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Abstract. On the basis of considering the saturation of the actuator, a robust adaptive
course controller of unmanned surface vehicle is presented by introducing an auxiliary
function. During the voyage, due to the change of working conditions and the interfer-
ence of the external environment, the mathematical model of unmanned surface vehicle
presents nonlinear characteristics and uncertainty. In view of the model nonlinearity and
uncertainty, the RBF neural network is used to approximate the unknown function, and
then based on the backstepping method and Lyapunov stability theory, a robust adaptive
course controller with input saturation is proposed by means of a saturation aided design
system. Finally, the results of numerical simulation show that the proposed control strat-
egy can effectively track the target value and has strong robustness.
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1. Introduction. Unmanned surface vehicle (USV) is an unmanned ocean platform
which can achieve a long time and a large range of marine scientific research tasks.
Therefore, USV has a very broad application prospect in civilian and military areas,
such as marine environmental monitoring, marine resources exploration and territorial
sea surveillance [1]. As an intelligent platform for autonomous navigation, course control
is not only the basis for the realization of autonomous driving, but also direct determina-
tion of the economy and safety of navigation. Therefore, the design of course controller
is very important.

Due to the continuous change of operating conditions, the model of USV is nonlinear
and uncertain. On the basis of the above problems, many scholars at home and abroad
have done the corresponding research. In [2], backstepping method and parameter adap-
tation method are used to solve the problems of nonlinearity and uncertainty of the ship
model. [3] uses backstepping method to design course controller, and particle swarm intel-
ligence algorithm is employed to optimize the control parameters. In the process of using
backstepping method to design the controller, dynamic surface method is used to solve
the problem of “computation explosion” [4]. In [5], RBF neural network is employed to
approximate the unknown function of the system and Lyapunov function is used to prove
the stability of the system. In the case of external interference, two order sliding mode
observer is used to estimate the ship yawing angular velocity and backstepping method is
used to design course controller, which guarantees the global asymptotic stability of the
closed loop system [6]. Despite that the above papers in the numerical simulation have
achieved good results, the input saturation problem of actuator is not considered. The
problem of input saturation should be considered when designing the controller, rather
than limiting the control input through the rudder characteristics forcibly. In [7], on the
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basis of considering the input saturation, backstepping adaptive and auxiliary function are
used to design course controller. In [8], an adaptive fuzzy method is employed to design
course controller with input saturation. In [9], based on the Lyapunov stability theory
and the backstepping technique, a direct adaptive neural network controller is proposed
for ship course-keeping control in the presence of input saturation.

The main contribution of this paper is to design a novel RBF adaptive USV course
controller with considering the input saturation. Considering the nonlinearity and un-
certainty of the model, BRF neural network approximation theory is used to deal with
the uncertainty of the model, and the backstepping method is applied to designing con-
troller which can guarantee that all the state variables of the closed-loop system meet
ultimate boundedness. To handle the actuator saturation, the auxiliary design system is
introduced to analyze the effect of input saturation.

The rest of the paper is organized as follows. Section 2 introduces the problem formula-
tion of USV. In Section 3, the control design and its stability analysis are given. In Section
4, numerical simulations are carried out to show the effectiveness and practicability of our
design. Finally, some conclusions are made and future research directions are introduced
in Section 5.

2. Problem Statement and Preliminaries. Norrbin model [10] is often used to design
the course controller.

T r̈ + r + αr3 = Kδ + d(t) (1)

where r is yaw rate, K and T are system parameters, α is nonlinear parameter, d(t) is a

bounded external disturbance, and δ is rudder angle. r = ψ̇ and ψ is course. Selecting
state variable x1 = ψ, x2 = r, u = δ, then Formula (1) can be changed as ẋ1 = x2

ẋ2 = f(x) + b(x)u+ d(t)
y = x1

(2)

where f(x) = − 1
T
x2 − α

T
x3

2, b(x) = K
T

. f(x) and b(x) are uncertain and ∥d(t)∥ < ld,
ld > 0. In this paper, considering the presence of input saturation constraints on rudder
u as follows: umin ≤ u ≤ umax, where umax and umin are the known upper limit and lower
limit of the rudder. Define U as the ultimate control input and it satisfies

U = sat(u) =

 umax if u > umax

u if umin ≤ u ≤ umax

umin if u < umin

(3)

It is worth noting that the u in Formula (3) is the designed control input of the system
and U is the ultimate control law. Generally speaking, umax = 35 and umin = −35.

