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Abstract. Networks with multi-links can be found everywhere in our daily life such as
communication networks, transport networks and social networks. In view of a method of
network split according to the different nature of time-delay, the model of the united di-
rected complex dynamical networks with multi-links is considered in the paper. Then the
problem of synchronization stability analysis for the united directed complex dynamical
network is further discussed. Taking advantage of linear matrix inequalities (LMI), some
novel Lyapunov functions are constructed. And then some new general stability criteria
are proposed of synchronization state in the united directed complex dynamical networks
by use of the Lyapunov stability theory. Finally, numerical simulations are provided to
show the effectiveness and feasibility of the proposed theorems.
Keywords: Complex network, Multi-links, Synchronization stability, Time delays, Lin-
ear systems

1. Introduction. In recent years, complex dynamical networks have attracted much
attention from physics, mathematics, engineering, biology and sociology [1-8]. One of
the most attractive reasons is that complex networks have applications in almost all the
fields in the real world including the World Wide Web, the Internet, the food webs, the
communication networks, the neural networks, the cellular and metabolic networks, the
electrical power grids and the social networks, etc [1,2].

The complex network can be divided into single link and multi-links complex networks
based on the properties of network edge. In fact, there are a lot of complex dynamical
networks with multi-links in the real world [9,10], such as human connection networks,
transportation networks, communications networks, and complex biology networks. The
network is called the united complex dynamical networks with multi-links. There is more
than one edge between two nodes and each of the edge has its own property in the united
complex dynamical networks.

As a matter of fact, time delays commonly exist in practical systems. Some of them are
trivial so that they can be ignored. However, some of them cannot be ignored because time
delays may decrease the quality of the system, and even cause oscillation, instability and
divergence [11-13]. Therefore, synchronization stability analysis of complex networks with
time delays is not only a theoretical problem but also a practical one, and it has become
an important topic in [14-18]. Gao et al. [23] and Peng et al. [9] have proposed the idea
about network split according to the different nature of the network links. Time-delay was
introduced into networks to affect the split and the united complex dynamical networks
with multi-links were split into some sub-networks. Most of the researches of complex
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dynamical networks are aimed at synchronization stability analysis of complex dynamical
networks with single link [1-8,19-22]. However, a few pay attention to synchronization
stability analysis of the united directed complex networks with multi-links [24,28]. And,
there are a lot of directed networks in real life [7,21,22]. So the synthronization stability
of the united complex directed networks with multi-links needs further investigation.

In the paper, the model of the united directed complex dynamical networks with multi-
links is considered. And the problem of synchronization stability is further discussed.
Taking advantage of the Lyapunov stability theory, some new general stability criteria
are proposed. The rest of the brief is organized as follows. In Section 2, the model of
united directed complex dynamical networks with multi-links is introduced using the idea
of network split and some preliminaries and assumptions are given. The novel results that
guarantee the synchronised states to be asymptotically stable are presented in Section
3. Then numerical examples of united directed complex networks with multi-links are
given to demonstrate the effectiveness of the proposed stability criteria in Section 4, and
conclusion is presented in Section 5.

Notation: The notation used throughout the paper is fairly standard. Let Rn denote the
n-dimensional Euclidean space over the reals with the norm ∥ · ∥. For any u = (ui)1≤i≤n,
v = (vi)1≤i≤n and u, v ∈ Rn, we define the scalar product of the vectors u and v as:
⟨u, v⟩ =

