
International Journal of Innovative
Computing, Information and Control ICIC International c⃝2017 ISSN 1349-4198
Volume 13, Number 5, October 2017 pp. 1769–1776

SOLVING THE MAXIMUM DIVERSITY PROBLEM USING
SIMULATED ANNEALING BASED EVOLUTIONARY ALGORITHM

Geng Lin

Department of Mathematics
Minjiang University

No. 200, Xiyuangong Road, Fuzhou 350108, P. R. China
lingeng413@163.com

Received December 2016; revised April 2017

Abstract. The maximum diversity problem is an NP-hard combinatorial optimization
problem with lots of applications. In this paper, we propose a simulated annealing based
evolutionary algorithm for the maximum diversity problem, which integrates a crossover
operator, a simulated annealing based local search procedure, and a population updat-
ing procedure. These strategies achieve a good compromise between intensification and
diversification in the search process. The proposed algorithm is tested on two sets of
benchmark instances from the literature. Experimental results and comparisons show
that the proposed algorithm is efficient. Finaly, an experiment is done to disclose the
benefit of integrating evolutionary strategies and simulated annealing.
Keywords: Maximum diversity problem, Simulated annealing, Evolutionary algorithm,
Combinatorial optimization

1. Introduction. The maximum diversity problem (MDP) consists in selecting a subset
of m elements from a set of n elements in such a way that the sum of the distances
between the chosen elements is maximized. More formally, let N = {1, . . . , n} be a set
of elements and dij be the distance between elements i and j. Let xi = 1 if element i is
selected, xi = 0 otherwise. The MDP can be formulated as follows [1]:

(MDP )


max f(x) =

1

2

∑n
i=1

∑n
j=1 dijxixj,

s.t.
∑n

i=1 xi = m,

xi ∈ {0, 1}, for i ∈ {1, . . . , n}.
The MDP is known to be NP-hard [1], and has applications in several fields, including

location, medical treatment, genetics, and so on. Since the wide practical applications
of the MDP, it has received a great deal of attention in the past two decades. Several
exact solution approaches to MDP have been proposed, but since the problem is NP-hard,
the practical usefulness of these approaches is limited to fairly small problem instances.
Metaheuristic algorithms have a crucial role for the solution of large scale instances in
acceptable computing times. Over the last decade, various metaheuristic algorithms have
been proposed to solve the MDP. This includes GRASP [2, 3], variable neighborhood
search [4], scatter search [4], iterated greedy algorithm [5], tabu search [6, 7], hybridizing
hopfield network and variable neighborhood search [8]. A comprehensive review concern-
ing the MDP can be found in [9].

Simulated annealing (SA) [10] is a stochastic heuristic algorithm. Because of its ease
of use, SA has been applied successfully to a number of optimization problems [11, 12].
However, SA has two drawbacks [13]: being trapped by local minima or taking too long
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to find a reasonable solution. Hybridizing SA with other heuristics such as the genetic
algorithms is one of efficient ways to overcome these drawbacks. Several versions of SA
based genetic algorithms [14, 15, 16] have been proposed for solving hard optimization
problems. In this work, based on the structure of the MDP, we propose a simulated an-
nealing based evolutionary algorithm (SAEA) for solving the MDP. First, SAEA employs
an SA based local search procedure, which is based on the characteristic of MDP, as an
intensification strategy. The SA based local search procedure selects two elements from
two restricted candidate lists instead of the whole set to speed up the search. Second, to
diversify the search, the SA based local search procedure randomly selects two elements
to swap, and a distance based population updating procedure is used. These strategies
prevent the algorithm from premature convergence. Two sets of 28 benchmark instances
from the literature are used to test the proposed SAEA. Compared with some existing
heuristics, the SAEA is able to find high quality solutions. Furthermore, the SAEA can
find the best known solutions on 17 out of 28 tested instances. In addition, we also analyze
the influence of the evolutionary strategies (crossover operator and population updating
procedure).

