in the conservation field of
energy. The production density is assumed to be constant at the beginning. Then, we
obtain as follows:

∂S(t, x)

∂t
+

dJ

dS

∂S(t, x)

∂x
= 0 (11)

where dJ
dS

represents as follows:

v ≡ dJ

dS
(12)

∂S(t, x)

∂t
+ v

∂S(t, x)

∂x
= 0 (13)

where we refer to v as the synchronous propagation velocity.
Equation (13) denotes a conservation of energy in the state without input/output.
In this Subsection 2.2, we analyze the case in which production flow stops due to

a certain risk. Figure 3 depicts stopped state x ≡ xs(t) of a production flow. The
stopping point, which ceases production due to some sudden set of circumstances during
the manufacturing of the given product, is represented by time function xs(t). Such an
interruption results in production cancelation or postponement due to sudden changes in

Figure 3. Stop in the middle
x ≡ xs(t) of any production
flow

Figure 4. Throughput C(t, x)
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physical conditions, the market, or the circumstances of the customer or customers. In
Figure 4, C(t, x) represents the throughput at x = x1(t) and flows through each process.

In our previous study, we calculated the trend speed by measuring production density
at an arbitrary point during production. Note that trend speed here represents the density
of product production [9]. Assuming production density is S(t, x) and trend speed is r,
we obtain

dr

dt
=

S(t, a)V (t, a) − S(t, b)V (t, b)

S− − S+
=

S+V + − S−V −

S− − S+
≡ − S−V −

S− − S+
(14)

where S− and S+ are derived as follows:

S− = lim
x→r−(t)

S(t, x) (15)

S+ = lim
x→r+(t)

S(t, x) (16)

where S− and S+ denote the limit values of r−(t) and r+(t), respectively. In other words,
V + denotes the speed after the trend and V − denotes the speed before the trend. Then,
we define as follows [9].

Definition 2.2. Trend speed V (t)

V (t) =
−1

S(t, x)

d

dt

∫ b

a

S(t, x)dx, t ∈ [t, t + δ], x ∈ [a, b] (17)

We define the production flow as follows.

Definition 2.3. Trend speed J−(t, xs) and J+(t, xs)

J−(t, xs) = lim
x→xs−0

J(t, x) (18)

J+(t, xs) = lim
x→xs−0

J(t, x) (19)

Then, the production density is defined according to Equations (18) and (19) as follows.

Definition 2.4. Trend speed S−(xs, t) and S+(xs, t)

S−(t, xs) = lim
x→xs−0

S(t, x) (20)

S+(t, xs) = lim
x→xs−0

S(t, x) (21)

We introduce rate of change of production density [9].

x1(t) = xs(t) − δ, x2(t) = xs(t) + δ (22)

dV (t)

dt
=

d

dt

∫ x2(t)

x1(t)

S(t, x)dx (23)

V (t) denotes the rate of change of production density in x ∈ [x1(t), x2(t)].
The volume of J(t, x) is derived at x1(t) as follows:

S(t, x)

{
C(t, x) − dx1(t)

dt

}
= J(t, x1) − S(t, x1)

dx1(t)

dt
(24)

Therefore, we obtain by using Equation (24) as follows:

dV (t)

dt
= J(t, x1) − S(t, x1)

dx1(t)

dt
−

[
J(t, x2) − S(t, x2)

dx2(t)

dt

]
(25)
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Then, as δ → 0, we obtain as follows:

lim
δ→0

∫ x2

x1

S(t, x)dx = 0 (26)

0 = J−(t, x1) − S−(t, x1)
dx1(t)

dt
−

[
J+(t, x) − S+(t, x)

dxs(t)

dt

]
(27)

From Equation (27), we obtain as follows:

dxs(t)

dt
=

J+(t, xs) − J−(t, xs)

S+(t, xs) − S−(t, xs)
(28)

The throughput depends on the production density only. Thus, we assume that the
production density is constrained by the production volume.

Assumption 2.5.

0 ≤ S ≤ Smax (29)

Generally, we obtain as follows.

Definition 2.5.