∑n
i=1 uivi. Let R = (−∞, +∞), R+ = [0, +∞), R∗

+ = (0, +∞), R∗n
+ = {v =

(vi)1≤i≤n ∈ Rn, vi ∈ R+,∀i = 1, 2, . . . , n}. Let λ(M) denote the set of eigenvalues of
the matrix M , M ′ its transpose and M−1 its inverse. We define |M | = (|mij|)1≤i,j≤n if
M = (mij)1≤i,j≤n. Let Cn = C([−τ, 0], Rn) be the Banach space of continuous functions
mapping the interval with the topology of uniform convergence. For a given ϕ ∈ Cn,
we define ∥ϕ∥ = sup−τ≤θ≤0∥ϕ(θ)∥, ϕ(θ) ∈ Rn. We define the function sgn(·) and M∗ =(
m∗

ij

)
1≤i≤n

as

sgn(ϑ) =


1 ϑ ∈ R∗

+

−1 −ϑ ∈ R∗
+

0 ϑ = 0

, m∗
ij =

{
mij if i = j

|mij| if i ̸= j

2. United Directed Complex Network Model and Preliminaries. There are lots
of models that can well describe the complexity of complex dynamical networks with single
link such as random networks, small-word networks, and scale-free networks [1-3,8]. The
complex network model consisting of N identical nodes with linear coupling has been put
forward in [1,3], which is described by

ẋi = f(xi) + c
N∑

j=1

CijGxj(t), i = 1, 2, . . . , N (1)

where xi = (xi1, xi2, . . . , xin)T ∈ Rn is a state vector representing the state variables of
node i, f(·) ∈ Rn is a continuously differentiable vector function, G = (Gij)n×n ∈ Rn×n is
a constant inner-coupling matrix between node i and node j (i ̸= j) for all 1 ≤ i, j ≤ N ,
the constant c > 0 is the coupling strength, C = (Cij)N×N is the coupling configuration
matrix representing topological structure of the network, in which Cij is defined as follows:
if there is a connection from node i to node j (i ̸= j), then Cij = Cji = 1, otherwise
Cij = Cji = 0, and the diagonal elements of matrix C are defined by

Cii = −
N∑

j=1,j ̸=i

Cij, i = 1, 2, . . . , N (2)
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Nevertheless, these models cannot depict the characteristic of the united complex dy-
namical networks with multi-links. Recently, Gao et al. [23] and Peng et al. [9] have pro-
posed the idea about network split according to the different transmission speed of links.
By introducing time-delay, the united complex dynamical networks with multi-links were
constructed. Then the united directed and weighted complex dynamical network consist-
ing of N nodes with m kinds of the line properties is put forward and the model can be
described as follows:

ẋi = f(xi) + c0

N∑
j=1

a(0)ijH0xj(t) + c1

N∑
j=1

a(1)ijH1xj(t − τ1) + c2

N∑
j=1

a(2)ijH2xj(t − τ2)

+ · · · + cm−1

N∑
j=1

a(m−1)ijHm−1xj(t − τm−1), i = 1, 2, . . . , N

(3)

where xi = (xi1, xi2, . . . , xin)T ∈ Rn is a state vector representing the state variables of
node i, f(·) ∈ Rn is a continuously differentiable vector function, Hk = (Hkij)n×n ∈ Rn×n

(0 ≤ k ≤ m − 1) is a constant inner-coupling matrix of the kth sub-network between
node i and node j (i ̸= j) for all 1 ≤ i, j ≤ N , the constant ck > 0 (0 ≤ k ≤ m − 1)
is the coupling strength, and τk is time delay of the kth sub-network compared with the
basic network (τ0 = 0). Ak = (akij)N×N is the coupling configuration matrix representing
topological structure of the kth sub-network, in which akij of the kth sub-network is
defined as follows: if there is a connection from node i to node j (i ̸= j), then akij ̸= 0,
otherwise akij = 0, and the diagonal elements of matrix Al are defined by

akii(t) = −
N∑

j=1,j ̸=i

akij(t), i = 1, 2, . . . , N (4)

There have been various definitions of synchronization in the literature [25,26]. Here-
after, the united directed complex dynamical network (3) is said to achieve (asymptotical)
synchronization if

x1(t) = x2(t) = · · · = xN(t) = s(t), as t → ∞ (5)

where s(t) ∈ Rn is a solution of an isolate node, namely, ṡ(t) = f(s(t)).
To obtain the main results, by use of these previous studies [4,16,19,26], we can obtain

the following lemma.

