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Abstract. This paper executes an optimization schema for a class of fractional opti-
mal control problems (FOCPs), subjected to boundary conditions. This novel technique,
named as the Taylor optimization method (TOM), is based on the simulated annealing
method (SA) together with the generalized Taylor’s series. It constitutes the approxima-
tion of state and control functions using generalized Taylor series expansions. While,
simulated annealing seeks out the values of unknown terms of the series along with the
global minimum value of performance index of FOCPs. Elaborately, error and conver-
gence analysis are also discussed for the proposed scheme. Furthermore, graphical and
tabulated results of some examples of FOCPs are exemplified using TOM. A comparative
study is also carried out with exact and the existing solutions in the literature, asserting
the effectiveness and accuracy of this simulating algorithm.
Keywords: Generalized Taylor’s series, Simulated annealing, Fractional optimal control
problems

1. Introduction. Fractional calculus has become a considerable area of study in different
theoretical and applied fields of mathematics, nowadays. In view of the fact that it
deals with the study of arbitrary orders of derivatives and integrals, this theory has been
potentially applied in modeling various real-world physical problems [1-3]. Among many
significant fractional order dynamical models, in this exertion, we might take following
class of fractional control problems into consideration.

Let α ∈ (0, 1) be the fractional order, Ψ, L : [a, T ] × R2 → R be two differentiable
functions and x(t), u(t) be the state and control functions, respectively, and then the
performance index function can be outlined as,

min J(x, u, T ) =

∫ T

a

L(t, x(t), u(t))dt (1)

with the dynamical constraints,

M1ẋ(t) + M2D
α
t x(t) = Ψ(t, x(t), u(t)) (2)

and the boundary conditions,

x(a) = xa, x(T ) = xT (3)

where M1, M2 are nonzero constants and T , xa and xT are fixed real numbers. These
paradigms describe a set of integral and differential equations that define the paths for the
control and state variables while minimizing performance index function. The FOCPs are
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intended to endure the capability of inducing the optimization of the dynamical systems.
For this reason, these models have been widely contemplated in designing different bio-
logical, physical and management sciences problems. In literature, many research works
are found that contain discussions and several applications of FOCPs [4-7].

Most commonly, FOCPs are assessed by means of the Hamiltonian function [8-12] or
Rayleigh-Ritz method [8,13], for the necessary conditions of optimality. As an alternative,
here, we consider the Taylor optimization method in which simulated annealing algorithm
[14,15] is undertaken in place of these optimality conditions for the FOCPs. SA is a
probabilistic technique, which searches the feasible solutions of the functions with the
global optimum of the objective function of an optimization problem, instead of local
optimum. It is a derivative free and therefore has the capability to expeditiously execute
the results. The computational time required by SA is principally the time entailed to
evaluate the objective function. Specifically, SA is highly effective for the problems where
locating an approximate global optimum is more imperative than detecting a precise local
optimum in a fixed amount of time. The SA algorithm offers the following preferences in
comparison with the other optimality conditions.

a) The optimality search proceeds within the entire domain, without using the Lagrange
multiplier or the derivatives of the functions.

b) Without neglecting any, all the calculated results at each point of the domain are
considered and assigned a probability.

c) The result with the greatest probability, i.e., 1, suggests the feasible solution.
d) In a short period of time, rapidly provide the solutions together with the global

optimum of the optimization problems, without being trapped in local minima.

The major contribution of this description is to bring in a scheme for the literature, which
approximates and globally optimizes the problems, which can be in the form of FOCP
with the objective function or the differential equations with an error function.

Methodically, TOM approximates the arbitrary functions through Taylor’s series ex-
pansion [16-22], and then simulates the unknown terms of the series, while optimizing
the performance index function, by simulated annealing algorithm. Sequentially, after
some basic notations and preliminaries of fractional calculus, this paper comprises the
elaboration of the methodology with the error bound assessment. Moreover, convergence
analysis of the method is also carried out, along with the illustration of some examples
of FOCP. The effective concluding remarks on the validity and precision of TOM verify
its capability for being applicable to solve many other differential equations of different
categories.

2. Preliminaries. In this section, we represent some necessary definitions and properties
of fractional calculus with some notations of generalized Taylor’s series expansion.

