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Abstract. Class overlapping is one of the bottlenecks in data mining and pattern recog-
nition, and affects the classification accuracy and generalization ability directly. In
Mahalanobis-Taguchi System (MTS), the normal samples are used to construct refer-
ence space, while the abnormal samples are used to verify the validity of the reference
space. If there is a class overlapping between the normal samples and the abnormal
samples, the result of classification will be affected. In this paper, kernel function and
Mahalanobis distance are combined to form the kernel Mahalanobis distance as an im-
proved measurement scale of the MTS. Experimental results show that Kernel-MTS is
suitable for class overlapping classification, and it provides better classification accuracy
than the conventional methods.
Keywords: Mahalanobis-Taguchi System (MTS), Kernel function, Class overlapping,
Classification

1. Introduction. As the focus in data mining, the problem of classification is getting
more and more attention. The methods of classification are widely used in finance,
medicine, mechanic and other industries. In these practical problems, due to the ob-
jective condition of data collection or the characteristics of data attribute itself, there
will be some overlapping areas between the different classes, and the degree of class over-
lapping directly affects the performance of the classification. Studies have shown that
classification errors are usually concentrated in the border areas of different classes, and
this is exactly the existence of overlapping regions [1]. There were several studies on class
overlapping problems, e.g., Denil and Trappenberg [2] examined the effects of overlap
and imbalance on the complexity of the learned model and demonstrated that overlap
was a far more serious factor than imbalance in this respect. Garćıa et al. [3] studied
the overlapping data by artificial generation, but they did not apply the research method
in practice. Li and He [4] studied only the problem of overlapping fault diagnosis in
two-dimensional space; however, there are many multidimensional data in the practical
problem. Xiong et al. [5] studied the cases of concept overlapping, but sample overlapping
problems are more common in reality.

Mahalanobis-Taguchi System (MTS) [6] is a highly practical pattern recognition method
and was proposed by Dr. Taguchi, who is a well-known Japanese quality engineer scientist.
MTS is a diagnosis and forecasting method for multivariate data. MTS regards the
signal-to-noise ratio (SNR) and Mahalanobis distance (MD) as the optimization targets,
and select the effective variables by using 2-level orthogonal array. In recent years, as a
multivariate pattern recognition technology, MTS was widely used in various areas such
as industrial production and business management, e.g., Li et al. [7] combined MTS and
grey cumulative prospect theory for enterprise information investment and risk decision.
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Shakya et al. [8] applied MTS for the online detection of health status of the rolling
element bearing. Valarmathi and Palanisamy [9] classified the customers’ opinions from
the web by using MTS. Although the MTS method has been widely used, it also has
disadvantages, such as weak theoretical basis [1], especially when class overlapping exists,
the method’s classification ability is poor or it cannot be used.

Aiming at the above problem, Kernel Mahalanobis Distance (KMD), which is the Ma-
halanobis distance in the high dimensional space that is mapped from low dimensional
space by the kernel function, is used as a new measurement scale in MTS to solve the
problem of classification with overlapping data. KMD is used to map the original sam-
ples to feature space (dimensional or infinite-dimensional) implicitly in order to increase
the differences between various classes. There have been many studies of kernel function
with the original measurement scale [11-14] which is applied in outlier identification, fault
diagnosis, quality prediction, etc. And studies have shown that KMD classifier can deal
with overlapping and nonlinear problems in the kernel feature space.

The paper is organized as follows. Section 2 starts with preliminaries on kernel func-
tion and the kernel Mahalanobis distances. Section 3 introduces Kernel-MTS classifica-
tion strategies. Section 4 presents experimental comparison on four datasets with some
conventional methods. Section 5 gives some conclusions and future directions.

2. Kernel Mahalanobis Distance.

2.1. Review of kernel function. The kernel function makes a non-linear mapping from
the input space to the feature space, which can make the inner product of the feature space
be represented by a function of the input space. Its mathematical expression is shown
as k(xi, xj) = ⟨ϕ(xi), ϕ(xj)⟩. The kernel function avoids the curse of dimensionality and
reduces the amount of computation greatly. In addition, the dimension of the input
space does not affect the kernel function matrix, so the kernel-based methods can deal
with the high-dimensional input effectively and the parameters or the form of nonlinear
transformation function ϕ need not to be known while only the inner product of low-
dimensional space needs to be calculated.

In machine learning theories, the popular kernel functions are shown below.

Gaussian kernel: k(xi, xj) = exp
(
−∥xi−xj∥2

2σ2

)
Polynomial kernel: k(xi, xj) =

(
axT

i xj + c
)d

Sigmoid kernel: k(xi, xj) = tanh
(
αxT

i xj + c
)

where xi and xj are the vectors of input space. σ, a, c and d are the customized parameters.
In practice, there is still no general approach to select kernel function. The best kernel

function is usually selected by prior knowledge or the cross-validation experiment in which
the selection criterion is the minimum training error.