Lemma 2.1. Consider the united directed complex dynamical network (3). Let

0 = λk1 ≤ λk2 ≤ · · · ≤ λkN (6)

be the eigenvalues of the kth sub-network outer-coupling matrix Ak. If the following N −1
of n-dimensional delayed differential equations are asymptotically stable about their zero
solutions:

ẇ = (J + c0λ0iH0)w(t) + c1λ1iH1w(t − τ1) + c2λ2iH2w(t − τ2)

+ · · · + cm−1λ(m−1)iHm−1w(t − τm−1), i = 2, . . . , N
(7)

where J is the Jacobian of f(xi(t)) at s(t), then the synchronized states (5) are asymp-
totically stable for the united directed complex dynamical network (3).

3. Synchronization Stability Criteria for United Directed Complex Dynamical
Networks. In this section, we will investigate the stability problem of united directed
complex dynamical networks. And several criteria will be derived.
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3.1. Synchronization stability analysis for m = 2. In this section, we discuss m = 2.
Then the model (3) and systems (7) can be rewritten as follows:

ẋi = f(xi) + c0

N∑
j=1

a(0)ijH0xj(t) + c1

N∑
j=1

a(1)ijH1xj(t − τ1), i = 1, 2, . . . , N (8)

and

ẇ = (J + c0λ0iH0)w(t) + c1λ1iH1w(t − τ1), i = 2, . . . , N (9)

Based on the above-mentioned assumptions and definitions, we can obtain the following
theorem.

Theorem 3.1. For the dynamical system (7), if there exists Y = (yij)1≤i,j≤n = −A− τ1B
such that

(1) yii > 0, i = 1, 2, . . . , n and yij ≤ 0, for i ̸= j, i, j = 1, 2, . . . , n
(2) Successive principal minors of Y are positive, that is,

det

y11 y12 · · · y1i

· · · · · · · · · · · ·
yi1 yi2 · · · yii

 > 0, i = 1, 2, . . . , n

where A = (H + c1λ1iΓ)∗, B = |c1λ1i||ΓH| + (c1λ1i)
2|Γ2|, H = J + c0λ0iH0 and Γ = H1,

then zero solution of system (9) is asymptotically stable.
That is, the synchronized states (5) are asymptotically stable for the dynamical network

(8).

Proof: Suppose that w(t) is continuously differentiable when t ≥ 0, by using the
Newton-Leibniz formula, we can get

w(t − τ1) = w(t) −
∫ t

t−τ1

ẇ(s)ds (10)

Substituting Equation (9) into Equation (10), we achieve

w(t − τ1) = w(t) − H

∫ t

t−τ1

w(s)ds − c1λ1iΓ

∫ t

t−τ1

w(s − τ1)ds (11)

where H = J + c0λ0iH0 and Γ = H1. Then systems (9) can be rewritten

ẇ(t) = (H + c1λ1iΓ)w(t) − c1λ1iΓH

∫ t

t−τ1

w(s)ds − (c1λ1i)
2Γ2

∫ t

t−τ1

w(s − τ1)ds (12)

Let v ∈ Rn with components vi > 0 (i = 1, 2, . . . , n) and let us consider the radially
unbound Lyapunov functional given by

U(t) = U1(t) + U2(t) + U3(t) + U4(t) (13)

where

U1(t) = ⟨|w(t)|, v⟩ (14)

U2(t) = |c1λ1i|
⟨
|ΓH|

∫ 0

−τ1

∫ t

t+s

|w(θ)|dθds, v

⟩
(15)

U3(t) = (c1λ1i)
2

⟨∣∣Γ2
∣∣ ∫ 0

−τ1

∫ t

t+s

|w(θ − τ1)|dθds, v

⟩
(16)

and

U4(t) = τ1(c1λ1i)
2

⟨∣∣Γ2
∣∣ ∫ t

t−τ1

|w(θ)|dθ, v

⟩
(17)
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Then it is obvious that