2.1. Riemann-Liouville fractional integral. The Riemann-Liouville fractional inte-
gral of order α > 0, for any arbitrary function x : [a, b] → R is given by [1,2],

Iα
t x(t) =

1

Γ(α)

∫ t

a

(t − τ)α−1x(τ)dτ

as the left Riemann-Liouville fractional integral and

Iα
b x(t) =

1

Γ(α)

∫ b

t

(τ − t)α−1x(τ)dτ
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as the right Riemann-Liouville fractional integral. Moreover, the operator Iα also satisfies
the following properties. Let µ > 0, then

IαIµx(t) = Iα+µx(t),

IαIµx(t) = IαIµx(t),

Iαtβ =
Γ(β + 1)

Γ(β + 1 + α)
tβ+α

2.2. Caputo fractional derivative. The Caputo fractional derivative of order n− 1 <
α ≤ n, where n is any positive integer, of any arbitrary function x : [a, b] → R is defined
as [1,2],

Dα
t x(t) =

1

Γ(n − α)

∫ t

a

(t − τ)n−α−1x(n)(τ)dτ

as the left Caputo fractional derivative and

Dα
b x(t) =

(−1)n

Γ(n − α)

∫ b

t

(τ − t)n−α−1x(n)(τ)dτ

as the right Caputo fractional derivative. Furthermore, the operator Dρ also satisfies the
following properties

Dα
t K = 0, (K is constant)

IαDα
t x(t) = x(t) −

m−1∑
i=0

x(i)(0)

i!
ti,

Dα
t tβ =

Γ(β + 1)

Γ(β + 1 − α)
tβ−α,

Dα
t (λx(t) + ηy(t)) = λDα

t x(t) + ηDα
t y(t)

2.3. The generalized Taylor’s series. Consider the continuous function x(t) : R → R
that has a continuous fractional derivative of order iα, for any integer i > 0 and 0 < α ≤ 1,
then the subsequent equality holds,

x(t) =
∞∑
i=0

Diα
t0

Γ(iα + 1)
(t − t0)

iα, t0 ∈ [a, b] (4)

Comprehensively, this series can be written as,

x(t) =
N∑

i=0

Diα
t0

Γ(iα + 1)
(t − t0)

iα + Rα
N(t, t0) (5)

where

Rα
N(t, ξ) =

(t − t0)
(N+1)α

Γ((N + 1)α + 1)
D

(N+1)α
ξ x(ξ), ξ ∈ [a, t], ∀t ∈ (a, T ] (6)

is the remainder function of generalized Taylor’s series [20].

3. The Taylor Optimization Method (TOM).

3.1. The Taylor’s series approximation. Assume a square integrable function y(t),
described over an interval [a, T ). Then, the function y(t) can be approximated about a
point a with the truncated generalized Taylor’s series as,
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y(t, s) = s0 + s1
(t − 1)α

Γ(α + 1)
+ · · · + sN

(t − 1)Nα

Γ(Nα + 1)
, α ∈ R (7)

where si = Diα
a y(a), for 0 ≤ i ≤ N , are said to be the coefficients of the series [20].

Analogous to Equation (7), the state function x(t) can also be approximated as,

x(t, s) = s0 + s1
(t − 1)α

Γ(α + 1)
+

N∑
i=2

si
(t − a)iα

Γ(iα + 1)
(8)

where s0 = x(a), s1 = Dα
a x(a) and so on. Let t = T , and on taking the boundary

conditions specified in Equation (3) and simplifying we get

s1 =
1

w1(T )

(
xT − xa −

N∑
i=2

siwi(T )

)

where wi(T ) = (T−a)iα

Γ(iα+1)
. On substituting the above value of s1 in Equation (8), the trial

solution for the state function is acquired, i.e.,

xtrial(t, s) = xa +
w1(t)

w1(T )

(
xT − xa −

N∑
i=2

siwi(T )

)
(t − 1)α

Γ(α + 1)
+

N∑
i=2

siwi(t) (9)

where si are the unknown coefficients of the series that are to be determined. The trial
solution for control function u(t) is attained by using Equation (9) in Equation (2), i.e.,

utrial(t, s) = M1ẋtrial(t, s) + M2D
α
t xtrial(t, s) − Ψ(t, xtrial(t, s)) (10)

Finally, substituting Equations (9) and (10) in Equation (1), the approximation of per-
formance index J is constructed as,

min J (xtrial, utrial, T ) =

∫ T

a

L (t, xtrial(t, s), utrial(t, s)) (11)

3.2. The simulated annealing (optimization). After erecting the trial solutions, we
utilize SA algorithm to compute the unknown terms of the series and optimize the per-
formance index. SA is the most popular metaheuristic method which employs random
search technique and the Boltzmann probability distribution [23] in simulation process.
This process encompasses the following features:

a) A space of random points in a specified domain, which is used as the sampling points
for the iteration,

b) The unknown parameters whose values are to be determined,
c) A conditional equation or an objective function. Its values play crucial part in

measuring the probability,
d) Boltzmann probability distribution, which is an exponential function that assigns

probability to each value of the conditional equation.