This paper is organized as follows. Section 2 describes the proposed SAEA to the
MDP. Experimental results and comparisons are provided in Section 3. Finally, we give
our conclusions in Section 4.

2. The Proposed Algorithm. In this section, a simulated annealing based evolutionary
algorithm (SAEA) is presented. Firstly, we give the general scheme of the SAEA for MDP.
Then, the main components of SAEA are described.

2.1. General scheme. The general scheme of the SAEA for MDP is summarized in
Algorithm 1. During the search process, we use the objective function f(x) as the fitness
function. The SAEA starts with an initial feasible solution xc and a random generated

Algorithm 1 The general scheme of the SAEA

Input: An instance.
Output: The found best solution x∗.
1: Randomly generate xc by selecting m elements from {1, . . . , n} at random.
2: for k = 1 to s do
3: Randomly generate xk by selecting m elements from {1, . . . , n} at random.
4: end for
5: Let P = {x1, . . . , xs}, and x∗ = argmax{f(xk), k = 1, . . . , s}.
6: for G = 1 to Gmax do
7: Randomly select a solution y from P .
8: z ← crossover(xc, y).
9: z is further improved by the SA based local search procedure.

10: if f(z) > f(x∗) then
11: Let x∗ = z.
12: end if
13: if f(z) > f(xc) then
14: Let xc = z.
15: else
16: Apply the population updating procedure to update P .
17: end if
18: end for
19: Return x∗.
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population P . The population P contains s different feasible solutions, i.e., P = {x1, . . .,
xs}. Let x∗ be the current best solution. The SAEA repeats an iterative process for a fixed
number of generations. At each generation, a solution, say y, is randomly selected from
P . Then, the crossover operator (Section 2.2) is applied to xc and y to generating a new
offspring solution z. The obtained feasible solution is further improved by the SA based
local search procedure (Section 2.3). Finally, we use z to update xc, or the population P .
If z is better than xc, we let xc = z; otherwise, we apply a population updating procedure
(Section 2.4) to update P . When the predetermined maximum number of generations
(Gmax) is reached, we stop the algorithm and return x∗. In the following subsections, we
give more details on the components of SAEA.

2.2. Crossover operator. Crossover is a key component of SAEA. The proposed cross-
over operator consists of two steps. We firstly create a partial solution z by selecting the
common selected elements with respect to the selected parents xc and y. More precisely, if
xc

i = yi, we set zi = yi; otherwise, let zi = 0. Then, we use a random strategy to complete
the partial solution z. Let |z| be the number of the selected elements. If |z| < m, we
randomly select an unselected element k, and let zk = 1. The above operation repeats
until |z| = m.

2.3. SA based local search procedure. The SA based local search procedure is the
most important component of SAEA. It affects both the solution quality and the solution
time.

Let x∗ and xbest be the current best solution found so far, and the best solution obtained
by the SA based local search procedure, respectively. We define S and U as the set of
selected elements and the set of unselected elements, respectively. During the search
process, the SA based local search procedure selects an element from S, and an element
from U , and swaps them. In this way, the newly obtained solution is feasible. The SA
based local search procedure selects elements by the concept of the move gain. The move
gain of element i is defined by

△i =

{ ∑
j∈S −dij, if i ∈ S;∑
j∈S dij, if i ∈ U.

(1)

Our SA based local search procedure starts from an initial solution z. The pseudo code
of this procedure is given in Algorithm 2. Initially, the current temperature T is set to
T0 (line 1). Line 4 calculates the initial move gains of each element according to (1). Let
Smax (Umax) and Smin (Umin) be the highest and the lowest move gains of the elements in
S (U), respectively. At each iteration, we firstly identify the values Smax, Umax, Smin, and
Umin (line 5). In order to diversify the search, two restricted candidate lists (RCL0 and
RCL1) are constructed by the elements with move gains larger than a threshold value.
Specifically, let

RCL1 = {i ∈ S : △i > Smax − α× (Smax − Smin)} , (2)

RCL0 = {j ∈ S : △j > Umax − α× (Umax − Umin)} , (3)

where α ∈ [0, 1] is a parameter. We randomly select an element k from RCL1 and an
element l from RCL0 (line 7). Afterward, k and l are swapped to obtain a new solution
z′ (line 8).