U(t) < ∞, t > 0 (18)

The right Dini derivative of U along the solution of Equation (12) gives

D+U(t)|(12) = D+U1(t)|(12) + D+U2(t)|(12) + D+U3(t)|(12) + D+U4(t)|(12) (19)

We have

D+U1(t)|(12) =

⟨
d+|w(t)|

dt+
, v

⟩⟨
Dw(t)

d+w(t)

dt+
, v

⟩
(20)

where Dw(t) = diag{sgn(w1), sgn(w2), . . . , sgn(wn)}. Then we can obtain

D+U1(t)|(12) = ⟨Dw(t)(H + c1λ1iΓ)w(t), v⟩

−
⟨

Dw(t)

(
c1λ1iΓH

∫ t

t−τ1

w(s)ds

)
, v

⟩
−

⟨
Dw(t) (c1λ1i)

2 Γ2

∫ t

t−τ1

w(s − τ1)ds, v

⟩ (21)

Next, by overvaluing D+U1(t)|(10), we can get

D+U1(t)|(12) ≤ ⟨(H + c1λ1iΓ)∗|w(t)|, v⟩ +

⟨
|c1λ1i||ΓH|

∫ t

t−τ1

|w(s)|ds, v

⟩
+

⟨
(c1λ1i)

2
∣∣Γ2

∣∣ ∫ t

t−τ1

|w(s − τ1)|ds, v

⟩ (22)

Similarly, we have

D+U2(t)|(12) = |c1λ1i| ⟨|ΓH|(τ1|w(t)|), v⟩ − |c1λ1i|
⟨
|ΓH|

(∫ t

t−τ1

|w(θ)|dθ

)
, v

⟩
(23)

D+U3(t)|(12) = (c1λ1i)
2 ⟨∣∣Γ2

∣∣ (τ1|w(t − τ1)|) , v
⟩

− (c1λ1i)
2

⟨∣∣Γ2
∣∣ (∫ t

t−τ1

|w(θ − τ1)|dθ

)
, v

⟩
(24)

and

D+U4(t)|(12) = (c1λ1i)
2
⟨
τ1

∣∣Γ2
∣∣(|w(t)| − |w(t − τ1)|), v

⟩
(25)

From Equations (21)-(24) and Equation (13), we obtain

D+U(t)|(12) ≤ ⟨−Y |w(t)|, v⟩ (26)

where A = (H + c1λ1iΓ)∗, B = |c1λ1i||ΓH| + (c1λ1i)
2
∣∣Γ2

∣∣.
If Y satisfies the condition (1) and the condition (2), we can find a vector ρ ∈ R∗

+

[27], i.e., with components ρk ∈ R∗
+ satisfying the relation Y1v = ρ, ∀v ∈ R∗

+, here
⟨−Y |w(t)|, v⟩ = ⟨−Y1v, |w(t)|⟩. So, we have

⟨−Y |w(t)|, v⟩ = ⟨−ρ, |w(t)|⟩ (27)

In the end, we can get

D+U(t)|(12) < −
n∑

k=1

ρk|wk(t)| < 0 (28)

Then, it follows that zero solution of system (9) is asymptotically stable. Form Lemma
2.1, we know that the synchronized states (5) are asymptotically stable for the dynamical
network (8). The proof is completed.
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3.2. Synchronization stability analysis for m = 3. In this section, we discuss m = 3.
Then the model (3) and systems (7) can be rewritten as follows:

ẋi = f(xi) + c0

N∑
j=1

a(0)ijH0xj(t) + c1

N∑
j=1

a(1)ijH1xj(t − τ1)

+ c2

N∑
j=1

a(2)ijH2xj(t − τ2), i = 1, 2, . . . , N

(29)

and

ẇ = (J + c0λ0iH0)w(t) + c1λ1iH1w(t − τ1) + c2λ2iH2w(t − τ2), i = 2, . . . , N (30)

Then a sufficient condition for asymptotic stability of system (30) is given as follows.