Assumption 2.1. The reference course xd is a sufficiently smooth function of time, and
xd, ẋd, ẍd are bounded.

Lemma 2.1. For bounded constant k1 ≥ 0, k2 ≥ 0, when V (t, x) is a positive defined
function and satisfies V̇ ≤ −k1V + k2, then V (t, x) ≤ k2/k1 + (V (0) − k2/k1)e

−k1t.

Lemma 2.2. If the f(t) is ultimately continuous function and there exists bounded

lim
t→∞

∫ t

0
f(τ)dτ , then f(t) → 0 when t→ ∞.
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3. Controller Design. In this section, a robust adaptive course controller considering
input saturation will be designed. Define error variable z1 = x1 − xd and z2 = x2 − α1.
The time derivative of z1 is ż1 = z2 + α1 − ẋd. The virtual control law of α1 is chosen as
α1 = −c1z1 + ẋd, where c1 is a constant and c1 > 0, so we can obtain ż1 = −c1z1 + z2.

Define the first Lyapunov function V1 = 1
2
z2
1 and the time derivative of V1 is V̇1 =

−c1z2
1 + z1z2. The time derivative of z2 is ż2 = ẋ2 − α̇1. For convenience of constraint

effect analysis of the input saturation, the following auxiliary design system [11] is given
as follows

ė =

 −He− f (x̄)

∥e∥
e+ U − u ∥e∥ ≥ ε

0 ∥e∥ ≤ ε
(4)

where ε is a small positive design parameter and e is a variable of the auxiliary de-
sign system introduced to ease the analysis of the effect of the input saturation, f(x̄) =
|z2 · b · ∆u| + 1

2
∆u2, H > 0, ∆u = U − u, b = K/T . RBF neural network is used to ap-

proximate smooth function f(x) and b(x) [12]. Define f̂(x) = Ŵ T
f ϕf (x), b̂(x) = Ŵ T

b ϕb(x),

f̃(x) = f(x) − f̂(x), b̃(x) = b(x) − b̂(x), W̃f = Wf − Ŵf and W̃b = Wb − Ŵb. Here ω is
the sum of all approximation errors and |ω| ≤ ωmax, ωmax > 0.

Define the second Lyapunov function V2 = V1 + 1
2
z2
2 + 1

2r1
W̃ T

f W̃f + 1
2r2
W̃ T

b W̃b + 1
2
e2.

The time derivative of V2 is

V̇2 = V̇1 + z2ż2 −
1

r1
W̃ T

f
˙̂
Wf −

1

r2
W̃ T

b
˙̂
Wb + eė

= V̇1 + z2

[(
Ŵf + W̃f

)T

ϕf (x) + ω +W T
b ϕb(x)u+ Ŵ T

b ϕb(x)u− Ŵ T
b ϕb(x)u

+ d(t) − α̇1

]
− 1

r1
W̃ T

f
˙̂
Wf −

1

r2
W̃ T

b
˙̂
Wb + eė

= − c1z
2
1 + z2

[
z1 + Ŵ T

f ϕf (x) + ω + Ŵbϕb(x)u+ d(t) − α̇1

]
− 1

r1
W̃ T

f

(
˙̂
Wf − r1z2ϕf (x)

)
− 1

r2
W̃ T

b

(
˙̂
Wb − r2z2ϕb(x)u

)
+ eė

It is clear that

e · ė = −He2 −
|z2 · b · ∆u| + 1

2
∆u2

∥e∥2 · e2 + ∆u · e (5)

∆u · e ≤ 1

2
∆u2 +

1

2
e2 (6)

We can choose control law

u =
1

Ŵ T
b ϕb(x)

(
−

(
c2 +

1

γ2

)
(z2 − e) − z1 − k1sgn(z2) − Ŵ T

f ϕf (x) + α̇1

)
(7)

where k1, c2 and γ are constants that are greater than zero and k1 > ω. Substituting (5),
(6) and (7) into V̇2, then