Hence, for the governing optimizing problem, let

ti =
(T − a)i

M
, i = 0, 1, . . . ,M (12)

define the space of random points, si are the unknown parameters and the objective
function is expressed as,

min J (xtrial, utrial, T ) =
M∑
i=1

L (ti, xtrial(ti, s), utrial(ti, s)) ≤ 10−ε (13)
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where ε is any positive integer. A point is selected randomly from Equation (12) and
the trial solutions of state and control functions are generated from Equations (9) and
(10), respectively. These trial solutions are then substituted in Equation (13) and a
probability is calculated using its value in the probability distribution. This probability
will suggest to which extent the approximated values of the unknowns are accurate. In
the similar manner, after exercising all the sampling points of the given space, the value
of the objective function with the greatest probability, i.e., 1, is accepted to be the global
minimum value. In addition, the values of the unknown parameters at that point will
be considered to be the most accurately convergent approximations towards the exact
solutions among the other calculated values within the space.

Thus, the algorithmic process of TOM for immediate implementation on FOCPs, is as
follows.
Step 1.
i) Set N ≥ 2, for i = 1, 2, . . . , N.
ii) Construct the trial solution of state function

xtrial(t, s) = xa +
w1(t)

w1(T )

(
xT − xa −

N∑
i=2

siwi(T )

)
(t − 1)α

Γ(α + 1)
+

N∑
i=2

siwi(t)

Step 2.
i) Set 0 < α ≤ 1.
ii) Compute all the components of given dynamical system, i.e.,

Dα
t xtrial(t, s) =

1

w1(T )

(
xT − xa −

N∑
i=2

siwi(T )

)
Dα

t w1(t) +
N∑

i=2

si (D
α
t wi(t))

Step 3.
Substitute all components in Equation (2) and construct trial solution of the control
function,

utrial(t, s) = M1ẋtrial(t, s) + M2D
α
t xtrial(t, s) − Ψ(t, xtrial(t, s))

Step 4.
i) Set sampling points,

ti =
(T − a)i

M
, i = 0, 1, . . . ,M for M ≥ N

ii) Substitute the trial solutions in objective function, defined in Equation (13).

min J (xtrial, utrial, T ) =
M∑
i=1

L (ti, xtrial(ti, s), utrial(ti, s))

iii) Set the probability distribution Pd = e
−J
kθ , where k = 1.38 × 10−23 is Boltzmann

constant and θ = 1 is the initial state.
Step 5.
Organize simulated annealing process.
Input
i) Randomly select.
ii) Substitute in objective function.

min J(s2, s3, . . . , sN) =
M∑
i=1

L(s2, s3, . . . , sN)

and use Mathematica software for calculations.
Output(i):
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Minimum value of J and the values of all unknown terms si.
iii) Put the value of J in Pd and calculate the probability.
iv) Repeat the process until all the defined sampling points of the space are utilized.
Output(ii):
All the minimum values of J with assigned probabilities Pd.
Step 6.
Input
i) Select that minimum J , which is producing the greatest probability, i.e., Pd = 1 or
nearest neighboring of 1.
ii) Take the values of all unknown terms si at selected J .
iii) Substitute the values of si in trial solutions xtrial(t, s) and utrial(t, s).
Output:
Global minimum value and approximate solutions of xtrial(t) and utrial(t).

4. Error Bounds and Convergence. In this sequel, an assessment for the accuracy
and boundedness of the solutions of x(t) and u(t) is carried out. Since the Taylor’s series
expansion (9) is contemplated as the approximate solution of state function x(t), it must
satisfy the following error function, i.e., for t = ti ∈ [a, b], i = 0, 1, 2, . . . ,

EN(ti) =| x∗(t) − xN
trial(ti) |∼= 0

where x∗(t) is the exact solution of the governing problem (1)-(3). Correspondingly, if
EN(ti) ≤ 10−γ with γ being any positive integer, then the truncation limit N is enlarged
until EN(ti), at each point becomes diminutive compared with the specified 10−γ.