Theorem 3.2. For the dynamical system (30), if there exists Y = (yij)1≤i,j≤n = −A1−B1

such that
(1) yii > 0, i = 1, 2, . . . , n and yij ≤ 0, for i ̸= j, i, j = 1, 2, . . . , n
(2) Successive principal minors of Y are positive, that is,

det

y11 y12 · · · y1i

· · · · · · · · · · · ·
yi1 yi2 · · · yii

 > 0, i = 1, 2, . . . , n

where A1 = (A + B + C)∗, B1 = τ1(|BA| + |B2| + |BC|) + τ2(|CA| + |C2| + |CB|),
A = J + c0λ0iH0, B = c1λ1iH1 and C = c2λ2iH2, then zero solution of system (30) is
asymptotically stable.

That is, the synchronized states (5) are asymptotically stable for the dynamical network
(29).

Proof: Suppose that w(t) is continuously differentiable when t ≥ 0, by using the
Newton-Leibniz formula, we can get

w(t − τ1) = w(t) −
∫ t

t−τ1

ẇ(s)ds (31)

and

w(t − τ2) = w(t) −
∫ t

t−τ2

ẇ(s)ds (32)

Substituting Equation (29) into Equation (31), we achieve

w(t − τ1) = w(t) − A

∫ t

t−τ1

w(s)ds − B

∫ t

t−τ1

w(s − τ1)ds − C

∫ t

t−τ1

w(s − τ2)ds (33)

where A = J + c0λ0iH0, B = c1λ1iH1 and C = c2λ2iH2.
Similarly, we can get

w(t − τ2) = w(t) − A

∫ t

t−τ2

w(s)ds − B

∫ t

t−τ2

w(s − τ1)ds − C

∫ t

t−τ2

w(s − τ2)ds (34)

Substituting Equation (33) and Equation (34) into Equation (30), we achieve

ẇ(t) = (A + B + C)w(t)

+ B

[
A

∫ t

t−τ1

w(s)ds + B

∫ t

t−τ1

w(s − τ1)ds + C

∫ t

t−τ1

w(s − τ2)ds

]
+ C

[
A

∫ t

t−τ2

w(s)ds + B

∫ t

t−τ2

w(s − τ1)ds + C

∫ t

t−τ2

w(s − τ2)ds

] (35)
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Let v ∈ Rn with components vi > 0 (i = 1, 2, . . . , n) and let us consider the radially
unbound Lyapunov functional given by

U(t) = U1(t) + U2(t) + U3(t) + U4(t) + U5(t) + U6(t) + U7(t) + U8(t) (36)

where

U1(t) = ⟨|w(t)|, v⟩ (37)

U2(t) =

⟨
|BA|

∫ 0

−τ1

∫ t

t+θ

|w(s)|dsdθ, v

⟩
(38)

U3(t) =

⟨∣∣B2
∣∣ ∫ 0

−τ1

∫ t

t+θ

|w(s − τ1)|dsdθ, v

⟩
(39)

U4(t) =

⟨
|CA|

∫ 0

−τ2

∫ t

t+θ

|w(s)|dsdθ, v

⟩
(40)

U5(t) =

⟨∣∣C2
∣∣ ∫ 0

−τ2

∫ t

t+θ

|w(s − τ2)|dsdθ, v

⟩
(41)

U6(t) =

⟨
|BC|

∫ 0

−τ1

∫ t

t+θ

|w(s − τ2)|dsdθ, v

⟩
(42)

U7(t) =

⟨
|CB|

∫ 0

−τ2

∫ t

t+θ

|w(s − τ1)|dsdθ, v

⟩
(43)

and

U8(t) =

⟨∣∣B2
∣∣τ1

∫ t

t−τ1

|w(s)|ds +
∣∣C2

∣∣τ2

∫ t

t−τ2

|w(s)|ds

+|BC|τ1

∫ t

t−τ2

|w(s)|ds + |CB|τ2

∫ t

t−τ1

|w(s)|ds, v

⟩ (44)