Next, if z′ is not worse than z, then it replaces z as the new current solution (lines
12-13). Otherwise, z′ is accepted with a small probability p (lines 14-18), which is given

as follows: p = e
−(△k+△l−dkl)

T , where T is the current temperature.
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Finally, once a move is performed, we just need to update a subset of move gains
affected by the move. The following rule [7, 17] is applied to updating the move gains:

△i =


−△k + dkl, if i ∈ k;
−△l + dkl, if i ∈ l;
△i + dki − dli, if i ∈ S − {k, l};
△i − dki + dli, if i ∈ U − {k, l}.

(4)

The above swapping operator performs L iterations. After that, line 22 decreases the
current temperature T according to the rule T = γT , γ ∈ (0, 1). When the above process
repeats Imax times, the SA based local search procedure stops, and the best solution
obtained is returned.

Algorithm 2 SA based local search procedure

Input: an initial solution z, L, Imax.
Output: an improved solution xbest.
1: Initial T = T0, and xbest = z, G = 0.
2: for G = 1 to Imax do
3: for Iteration = 1 to L do
4: Initialize z′ = z. Calculate the move gains △i, i = 1, . . . , n, according to (1).
5: Identify Smax, Smin, Umax, and Umin.
6: Construct RCL0 and RCL1 according to (2), and (3), respectively.
7: Randomly select elements k and l from RCL1 and RCL0, respectively.
8: Let z′k = 1− z′k, z′l = 1− z′l.
9: if f(z′) > f(xbest) then

10: xbest = z′.
11: end if
12: if f(z′) > f(z) then
13: z = z′.
14: else
15: Generate a number p ∈ (0, 1) at random.

16: if p < e
−(△k+△l−dkl)

T then
17: Let z = z′.
18: end if
19: end if
20: Use (4) to update the move gains.
21: end for
22: Let T = γT .
23: end for
24: Return xbest.

2.4. Population updating procedure. When the newly obtained solution z is not
better than xc, we insert z into the population P and decide which existing solution of
P should be replaced. In order to maintain the diversification of the population, our
population updating procedure is based on the distance of solutions. Given two solutions
x and y, the distance between them is defined as:

dis(x, y) =
n∑

i=1

|xi − yi|. (5)
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The proposed population updating procedure firstly calculates the distances between
z and xi, i ∈ P . Then, the solution xsmall with the smallest distance is identified, i.e.,
xsmall = argmin{dis(z, xi), i ∈ P}. Finally, we use z to replace xsmall.

3. Computational Results.

3.1. Comparison with other algorithms. The proposed algorithm SAEA was coded
in the C programming language and the tests were carried out on an AMD processor
with 3.4 GHz clockpulse and 2.0 GB RAM under Windows XP. Two sets of benchmark
instances with the size ranging from 400 to 2000 are used to test the performance of
SAEA. The characteristics of the instance sets are given as follows [6].
• Silva instances [20]: There are several instances with n ∈ [100, 500]. We take 8

instances with n = 400, 500 to test the proposed algorithm.
• Random Type 1 instances (Type1 22): matrices with real numbers generated from a

(0, 10) uniform distribution. 20 instances with n = 2000 and m = 200 are considered.
The parameter setting of SAEA used in our experiments is listed in Table 1. These

parameter values were determined by a preliminary experiment.