Convergence of Taylor series
Assume a square integrable function x(t), continuous in interval [a, T ]. Then the series

expansion (4) for x(t), is said to be convergent, if Rα
N in Equation (5) approaches zero as

N → ∞, i.e.,

x(t) ≤ 1

Γ(iα + 1)
WH(T − t0) (14)

where t0 ∈ [a, T ] and W , H are positive integers.
Proof: Assume (t− t0)

iα and Diα
t0

are bounded and continuous in [a, T ]. Therefore, let
|(t− t0)

iα| ≤ H and |CDiα
t0
| ≤ H. Thus, using the association of summation and integrals,

the absolute value of Equation (4) becomes,

|x(t)| =

∣∣∣∣∫ T

t0

(t − t0)
iα

Γ(iα + 1)
Diα

t0
x(t0)dt + Rα

N

∣∣∣∣ (15)

Since

Rα
N =

(t − t0)
(N+1)α

Γ((N + 1)α + 1)
D

(N+1)α
ξ x(ξ) ≤ 1

Γ((N + 1)α + 1)
(WH)(N+1)α (16)

as |1| < |Γ((N + 1)α + 1)|, when N → ∞, we get

|x(t)|N=∞ ≤ 1

Γ(iα + 1)
WH(T − t0) (17)

5. Illustrative Experiments. This section encompasses some numerical experiments of
FOCPs for the efficiency and reliability manifestation of TOM. Tabulated and graphical
results of each problem are carried out by using Mathematica 10.

Experiment 1
Consider the subsequent FOCP

MinJ(x, u) =

∫ 1

0

(tu(t) − (α + 2)x(t))2dt (18)
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subjected to the dynamical system,

ẋ(t) + Dα
t x(t) = u(t) + t2 (19)

with the boundary conditions x(0) = 0, x(1) = 2
Γ(3+α)

. The exact solution of control and

state functions are given as

x∗(t) =
2tα+1

Γ(α + 2)

The FOCP mentioned in Equations (19) and (20) have also been studied in [8], where
Chebyshev spectral method along with the Hamiltonian function and Rayleigh-Ritz meth-
od is utilized to attain the approximate solutions and minimum value of the objective
function. Here, we use TOM to attain the optimum solutions at different α. Following
the schematic algorithm, the measured numerical solutions of x(t) and u(t), at different
values of α are shown in Figures 1 and 2, respectively. These figures reveal the significant
precision of approximate solutions with the exact values of the state and control functions.

Furthermore, Table 1 ascertains the performance index J at different values of N and
α. In view of the manifestation given in Section 3.2, for each fractional order and number
of generalized Taylor’s series expansion, J ≤ 10−ϵ for positive integers ϵ = 12, . . . , 33,

Figure 1. Approximate versus exact solutions of state function x(t) for
Experiment 1

Figure 2. Approximate versus exact solutions of control function u(t) for
Experiment 1
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Table 1. Performance index J of Experiment 1 for different values of t ∈ [0, 1]

α N = 2 N = 3 N = 4 N = 5 N = 6

0.1 8.92678×10−1 7.87512×10−2 3.24812×10−3 7.10997×10−5 9.82089×10−7

0.3 5.17084×10−1 2.49407×10−2 4.4126×10−4 2.6647×10−6 4.27772×10−9

0.5 2.77182×10−1 6.28842×10−3 2.37611×10−5 1.68549×10−26 6.21342×10−32

0.7 1.34642×10−1 1.01127×10−3 1.58065×10−7 1.08878×10−9 1.84107×10−11

0.9 5.93413×10−2 4.42928×10−5 3.3696×10−7 9.66229×10−9 4.87333×10−10

1.0 3.80518×10−2 6.47112×10−32 4.11672×10−29 4.13026×10−32 1.12099×10−33

Table 2. Comparison between TOM and Chebyshev spectral method [8]
for Experiment 1 at α = 1 and t ∈ [0, 1]

Max

Error
TOM

Alg. A of

Method [8]

Alg. B of

Method [8]

N = 3 N = 5 N = 3 N = 5 N = 3 N = 5

x(t) 7.87512×10−9 7.10997×10−12 3.4641×10−3 2.6415×10−4 3.4641×10−3 2.6416×10−4

u(t) 2.49407×10−8 2.6647×10−11 4.1878×10−2 7.7493×10−3 4.8393×10−2 8.0532×10−3

which signify the worth mentioning accuracy of the proposed approach. Whereas, Table
2 interprets the error analysis comparison between TOM and the method proposed in [8]
for control function u(t) and state function x(t). Maximum errors obtained from TOM,
at α = 1 and different values of N , are less than that of [8], which further elucidates the
competency and effectiveness of TOM to solve FOCP.