C(t, x∗) ∼=
∂S(t, x∗)

∂t

(
≡ S(t, x∗) · dx(t)

dt

)
(30)

Definition 2.6. Production flow

J(s) ∼= Cmax

[
Smax − S

Smax

]
= Cmax

[
1 − S

Smax

]
(31)

From Equation (31), according to S → Smax, the production flow J(s) decreases. In
other words, the throughput decreases, where Cmax represents a maximum value in the
given production capacity. Then, we obtain as follows:

dxs

dt
∼=

Cmax

{
S+

[
Smax−S−

Smax

]
− S−

[
Smax−S+

Smax

]}
S+ − S− = Cmax

(
1 − S− + S+

Smax

)
(32)

Equation (32) represents that the production volume decreases by increasing the through-
put with the production capacity constant.

Figure 5 shows the retention situation in which shock waves are generated. Here,
shock waves are generated when production stops due to some sudden cause. Production
suspension also affects upstream processes. Physically, it corresponds to shock wave
propagation. Figure 6 shows the boundary surface of retention and retention period,
which we denote as x ∈ [0, a(τ)] and t ∈ [0, τ ], respectively.

2.3. Process retention after stopping production processes. In this Subsection
2.3, we consider process retention after production processes are stopped. Before pro-
duction stops, we assume that synchronous flow J0, i.e., that production is progressing
efficiently. Even after production stops, we assume that the subsequent processes propa-
gate similarly as synchronous flow S0, as shown in Figure 7.

The time variation is defined as follows.

Definition 2.7. Stop at any process

dxsl(t)

dt
= Cmax

(
1 − S0 + Smax

Smax

)
= −Cmax

(
S0

Smax

)
(33)
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Figure 5. Shock wave gener-
ation due to suspension of pro-
duction at x = 0

Figure 6. Boundary surface
of retention

Figure 7. Shock wave gener-
ation due to suspension of pro-
duction at x = 0

Figure 8. Retention after
stopping production process

In Figure 7, when x < xsl, S(t, x) = S0. When xsl < x < 0, S(t, x) = Smax. From
Equation (33), we obtain as follows:

xsl = −
∫ t

0

Cmax ·
S0

Smax

dt = −
[

S0

Smax

]
Cmax · t (34)

Note that we assume that the retention of the process after the stop in production is
retained for at least time τ . Here, let t be time τ from the time production stops to the
final process, as depicted in Figure 8. Thus, we obtain as follows:

dxsl(t)

dt
=

S0C(S0) − 0

S0 − 0
= C(S0) (35)

From Equation (35), we obtain as follows:

xsl(t) = C(S0) · t (36)

where C(S0) denotes the synchronous throughput.
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Figure 9. Retention volume U(xrl) Figure 10. Bottle neck point
x = xs(t)

In general, depending on the timing of the interruption to the production process, the
stop time is different, for example, τ1 ̸= τ2 in Figure 8. Here, we can calculate the retention
volumes as follows and as shown in Figure 9.

Definition 2.8. Retention volume U(xrl)

U(xrl) =

∫ τ2

0

C(S0) · tdt =
1

2
C(S0)τ

2
2 (37)

Similarly, U(xsl) can be calculated as follows:

U(xsl) =
1

2

[
S0

Smax

]
· Cmax · τ 2

1 (38)

From Equations (37) and (38), we obtain the total retention volumes U(xs) as follows:

U(xs) =
1

2

[(
S0

Smax

)
Cmaxτ

2
1 + C(S0)τ

2
2

]
(39)

2.4. Analysis of bottleneck point x = xs(t). Figure 10 shows the bottle neck point
x = xs(t). We rewrite the pre-process shock wave as follows:

xsl(t) = −
[
CmaxS0

Smax

]
· t (40)

We rewrite the post-process shock wave as follows:

xsl(t) = −
[

S0

Smax

]
Cmax · t (41)

In Figure 11, the production density flow denotes the production propagation equations
as follows:

∂S

∂t
+ v

∂S

∂x
= 0 (42)

where v satisfies the following equation.

v =
∂J

∂S
(43)

x = 0 denotes the bottle neck stop point in Figure 12.

S(x, 0) = Smax; x < 0 (44)
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S(x, 0) = 0; x < 0 (45)

Equation (44) denotes the post-processes retention and Equation (45) denotes the pre-
processes empty. The characteristic curve is derived at t = 0 as follows:

x = Cmax · t + x0 (46)

where x = x0 > 0.
Similarly, we obtain as follows:

x = −Cmax · t + x0 (47)

where x = x0 < 0.
S = 0 and S = Smax are obtained along this straight line, which are Equation (46) or

Equation (47).