2.2. Invertible covariance KMD. Assume the input space RP has n sample data:
X = {xi}n

i=1 ⊂ Rp. The function Φ(·) is used to map the samples from the input space
to the feature space: Φ : Rp → F , x → ϕ(x). The squared MD between sample vector of
input space and reference space with mean µ and covariance matrix C is shown as d2(x) =
(x − µ)T C−1(x − µ). Similarly, MD in feature space can be defined as d2(x) = (ϕ(x) −
ϕµ)T C−1

ϕ (ϕ(x) − ϕµ). Feature space is usually high-dimensional or infinite-dimensional,
and it is difficult to explicitly express the mapping of sample vector ϕ(x), the mean ϕµ

and the covariance Cϕ of the mapping of reference space. However, one characteristic of
the feature space is that the inner product of any two vectors can be calculated by the
kernel function of the corresponding two vectors in the input space. That is, for arbitrary
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xi, xj ⊂ Rp, there has ϕ(xi)
T ϕ(xj) = ⟨ϕ(xi), ϕ(xj)⟩ = k(xi, xj). Generally, the kernel

matrix of mapped samples can be expressed as K = ΦT Φ = (k(xi, xj))n×n = (kij)n×n.
By choosing kernel functions and its parameters, the mapping from the input space to

the feature space is implicitly changed. The following briefly describes the solution steps
of invertible covariance KMD [15].

Let the mapped samples in the feature space be represented as Φ = [ϕ(x1), . . . , ϕ(xn)],
the empirical mean is defined as ϕµ = 1

n

∑n
i=1 ϕ(xi) = 1

n
Φ1n, where 1n is a column

vector in which the elements are all ones. Then ϕ̃(xi) = ϕ(xi) − ϕµ or more compactly

Φ̃ =
[
ϕ̃(x1), . . . , ϕ̃(xn)

]
= Φ − 1

n
ϕµ1

T
n = Φ − 1

n
Φ1n1

T
n = ΦH, where H = In − 1

n
1n1

T
n ,

In is an identity matrix. So the covariance matrix is Cϕ = 1
n
Φ̃Φ̃T = 1

n
ΦHHΦT , and

the centralized kernel matrix is K̃ = Φ̃Φ̃T = HKH. Usually, the inverse of K̃ does not
exist, but its pseudo-inverse matrix K̃− can be calculated. In practical application, the
calculation of K̃− is shown as follows: first, select the kernel function and calculate the
kernel matrix, then calculate the K̃, finally, calculate K̃− by using the method of singular
value decomposition. In this process, the parameter α needs to be set: if the singular value
is less than α, α = 0; otherwise, α > 0. For any x, x ⊂ Rp, the kernel matrix between
x and reference space can be expressed as kx = [k(x1, x), . . . , k(xn, x)]T = ΦT ϕ(x), then

k̃x = Φ̃T ϕ̃(x) = H
(
kx − 1

n
K1n

)
, so the KMD can be calculated as follows:

KMD = d2
IC(x) = ϕ̃(x)T C−1

ϕ ϕ̃(x) = nk̃T
x

(
K̃−

)2

k̃x

3. Proposed Methodology. In traditional MTS, the validity of the reference space is
verified by abnormal samples. When the difference between normal and abnormal MDs is
small, the classification effect will be unsatisfied. If this situation occurs, there may have
class overlapping between normal and abnormal samples. KMD should be used to form
a new measurement scale instead of MD and thus Kernel-MTS would be used for data
classification. Similar to the traditional MTS, the application of Kernel-MTS also can be
carried out in four stages, shown as follows.

Stage 1: construct the reference space. Define the variables under healthy or
normal conditions. Collect the normal samples and normalize them. Select the basic
kernel function or construct compound kernel function, and use the formula in Section
2.2 to calculate the KMD for all samples in the normal group.

Stage 2: confirm the validity of the reference space. Identify the unhealthy
or abnormal condition, and normalize them by using the mean and standard deviation
of normal group, and calculate the KMD of abnormal samples. If the reference space is
valid, the KMD of abnormal samples will be larger than normal samples. Based on this,
the validity of the reference space can be judged.

Stage 3: identify valid variables. The valid variables are selected by using orthog-
onal array and larger-the-better SNR. Each combination of variables in the orthogonal
array yields an SNR which is calculated by the KMDs of abnormal samples. Depending
on the difference in SNR at different variable levels, the set of valid variables can be
identified.