Experiment 2
Consider another example of FOCP, which is a linear-quadratic problem, outlined as

MinJ(x, u) =

∫ 1

0

(u(t) − x(t))2dt (20)

subjected to the dynamical system,

ẋ(t) + Dα
t x(t) = u(t) − x(t) +

6tα+2

Γ(3 + α)
+ t3 (21)

with the boundary conditions x(0) = 0, x(1) = 6
Γ(4+α)

. The exact solution of control x(t)

and u(t) state functions is given as,

x∗(t) =
6tα+3

Γ(α + 4)
, u∗(t) =

6tα+3

Γ(α + 4)

The deliberated experiment is solved using TOM for different values of N = 3, 4, 5, . . . , 10
and α = 0.1, 0.3, . . . , 1. Graphical solutions of x(t) and u(t), at different values of α, are
shown in Figures 3 and 4, respectively. These figures illustrate the correspondence of the
calculated solutions with the exact solutions.

Additionally, Table 3 exhibits the performance index J at different values of N and
α. Considering that in Section 3.2, for each fractional order and number of generalized
Taylor’s series expansion, J ≤ 10−ϵ for positive integers ϵ = 1, 2, . . . , 33, which signify
the fastidiousness of the proposed tactic. On the other hand, Table 4 elucidates the error
analysis comparison between TOM and the method proposed in [8] for control function
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Figure 3. Approximate versus exact solutions of state function x(t) for
Experiment 2

Figure 4. Approximate versus exact solutions of control function u(t) for
Experiment 2

Table 3. Performance index J of Experiment 2 for different values of t ∈ [0, 1]

α N = 3 N = 4 N = 5 N = 6 N = 7

0.1 8.73326×10−1 8.59181×10−2 4.78182×10−3 1.63294×10−4 2.96342×10−5

0.3 4.09059×10−1 2.40337×10−2 6.68911×10−4 8.77275×10−6 5.32087×10−8

0.5 1.73417×10−1 5.02095×10−3 4.76968×10−5 7.3741×10−8 1.21731×10−31

0.7 5.64116×10−2 5.8359×10−4 2.68538×10−7 4.27279×10−10 3.09083×10−12

0.9 1.22628×10−2 1.43764×10−5 8.04005×10−8 1.12374×10−9 3.86691×10−11

1.0 4.93827×10−3 1.2326×10−31 4.80788×10−32 5.0421×10−33 5.63078×10−33

u(t) and state function x(t). Maximum errors obtained from TOM, at α = 1 and different
values of N , are less than that of [8], which further clarifies the proficiency and practicality
of TOM to solve FOCP.

6. Conclusions. In this endeavor, we expounded Taylor optimization method for the
assessment of fractional optimal dynamical models considered with boundary conditions.
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Table 4. Comparison between TOM and Chebyshev spectral method [8]
for Experiment 2 at α = 1 and t ∈ [0, 1]

Max

Error
TOM

Alg. A of

Method [8]

Alg. B of

Method [8]

N = 3 N = 5 N = 3 N = 5 N = 3 N = 5

x(t) 7.10997×10−4 5.10997×10−12 7.6404×10−3 7.8604×10−5 1.1943×10−2 1.0304×10−4

u(t) 2.6647×10−3 2.6647×10−13 7.6404×10−3 7.8604×10−5 1.6339×10−1 1.0600×10−3

Innovatively, generalized Taylor’s series expansion was incorporated with simulated an-
nealing method to approximate and optimize the solutions. Also, a comprehensive dis-
cussion on convergence and error analysis had been part of this study. Thus, examining
this method on some experiments of FOCPs, we summarize the whole paper with the
following constructive outcomes.

• The potential ability of generalized Taylor’s series in approximating functions, en-
ables to erect continuous and differentiable analytical approximations of the state
and control functions of the dynamic systems.

• Simulated annealing algorithm, depending on the probability, does not only accept
the changes which decreases the minimizing objective function, but also accepts the
changes that increase the objective function with a probability. Hence, it considers
all the possible values of the function.

• The random search ability of SA and using large number of sampling points, in-
creases the convergence of the approximate solutions, without any computational
complexity.

• Efficient and easy coding of a simulated annealing algorithm makes the systematic
scheme effortless and straightforward that extends its advantageous applicability to
solve a wide class of dynamical problems.

• Unlike other Taylor based method, TOM calculates large number of unknown terms
more rapidly and conveniently, without being trapped in local minima.

• TOM is deemed to be a very effective and robust method to approximate functions
and globally optimize any linear or nonlinear differential and integral equations of
fractional as well as integer order.

Additionally, for the reason of being a competent approximating method, in the future,
we will further corroborate the applicability of TOM on different ordinary and partial
differential problems appearing in several fields of applied sciences.
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