Figure 11. Characteristic
curve of shock wave

Figure 12. Bottle neck point
x = xs(t)

According to Equation (31), we obtain as follows:

J(s) = Cmax

[
1 − S

Smax

]
(48)

where x1 satisfies −Cmax · t < x1 < Cmax · t.
Moreover, the characteristic curve passing through point (x1, t) and point (0, 0) is de-

rived as follows:

x =
∂J

∂S
· t (49)

From Equation (49), we obtain as follows:

x

t
=

∂J

∂S
= C(S) + SC

′
(S) = Cmax

[
1 − 2S

Smax

]
(50)

From Equation (50), S is obtained as follows:

S(t, x) =
Smax

2

(
1 − x

Cmax · t

)
(51)

where x represents the position of the production flow.
At this time, x is constrained by the following equation.

−Cmax · t < x < Cmax · t (52)
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3. Numerical Result.

3.1. Numerical simulation. Equation (52) represents the production density with re-
spect to (x, t). More specifically, Equations (51) and (52) show the change in production
density from when production stopped to when it started back up again, i.e., the propaga-
tion of shock waves is a phenomenon of queuing time constraints due to retention. Please
refer to Appendix A. The place marked with a circle is the place that shows retention.

With respect to Figure 13, the throughput represents Test run 3 > Test run 2 >
Test run 1. Cmax sets S3(199min)/work number of people(9) = 22.1 of Test run 1, sets
S2(196min)/work number of people(9) ≃ 20.1 and sets S4(180min)/work number of peo-
ple(9) = 20. Smax is the production density, which is calculated from the throughput ratio
of Test runs 1-3 in Appendix A. However, it is the value when we set 5 to Test run 1.
Smax is calculated from the ratio of Test run 2/Test run 3 to Cmax of Test run 1. In actual
data, the production number of Test run 1-3 is 4.4 units/month, 5.5 units/month and 5.7
units/month, respectively.

3.2. Dynamic simulation of production processes. We attempted to perform a dy-
namic simulation of the production process by utilizing the simulation system that NTT
DATA Mathematical Systems Inc. (www.msi.co.jp) has developed. With respect to the
meaning of the individual parts in Figure 15, we conducted a simulation of the following

Table 1. Parameter setting of
Figure 13

Figure 13
Test
run 1

Test
run 2

Test
run 3

Smax 5 5.1 5.5
Cmax 22.1 20.1 20

Table 2. Parameter setting
of Figure 14

Figure 14
Test
run 1

Test
run 2

Test
run 3

Smax 5 5.1 5.5
Cmax 22.1 20.1 20

Figure 13. Pre-process shock
wave at retention surface

Figure 14. Production den-
sity propagation from produc-
tion stop to start



1502 K. SHIRAI AND Y. AMANO

Figure 15. Simulation model of production flow system

Table 3. Working data for six
production asynchronous pro-
cesses

Process
No.

No.1 No.2 No.3 No.4 No.5 No.6

Average 20 22 25 22 25 21
STD 2.1 2.5 1.6 1.9 2.0 1.9

W.E 1 0.83 1.0 0.66 0.76 0.88 0.91
W.E 2 1.27 1.26 1.21 1.31 1.17 1.20
W.E 3 0.96 1.11 1.01 1.12 0.88 0.89
W.E 4 0.92 0.96 1.06 0.98 0.91 0.9
W.E 5 1.2 1.03 1.07 0.89 1.03 1.1
W.E 6 1.09 1.1 1.2 0.98 1.13 0.89

Table 4. Working data for six
production synchronous pro-
cesses

Process
No.

No.1 No.2 No.3 No.4 No.5 No.6

Average 20 20 20 20 20 20
STD 1.1 1.5 1.2 1.4 1.0 1.4

W.E 1 1.0 1.0 1.0 1.0 1.0 1.0
W.E 2 1.0 1.0 1.2 1.3 1.1 1.2
W.E 3 1.7 1.1 1.0 1.1 1.0 1.0
W.E 4 1.0 1.0 1.0 1.0 1.0 1.0
W.E 5 1.0 1.0 1.0 1.0 1.0 1.0
W.E 6 1.0 1.3 1.2 1.0 1.1 1.0

procedure. When the simulation began, it generated one of the products on a “start”
part to “finish”.