V̇2 ≤ − c1z
2
1 + z2

[
−

(
c2 +

1

λ2

)
(z2 − e) + ω − k1sgn(z2) + d(t)

]
− 1

r1
W̃ T

f

(
˙̂
Wf − r1z2ϕf (x)

)
− 1

r2
W̃ T

b

(
˙̂
Wb − r2z2ϕb(x)u

)
− (H − 0.5)e2
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≤ − c1z
2
1 −

(
c2 +

1

λ2

)
z2
2 + z2

(
c2 +

1

λ2

)
e+ z2d(t) −

1

r1
W̃ T

f

(
˙̂
Wf − r1z2ϕf (x)

)
− 1

r2
W̃ T

b

(
˙̂
Wb − r2z2ϕb(x)u

)
− (H − 0.5)e2

(8)

In order to weaken the chattering of the control law, symbolic function sgn(z2) is re-
placed by saturation function sat(z2).

sat(z2) =

 1 z2 > ∆
k2z2 |z2| ≤ ∆
−1 z2 < −∆

(9)

where k2 = 1/∆ and ∆ is boundary layer. Then Formula (7) can be changed as

u =
1

Ŵ T
b ϕb(x)

(
−

(
c2 +

1

γ2

)
(z2 − e) − z1 − k1sat(z2) − Ŵ T

b ϕf (x) + α̇1

)
(10)

Define d(t) = D
˙̂
Wf = r1

[
z2ϕ(x) − σ0

(
Ŵf −Wf0

)]
(11)

˙̂
Wb = r2

[
z2ϕ(x)u− σ1

(
Ŵb −Wb0

)]
(12)

where r1, r2, σ0 and σ1 are positive constants, and Wf0 and Wb0 are the initial values of
Wf and Wb.

It is clear that

|z2D| ≤ 1

γ2
∥z2∥2 +

1

4
γ2D2 (13)

W̃ T
f

(
Ŵf −Wf0

)
= −1

2

∣∣∣W̃f

∣∣∣2 − 1

2

∣∣∣Ŵf −Wf0

∣∣∣2 +
1

2
|Wf −Wf0|2 (14)

W̃ T
b

(
Ŵb −Wb0

)
= −1

2

∣∣∣W̃b

∣∣∣2 − 1

2

∣∣∣Ŵb −Wb0

∣∣∣2 +
1

2
|Wb −Wb0|2 (15)

z2e ≤
1

2
z2
2 +

1

2
e2 (16)

Substituting (11), (12), (13), (14), (15) and (16) into (8)

V̇2 ≤ − c1z
2
1 − c2z

2
2 +

(
c2 +

1

λ2

)
1

2

(
z2
2 + e2

)
+

1

4
γ2D2 − σ0

1

2

∣∣∣W̃ T
f

∣∣∣2
+ σ0

1

2
|Wf −Wf0|2 − σ1

1

2

∣∣∣W̃ T
b

∣∣∣2 + σ1
1

2
|Wb −Wb0|2 − (H − 0.5)e2

≤ − c1z
2
1 −

(
c2 −

1

λ2

)
1

2
z2
2 − σ0

1

2

∣∣∣W̃ T
f

∣∣∣2 − σ1
1

2

∣∣∣W̃ T
b

∣∣∣2 − (
H − 0.5 − 1

2
c2 −

1

2λ2

)
e2

+
1

4
γ2D2 + σ0

1

2
|Wf −Wf0|2 + σ1

1

2
|Wb −Wb0|2

We can choose the appropriate parameters to make c2 > 1/λ2 and H > 0.5+0.5c2+1/2λ2.