Then it is obvious that

U(t) < ∞, t > 0 (45)

The right Dini derivative of U along the solution of Equation (35) gives

D+U(t)|(35) = D+U1(t)|(35) + D+U2(t)|(35) + D+U3(t)|(35) + D+U4(t)|(35)
+ D+U5(t)|(35) + D+U6(t)|(35) + D+U7(t)|(35) + D+U8(t)|(35)

(46)

We have

D+U1(t)|(35) =

⟨
d+|w(t)|

dt+
, v

⟩
=

⟨
Dw(t)

d+w(t)

dt+
, v

⟩
(47)

where Dw(t) = diag{sgn(w1), sgn(w2), . . . , sgn(wn)}.
Next, by overvaluing D+U1(t)|(35), we can get

D+U1(t)|(35) ≤
⟨

(A + B + C)∗|w(t)| + |BA|
∫ t

t−τ1

|w(θ)|dθ + |CA|
∫ t

t−τ2

|w(θ)|dθ, v

⟩
+

⟨
|B2|

∫ t

t−τ1

|w(θ − τ1)|dθ +
∣∣C2

∣∣ ∫ t

t−τ2

|w(θ − τ2)|dθ, v

⟩
+

⟨
|BC|

∫ t

t−τ1

|w(θ − τ2)|dθ + |CB|τ2

∫ t

t−τ2

|w(θ − τ2)|dθ, v

⟩
(48)
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At the same time, we have

D+U2(t)|(35) =

⟨
|BA|

(
τ1|w(t)| −

∫ t

t−τ1

|w(s)|ds

)
, v

⟩
(49)

D+U3(t)|(35) =

⟨∣∣B2
∣∣ (

τ1|w(t − τ1)| −
∫ t

t−τ1

|w(s − τ1)|ds

)
, v

⟩
(50)

D+U4(t)|(35) =

⟨
|CA|

(
τ2|w(t)| −

∫ t

t−τ2

|w(s)|ds

)
, v

⟩
(51)

D+U5(t)|(35) =

⟨∣∣C2
∣∣ (τ2|w(t − τ2)| −

∫ t

t−τ2

|w(s − τ2)|ds

)
, v

⟩
(52)

D+U6(t)|(35) =

⟨
|BC|

(
τ1|w(t − τ2)| −

∫ t

t−τ1

|w(s − τ2)|ds

)
, v

⟩
(53)

D+U7(t)|(35) =

⟨∣∣C2
∣∣ (τ2|w(t − τ1)| −

∫ t

t−τ2

|w(s − τ1)|ds

)
, v

⟩
(54)

and

D+U8(t)|(35) =
⟨(∣∣C2

∣∣τ2 +
∣∣B2

∣∣τ1 + |CB|τ2 + |BC|τ1

)
|w(t)| −

∣∣B2
∣∣τ1|w(t − τ1)|

−
∣∣C2

∣∣τ2|w(t − τ2)| − |BC|τ1|w(t − τ2)| − |CB|τ2|w(t − τ1)|, v
⟩ (55)

From Equations (48)-(55) and Equation (36), we obtain

D+U(t)|(35) ≤ ⟨−Y |w(t)|, v⟩ (56)

where A1 = (A + B + C)∗, B1 = τ1(|BA| + |B2| + |BC|) + τ2(|CA| +
∣∣C2

∣∣ + |CB|).
If Y satisfies the condition (1) and the condition (2), we can find a vector ρ ∈ R∗

+

[27], i.e., with components ρk ∈ R∗
+ satisfying the relation Y1v = ρ, ∀v ∈ R∗

+, here
⟨−Y |w(t)|, v⟩ = ⟨−Y1v, |w(t)|⟩. So, we have

⟨−Y |w(t)|, v⟩ = ⟨−ρ, |w(t)|⟩ (57)

In the end, we can get

D+U(t)|(35) < −
n∑

k=1

ρk|wk(t)| < 0 (58)

Then, it follows that zero solution of system (30) is asymptotically stable. Form Lemma
2.1, we know that the synchronized states (5) are asymptotically stable for the united
complex dynamical network (29). The proof is completed.