Stage 4: use valid variables to diagnose. According to the reference space com-
posed of valid variables, the KMDs of unknown samples are calculated. By the comparison
between the calculated KMD value and threshold value, the classification, diagnosis and
prediction can be carried out. In the application of Kernel-MTS, the determination of
threshold is very important because it can directly affect the classification effect. There
are several ways to determine the threshold in traditional MTS. Taguchi and Jugulum
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[6] used quadratic loss function to determine the threshold but because of the large un-
certainty of quantitative loss, the method is difficult to implement in practice. Su and
Hsiao [16] proposed a probabilistic threshold model with the lowest error rate of normal
samples; however, this model has complicated computational process and exits pending
parameters. In practice, exhaustive method is usually used to determine the optimal
threshold, in order to obtain a higher overall classification accuracy. However, the ex-
haustive method takes a long time, and it may reduce the recoquition accuracy of normal
or abnormal samples in order to achieve higher overall accuracy.

In this paper, the f -max method is proposed to determine the threshold. Assume T is
the threshold, the KMD of normal samples is defined as KMD i (i = 1, 2, . . ., n), and the
KMD of abnormal samples is defined as KMD j (j = n + 1, n + 2, . . ., n + m).

Thus,

nerror =
n∑

i=1

ki, ki =

{
1, if KMD i > T
0, if KMD i ≤ T

i = 1, 2, . . . , n

merror =
n+m∑

j=n+1

kj, kj =

{
1, if KMD j < T
0, if KMD j ≥ T

j = n + 1, n + 2, . . . , n + m

Then the classification accuracy of normal samples is f1 = (n − nerror)/n × 100%, and
the classification accuracy of abnormal samples is f2 = (m − merror)/m × 100%. Let
f = f1 × f2, and make f maximization by adjusting the value of T . When the f value
is the maximum value, the corresponding T value can be selected as the threshold. The
f -max method is also suitable for MTS.

The flow chart of Kernel-MTS method is shown as Figure 1.

4. Experimental Comparison.

4.1. Datasets and experimental methods. Four common classification datasets in
UCI database are chosen and their basic information is shown in Table 1.

Table 1. Datasets information

Datasets name
No. of

variables
No. of
samples

Normal sample
representation/No.

Abnormal sample
representation/No.

Statlog (Heart) 13 270 absence/150 presence/120
Ionosphere 34 351 Good/225 Bad/126

Glass identification 9 146 Float processed/70 Non float processed/76

Forest type mapping 9 354 Sugi forest/195
Mixed deciduous

forest/159

The experiment uses 5-fold cross-validation method, that is, each dataset is randomly
split into 5 mutually exclusive subsets of approximately equal size, four subsets are se-
lected as training sets of each experiment, and the remaining one subset is as a test set.
Traditional MTS, decision tree C4.5 algorithm, Support Vector Machine (SVM), Naive-
Bayes (NB), k-Nearest Neighbor (k-NN) and Kernel-MTS are used simultaneously for
comparative study. The parameter σ of Gaussian kernel in Kernel-MTS is selected when
the average test error is smallest in the test set. The parameter α is set as 0.5 to solve
the pseudo inverse matrix of the centralized kernel matrix K̃. The f -max method is used
to determine the threshold in both MTS and Kernel-MTS algorithm. The parameter k is
set as 5 in the k-NN algorithm. The parameters in C4.5, SVM, NB and other algorithm
are determined by multiple cross-validations on several subsets.
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Figure 1. The flow chart of Kernel-MTS method

The calculation of the above methods is carried out by R software. Evaluating the
classification effect of each method on each dataset is based on the mean of the results
of the 5-fold cross-validation experiments. The evaluation metrics are the classification
accuracy of the normal samples, the abnormal samples and the overall samples and F-
measure.

A two-class problem confusion matrix is shown as Table 2. In the table, True represents
normal sample, False represents abnormal sample. TP represents the number of normal
samples which is predicted correctly, TN represents the number of abnormal samples
which is predicted correctly, FP represents the number of normal samples which is pre-
dicted incorrectly, and FN represents the number of abnormal samples which is predicted
incorrectly.

The commonly used evaluation metrics are shown as follows:
(1) Sensitivity (TPR) = TP/(TP+FN), which is the classification accuracy of normal

samples. (2) Specificity (TNR) = TN/(TN+FP), which is the classification accuracy of
abnormal samples. (3) Accuracy (Acc) = (TP+TN)/(TP+TN+FP+FN), which is the
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Table 2. Confusion matrix

Predicted Positive Predicted Negative
Actual True True Positive (TP) True Negative (TN)
Actual False False Positive (FP) False Negative (FN)

classification accuracy of overall samples. (4) F-measure = 2×TP/(2×TP+FP+FN). The
higher the four metrics above, the better the classification effects.