• In each process, including the six workers in parallel, the slowest worker waited till
the work was completed.

• When the work of each process was completed, it moved to the next process.
• Simultaneously as each process was completed, it recorded the working time of each

process.

With respect to Table 3 and Table 4,

• Process No. indicates each process (1-6).
• Average indicates the average time.
• STD indicates the standard deviation of process time (sec).
• Worker efficiency (WE) indicates the efficiency of six workers.
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“record” calculates the worker’s operating time, which is obtained by multiplying the
specified WE data for the log-normally distributed random numbers in Table 3.

Figure 16 shows the operating time of processes 1-6 (record1-record6). As the working
time of the synchronous process is less volatile, the work efficiency became higher than
the asynchronous process. In Figure 16, the total working time of asynchronous and syn-
chronous processes are 1241.7(sec) and 586.4(sec) respectively. The synchronous process
shows much better production efficiency than the asynchronous process.

Figure 16. Working time for process number one through six

4. Conclusions. In this paper, we mathematically analyzed the phenomena that occur
before and after an interruption to production processes. We also analyzed the resulting
shock wave propagation of production density flows using Burgers’ equation. Through
our work, given that we were able to mathematically analyze the behavior before and
after an interruption to production, we can better predict future production problems
and how best to react to them. Previous studies utilizing the Burgers equation for the
mathematical retention analysis for the production process have not been reported yet.
We think that it will become a trigger to further improve productivity by analyzing the
retention of production process. In our future work, we plan to focus on shock wave
analysis for mathematical models that consider a stochastic model.
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Appendix A. Analysis of the Testrun Results.

• (Testrun1): Because the throughput of each process (S1-S6) is asynchronous, the
overall process throughput is asynchronous. In Table 6, we list the manufacturing
time (min) of each process. In Table 7, we list the volatility in each process performed
by the workers. Finally, Table 6 lists the target times. The theoretical throughput is
obtained as 3×199+2×15 = 627 (min). In addition, the total working time in stage
S3 is 199 (min), which causes a bottleneck. In Figure 17, we plot the measurement
data listed in Table 6, which represents the total working time of each worker (K1-
K9). In Figure 18, we plot the data contained in Table 6, which represents the
volatility of the working times.

• (Testrun2): Set to synchronously process the throughput. The target time listed in
Table 8 is 500 (min), and the theoretical throughput (not including the synchroniza-
tion idle time) is 400 (min). Table 9 presents the volatility of each working process
(S1-S6) for each worker (K1-K9).

• (Testrun3): Introducing a preprocess stage. The process throughput is performed
synchronously with the reclassification of the process. As shown in Table 10, the
theoretical throughput (not including the synchronization idle time) is 400 (min).
Table 11 presents the volatility of each working process (S1-S6) for each worker (K1-
K9). On the basis of these results, the idle time must be set to 100 (min). Moreover,
the theoretical target throughput (T

′
s) can be obtained using the “Synchronization

with preprocess” method. This goal is as follows:

Ts ∼ 20 × 6 (First cycle) + 17 × 6 (Second cycle)

+ 20 × 6 (Third cycle) + 20 (Previous process) + 8 (Idol − time)

∼ 370 (min) (53)

The full synchronous throughput in one stage (20 min) is

T
′

s = 3 × 120 + 40 = 400 (min) (54)

Using the “Synchronization with preprocess” method, the throughput is reduced
by approximately 10%. Therefore, we showed that our proposed “Synchronization
with preprocess” method is realistic and can be applied in flow production systems.
Below, we represent for a description of the “Synchronization with preprocess”.

In Table 10, the working times of the workers K4, K7 show shorter than others.
However, the working time shows around target time. Next, we manufactured one
piece of equipment in three cycles. To maintain a throughput of six units/day, the
production throughput must be as follows:

(60 × 8 − 28)

3
× 1

6
≃ 25 (min) (55)

where the throughput of the preprocess is set to 20 (min). In Equation (55), the value
28 represents the throughput of the preprocess plus the idle time for synchronization.
Similarly, the number of processes is 8 and the total number of processes is 9 (8 plus
the preprocess). The value of 60 is obtained as 20 (min) × 3 (cycles).

In Table 5, Test-run3 indicates a best value for the throughput in the three types of
theoretical working time. Test-run2 is ideal production method. However, because it is
difficult for talented worker, Test-run3 is a realistic method.