4. Numerical Simulation. In this section, we use two examples to illustrate the results
derived in this work. The above asymptotically stable conditions can be applied to net-
works with different topologies and different sizes. In order to illustrate the main results,
we consider a lower-dimensional network model.
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4.1. Example 1. We consider a lower-dimensional network model with five nodes, in
which each node is a simple three-dimensional stable linear system described in [16]. ẋ1 = −x1

ẋ2 = −2x2

ẋ3 = −3x3

which is asymptotically stable at s(t) = 0, and its Jacobian is J(t) = diag{−1,−2,−3}.
Assume that the outer-coupling matrices A0, A1 are given as follows:

A0 =


−1 0.25 0.25 0 0.5
0 −1 0.5 0.5 0
0 0.5 −1 0.5 0
0 0 0.5 −1 0.5
0 0 0 1 −1

 A1 =


−1 0.25 0.25 0 0.5
0 −1 1 0 0
0 0.5 −1 0.5 0
0 0 0.5 −1 0.5
0 0 0.5 0.5 −1


The inner-coupling matrices is often assumed to be the unit matrix [23,28]. And here

the inner-coupling matrices H0 = H1 are given as follows:

H0 =

 1.5267 1.2382 0
−1.8824 0 1.0337

0 1.4472 0


The eigenvalues of A0 are λ0i = 0,−0.6910,−1,−1.5,−1.809 and the eigenvalues of A1

are λ1i = 0,−0.6910, −1, −1.5, −1.809. For clearer visions, we take the coupling strength
c0 = 0.01, c1 = 0.02 and τ1 = 0.05.

In terms of Theorem 3.1, if the condition (1) and the condition (2) are satisfied, then
it is inferred that the synchronization of the complex network (1) can be achieved. When
λ0i = −0.6910,−1,−1.5,−1.809 and λ1i = −0.6910,−1,−1.5,−1.809, we can get

Y =

 1.0306 −0.0274 0
−0.0404 2 −0.0236

0 −0.032 3

 Y =

 1.0443 −0.0387 0
−0.0584 2 −0.0341

0 −0.0463 3



Y =

 1.0664 −0.0596 0
−0.0877 1.9999 −0.0512

0 −0.0695 2.9999

 and Y =

 1.0801 −0.0719 0
−0.1058 1.9999 −0.0617

0 −0.0838 2.9999


respectively. Obviously, the condition (1) of Theorem 3.1 is satisfied. At the same time, we
observe that eigenvalues of the above four matrices are d1 = (1.0295, 2.0004, 3.0070), d2 =
(1.0419, 2.0008, 3.0015), d3 = (1.0608, 2.0020, 3.0035) and d4 = (1.0719, 2.0030, 3.0050),
respectively. Therefore, the condition (2) of Theorem 3.1 is satisfied and the synchronized
states (5) of network (8) are asymptotically stable. In Figure 1, we plot the curves of
the synchronization errors between the states of node i and node i + 1 (that is, eij(t) =
xij(t) − xi+1,j(t)), for i = 1, 2, 3, 4, j = 1, 2, 3, with the coupling strength c0 = 0.01,
c1 = 0.02 and time delay τ = 0.05. When coupling strength c0 = 1.5, c1 = 0.6 and time
delay τ1 = 0.2, it is obvious that the condition (1) and the condition (2) of Theorem
3.1 are not satisfied. The curves of the synchronization errors are shown as in Figure 2.
When coupling strength c0 = 0.2, c1 = 0.25 and time delay τ1 = 0.18, we can obtain that
the condition (1) and the condition (2) of Theorem 3.1 are satisfied. The curves of the
synchronization errors are shown as in Figure 3.
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Figure 1. (color online) Synchronization errors for the united directed
complex dynamical networks when coupling strength c0 = 0.01, c1 = 0.02
and time delay τ1 = 0.05