4.2. Results analysis. The experimental process and the results are descripted by using
the Statlog dataset as an example, and the remaining datasets only show the final results.
In the 5-fold cross-validation experiment of Statlog dataset, the number of training set is
216, in which the number of normal sample is 120 and the number of abnormal sample is
96. The number of test set is 54, in which there are 30 normal samples and 24 abnormal
samples. MD and KMD density distribution curve of normal samples and abnormal
samples by using MTS and Kernel-MTS under the valid variables are shown as Figures 2
and 3. In these figures, 0 represents normal samples and 1 represents abnormal samples.

Figure 2. The density curve in MTS

Figure 3. The density curve in Kernel-MTS
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As shown in the figures, there exist class overlapping in Statlog dataset, which also can
be verified by the low classification accuracy of the conventional classification algorithm.
The classification accuracy of each algorithm on the Statlog dataset is shown in Table
3. The classification effect of Kernel-MTS algorithm is better than the other methods
in which Acc metric is particularly prominent. The classification effect of MTS is at a
moderate level. By using 5-fold cross-validation, the average number of deleted variables
in MTS and Kernel-MTS are 3.8 and 5.2 respectively. So the Kernel-MTS algorithm has
a better result in dimension reduction.

Table 3. Classification effect of Statlog dataset

TPR (%) TNR (%) Acc (%) F-measure (%)
Kernel-MTS 90.87 82.70 87.58 86.49

MTS 84.26 78.88 80.53 81.78
SVM 86.55 78.45 82.57 84.21
k-NN 75.33 60.63 68.15 72.29
C4.5 83.98 71.67 78.52 81.14
NB 86.15 81.67 83.54 84.68

For the datasets of forest type mapping, glass identification and ionosphere, the com-
parisons of classification effect are shown in Tables 4 to 6.

Table 4. Classification effect of forest type mapping dataset

TPR (%) TNR (%) Acc (%) F-measure (%)
Kernel-MTS 95.59 89.52 92.95 93.86

MTS 94.85 87.62 91.70 92.80
SVM 95.57 86.84 91.77 92.51
k-NN 95.57 79.45 88.55 89.95
C4.5 93.43 78.52 86.93 88.55
NB 89.15 84.99 87.34 88.50

Table 5. Classification effect of glass identification dataset

TPR (%) TNR (%) Acc (%) F-measure (%)
Kernel-MTS 92.03 88.95 90.14 90.31

MTS 87.65 84.21 85.19 85.03
SVM 88.12 84.33 85.93 85.32
k-NN 92.71 76.91 84.38 84.91
C4.5 80.15 85.55 82.84 81.08
NB 89.30 72.31 81.32 82.41

4.3. Summary. Through the study of the above four examples, except the ionosphere
dataset, Kernel-MTS has the best results with the other three datasets, especially with
more serious overlapping datasets, which shows Kernel-MTS is a reasonable and effective
method under the situation of class overlapping. The traditional MTS has a good clas-
sification effect on the datasets without class overlapping, while it is not good with class
overlapping. Other methods have different performance on different datasets. Compared
with the other datasets, the ionosphere dataset is imbalanced which may be the reason
why the classification of Kernel-MTS is not optimal.
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Table 6. Classification effect of ionosphere dataset

TPR (%) TNR (%) Acc (%) F-measure (%)
Kernel-MTS 93.63 86.67 90.90 91.63

MTS 92.97 86.53 87.64 88.34
SVM 96.78 87.09 92.3 93.67
k-NN 96.78 60.43 83.34 88.01
C4.5 92.44 80.12 88.03 90.83
NB 79.11 86.49 81.76 84.73

In addition to classify the data, MTS and Kernel-MTS also can be used to identify valid
variables. In general, Kernel-MTS is better than MTS and the reason is that Kernel-
MTS uses the kernel function to map the samples to the high-dimensional space, and
thus eliminates the possible interference variables. So a better classification effect can be
achieved with fewer valid variables by Kernel-MTS.

5. Conclusions and Future Directions. In this paper, based on the traditional MTS,
the kernel function and the mahalanobis distance are combined as a new measurement
to deal with the class overlapping. Through the study of four datasets, the results show
that the classification effect and the dimension reduction of Kernel-MTS are superior to
the traditional MTS, which not only solves the classification of overlapping class, but also
expands the application of MTS, so it has big reference value to the actual classification
problem.

In this paper, the future directions are:
(1) Kernel-MTS improved the classification effect of three balanced datasets while the

classification effect of an imbalanced dataset is not the best. How to deal with the datasets
simultaneously existing class imbalance should be considered at the same time.

(2) In the process of solving KMD, the parameters of α and σ are chosen by experience.
Particle swarm optimization, genetic algorithm and other optimization methods can be
considered to optimize the parameters.
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