The results are as follows. Here, the trend coefficient, which is the actual number of
pieces of equipment/the target number of equipment, represents a factor that indicates
the degree of the number of pieces of manufacturing equipment.

Test-run1: 4.4 (pieces of equipment)/6 (pieces of equipment) = 0.73,
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Table 5. Correspondence between the table labels and the Test-run number

Table
number

Production process Working time Volatility

Test-run1 Table 6 Asynchronous process 627 (min) 0.29
Test-run2 Table 8 Synchronous process 500 (min) 0.06

Test-run3
�� ��Table 10

�� ��“Synchronization with preprocess” method
�� ��470 (min)

�� ��0.03

Table 6. Total manufacturing time
at each stages for each worker

WS S1 S2 S3 S4 S5 S6
K1 15 20 20 25 20 20 20
K2 20 22 21 22 21 19 20
K3 10 20 26 25 22 22 26
K4 20 17 15 19 18 16 18
K5 15 15 20 18 16 15 15
K6 15 15 15 15 15 15 15
K7 15 20 20 30 20 21 20
K8 20 29 33 30 29 32 33
K9 15 14 14 15 14 14 14

Total 145 172
�� ��184

�� ��199 175 174 181

Deviation 27
�� ��39

�� ��54 30 29 36

Table 7. Volatility of Table 6

K1 1.67 1.67 3.33 1.67 1.67 1.67
K2 2.33 2 2.33 2 1.33 1.67
K3 1.67 3.67 3.33 2.33 2.33 3.67
K4 0.67 0 1.33 1 0.33 1
K5 0 1.67 1 0.33 0 0
K6 0 0 0 0 0 0
K7 1.67 1.67 5 1.67 2 1.67
K8 4.67 6 5 4.67 5.67 6
K9 0.33 0.33 0 0.33 0.33 0.33

Figure 17. Total work time for
each stage (S1-S6) in Table 6

Figure 18. Volatility data for
each stage (S1-S6) in Table 6

Test-run2: 5.5 (pieces of equipment)/6 (pieces of equipment) = 0.92,
Test-run3: 5.7 (pieces of equipment)/6 (pieces of equipment) = 0.95.
Volatility data represent the average value of each Test-run.
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Table 8. Total manufacturing time
at each stage for each worker

WS S1 S2 S3 S4 S5 S6
K1 20 20 24 20 20 20 20
K2 20 20 20 20 20 22 20
K3 20 20 20 20 20 20 20
K4 20 25 25 20 20 20 20
K5 20 20 20 20 20 20 20
K6 20 20 20 20 20 20 20
K7 20 20 20 20 20 20 20
K8 20 27 27 22 23 20 20
K9 20 20 20 20 20 20 20

Total 180
�� ��192

�� ��196 182 183 182 180

Deviation
�� ��12

�� ��16 2 3 2 0

Table 9. Volatility of Table 8

K1 0 1.33 0 0 0 0
K2 0 0 0 0 0.67 0
K3 0 0 0 0 0 0
K4 1.67 1.67 0 0 0 0
K5 0 0 0 0 0 0
K6 0 0 0 0 0 0
K7 0 0 0 0 0 0
K8 2.33 2.33 0.67 1 0 0
K9 0 0 0 0 0 0

Table 10. Total manufacturing
time at each stage for each worker

WS S1 S2 S3 S4 S5 S6
K1 20 18 19 18 20 20 20
K2 20 18 18 18 20 20 20
K3 20 21 21 21 20 20 20
K4 20 13 11 11 20 20 20
K5 20 16 16 17 20 20 20
K6 20 18 18 18 20 20 20
K7 20 14 14 13 20 20 20
K8 20 22 22 20 20 20 20
K9 20 25 25 25 20 20 20

Total 180 165 164
�� ��161

�� ��180 180 180

Deviation −15 −16
�� ��−19

�� ��0 0 0

Table 11. Volatility of Table 10

K1 0.67 0.33 0.67 0 0 0
K2 0.67 0.67 0.67 0 0 0
K3 0.33 0.33 0.33 0 0 0
K4 2.3 3 3 0 0 0
K5 1.3 1.3 1 0 0 0
K6 0.67 0.67 0.67 0 0 0
K7 2 2 2.3 0 0 0
K8 0.67 0.67 0 0 0 0
K9 1.67 1.67 1.67 0 0 0