Figure 2. (color online) Synchronization errors for the united directed
complex dynamical networks when coupling strength c0 = 1.5, c1 = 0.6 and
time delay τ1 = 0.2

4.2. Example 2. In the example, we start to consider the asymptotically stability for
the dynamical network (29). At the same time, we consider a lower-dimensional network
model with five nodes, in which each node is the three-dimensional stable linear system
as above. Here the inner-coupling matrices H0 = H1 = H2 are given as follows:

H0 =

 1.5267 1.2382 0
−1.8824 0 1.0337

0 1.4472 0


and the outer-coupling matrices A0 and A1 are given as above in Example 1, and A2 = A0.
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Figure 3. (color online) Synchronization errors for the united directed
complex dynamical networks when coupling strength c0 = 0.2, c1 = 0.25
and time delay τ1 = 0.18

Figure 4. (color online) Synchronization errors for the united directed
complex dynamical networks when coupling strength c0 = 0.04, c1 = 0.01,
c2 = 0.03 and time delay τ1 = 0.01, τ2 = 0.02

When coupling strength c0 = 0.04, c1 = 0.01, c2 = 0.03 and time delay τ1 = 0.01,
τ2 = 0.02, we can obtain that the condition (1) and the condition (2) of Theorem 3.2 are
satisfied. In Figure 4, we plot the curves of the synchronization errors between the states
of node i and node i + 1. However, the dynamical network (29) is not asymptotically
stable when coupling strength c0 = 0.4, c1 = 0.3, c2 = 0.3 and time delay τ1 = 0.1, τ2 = 1
as shown in Figure 5. Similarly, the dynamical network (29) is asymptotically stable
as shown in Figure 6 when coupling strength c0 = 0.04, c1 = 0.1, c2 = 0.03 and time
delay τ1 = 0.01, τ2 = 0.1. From Figure 4 to Figure 6, we can see that the dynamical
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Figure 5. (color online) Synchronization errors for the united directed
complex dynamical networks when coupling strength c0 = 0.4, c1 = 0.3,
c2 = 0.3 and time delay τ1 = 0.1, τ2 = 1

Figure 6. (color online) Synchronization errors for the united directed
complex dynamical networks when coupling strength c0 = 0.04, c1 = 0.1,
c2 = 0.03 and time delay τ1 = 0.01, τ2 = 0.1

network (29) is asymptotically stable when conditions of Theorem 3.2 are satisfied. Here
the stability criteria of dynamical networks are discussed. And a dynamic network can
be synchronized only if the network parameters meet certain conditions. There are few
studies on this subject. However, there are many dynamical networks and the stability
conditions of these networks are not satisfied. So some controllers are added to ensure
the synchronization of complex dynamical networks. For example, Hu et al. [28] have
discussed the synchronization of united complex dynamical networks via pinning control.
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By use of adaptive periodically intermittent control, exponential synchronisation of united
complex dynamical networks has been studied [24].

5. Conclusion. In this paper, the problem of synchronization stability for the united
directed complex networks with multi-links has been investigated in detail. The idea about
network split is presented according to the different nature of time-delay. Time-delay
is introduced into the integration process. Based on the Lyapunov function combined
with linear matrix inequalities, some general criteria for ensuring united directed complex
networks synchronization have been derived. Finally, numerical simulations are provided
to show the effectiveness and feasibility of the proposed theorems. In fact, there are
many united complex dynamical networks with multi-links such as the World Wide Web,
relationship networks and transportation networks. And the designed methods may be
very useful to study dynamical behaviors real-life networks for the theoretical works and
applications.
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