Theorem 3.1. Considering the system (2) with input constraint effect under Assumption
2.1, auxiliary analysis system (4), robust control law (7), tuning functions (11) and (12),
input saturation constraint (3), for bounded initial conditions, the closed-loop system sig-
nals z1, z2 and e are uniformly ultimately bounded. Besides, we can make it by selecting
the appropriate parameters.
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Proof: Define

µ = min

[
c1,

(
c2 −

1

λ2

)
1

2
,
σ0

2r1
,
σ1

2r2
,

(
H − 0.5 − 1

2
c2 −

1

2λ2

)]
M =

1

4
γ2D2 + σ0

1

2
|Wf −Wf0|2 + σ1

1

2
|Wb −Wb0|2

Then V̇2 ≤ −2µV2 +M . According to Lemma 2.1, 0 ≤ V2 ≤ M
2µ

+
[
V2(0) − M

2µ

]
e−2µt.

Thus it can be obtained that V2 −M/2µ is exponential attenuation. This is to say,
lim
t→∞

∫
V2 −M/2µ is bounded; V2 and V̇2 are bounded, so V2 is ultimately continuous.

According to Lemma 2.2, it can be further obtained that

lim
t→∞

V2 = M/2µ

It can be easily concluded that the closed-loop system is uniformly ultimately bounded.

4. Numerical Simulation. In this section, the numerical simulation is presented to
prove the effectiveness and the performance of the proposed course controller. The con-
sidered vehicle is called “Lanxin” USV which belongs to Dalian Maritime University
[13,14] and K = 0.707, T = 0.332 and α = 0.001.

The parameters of control law (10) are c1 = 0.425, c2 = 1.1, γ = 1, ε = 1, H = 2,
k1 = 0.1, k2 = 0.6, r1 = 0.06, r2 = 0.01, σ0 = 0.001, σ1 = 0.001, Wf0 = 0.001,

Wb0 = 0.001. The initial conditions of f̂(x) and b̂(x) are 0 and 0.5 respectively. It is

worth noting that in order to prevent b̂(x) = 0, we can choose a larger initial value.
Due to the fact that the application of the most widely used in the actual ship course

control is the PID automatic rudder, the PID controller is compared with the proposed
course controller. The control law of PID is

δ = Kpe+Ki

t∫
0

edτ +Kdė

whereKp,Ki andKd are the parameters of PID andKp = 0.64,Ki = 0.001 andKd = 0.21.
When state of the sea is at level 5, external disturbance can be expressed as a transfer
function L(s) driven by white noise with zero mean [13].

L(s) =
0.42s

s2 + 0.36s+ 0.37

In the case of no external disturbance, course control simulation results are shown in
Figure 1.

The course comparison result is shown in Figure 1(a) from which it is clearly observed
that the controller presented in this paper can make the course fast to reach the target
value, and it has a better control effect than PID.

The rudder angle comparison result is shown in Figure 1(b) from which it is clearly
observed that in the initial stage, the control input is saturated. When the course reaches
the target value, the rudder angle converges to zero quickly.

The estimated values of f(x) and b(x) are shown in Figures 1(c) and 1(d) respectively.
It can be seen from Figures 1(c) and 1(d) that the estimated value of f(x) converges to
zero, but the estimated value of b(x) does not converge to the actual value. For all that,
the controller proposed in this paper still has a good control effect.

Without changing the control parameters and in the presence of external disturbance,
the results are shown in Figure 2.
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(a) (b)

(c) (d)

Figure 1. The simulation results of no external disturbance

In the case of external disturbance, the course comparison result is shown in Figure
2(a) from which it is clearly observed that the controller presented in this paper can still
keep course stable at the target value, and its fluctuation range is less than PID. From
Figures 2(b), 2(c) and 2(d) it can be seen that the remaining variables are still within a
reasonable range. At this point, it is proved that the controller presented in this paper is
effective and positive.

5. Conclusions. On the basis of considering the model uncertainty and input saturation,
the course controller of USV is designed. Based on backstepping method, the approxima-
tion ability of RBF neural network is used to solve the model uncertainty problem firstly.
Then the input saturation problem is considered by introducing the auxiliary function.
Finally, the stability of the system is proved by Lyapunov function. The numerical sim-
ulation results show that the control strategy proposed in this paper can stabilize the
course to the target value and the control effect is better than PID. In future research,
the control strategy proposed in this paper will be used in real ship experiment.
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(a) (b)

(c) (d)

Figure 2. The simulation results of under external disturbance
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