Table 1. Settings of parameters

Parameters Description Values
s number of solutions in P 10

Gmax number of generations of SAEA 500
α parameter in (2) and (3) 0.1
T0 initial temperature 1.0
γ temperature updating parameter 0.95
L number of iterations in Algorithm 2 30

Imax parameter in Algorithm 2 100

We ran our proposed algorithm 10 times. The SAEA is compared with several existing
heuristics, including iterated tabu search (ITS) [19], tabu search (MTS) [21], hybridizing
hopfield network and variable neighborhood search (DCHNN-VNS) [8], iterated greedy
algorithm (ITG) [5], learnable tabu search guided by estimation of distribution (LTS-
EDA) [6]. Tables 2 and 3 list the name of the instances, the best known solution value,
the results including the best and average solutions produced by some existing algorithms.
In Tables 2 and 3, ‘Best’ means the deviation from the best known solution value of the
best solution value found by the algorithms, and ‘Av.’ means the deviation from the best

Table 2. Experimental results on Silva instances

Instance
Best Known

values
ITS MTS DCHNN-VNS SAEA

Best Av. Best Av. Best Av. Best Av.
400 40 4658 0 0 27 52.6 0 3 0 0
400 80 16956 0 0 24 78.7 0 10 0 0
400 120 36317 0 0 0 101.6 0 14 0 0
400 160 62487 0 7.0 10 88.1 0 19 0 0
500 50 7141 0 0 24 74.3 0 14 0 0
500 100 26258 0 0 15 96.8 0 7 0 0
500 150 56572 0 0 0 110.0 0 1 0 0
500 200 97344 0 0 18 108.7 0 23 0 0
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Table 3. Experimental results on random Type 1 instances

Instance
Best Known

values
ITS ITG LTS-EDA SAEA

Best Av. Best Av. Best Av. Best Av.
Type1 22.1 114271 65 209.87 48 101.57 5 60.73 0 29.90
Type1 22.2 114327 29 262.27 0 69.90 0 89.87 0 27.50
Type1 22.3 114195 69 201.40 5 117.77 0 98.97 4 77.80
Type1 22.4 114093 22 200.53 58 141.93 0 79.87 2 46.60
Type1 22.5 114196 95 273.27 99 194.70 51 134.47 45 100.90
Type1 22.6 114265 41 168.17 9 96.20 0 40.17 15 53.10
Type1 22.7 114361 12 167.47 0 71.27 0 18.20 0 6.90
Type1 22.8 114327 25 256.40 0 193.60 0 159.10 0 70.70
Type1 22.9 114199 9 139.83 16 80.37 0 70.97 2 56.60
Type1 22.10 114229 24 204.93 35 121.43 0 56.20 7 53.30
Type1 22.11 114214 74 237.77 59 139.57 3 69.87 15 77.20
Type1 22.12 114214 55 249.53 88 156.00 15 84.93 60 107.70
Type1 22.13 114233 93 279.87 42 167.40 6 85.30 0 78.30
Type1 22.14 114216 92 248.50 64 202.80 0 81.00 0 23.80
Type1 22.15 114240 11 117.50 6 80.53 0 22.03 1 13.20
Type1 22.16 114335 11 225.40 35 167.90 0 36.47 8 27.90
Type1 22.17 114255 56 217.53 18 144.53 6 57.07 0 47.4
Type1 22.18 114408 46 169.97 2 117.37 2 22.83 0 6.40
Type1 22.19 114201 34 243.20 0 144.37 0 35.87 20 32.40
Type1 22.20 114349 151 270.67 45 187.23 0 95.40 0 72.20

known solution value of the average solution value found by the algorithms. The results
shown in Tables 2 and 3 are from [8] and [6], respectively.

Results from Table 2 show that ITS, DCHNN-VNS, and SAEA can find the best known
solutions on all tested Silva instances. MTS is able to find the best known solutions on
2 out of 8 instances. In terms of average solution quality, SAEA performs much better
than MTS, and DCHNN-VNS. From Table 3, one can see that ITS, ITG, LTS-EDA and
SAEA are able to find the best known solutions on 0, 4, 13, 9 instances, respectively. In
terms of average solution quality, SAEA performs better than ITS, ITG, and LTS-EDA.
These results provide evidence of the efficacy of our proposed algorithm.

3.2. Influence of evolutionary strategies. The SAEA combines evolutionary strate-
gies (crossover operator, population updating procedure) with SA to improve the perfor-
mance of the algorithm. To confirm the effectiveness of these evolutionary strategies, we
conducted an experiment to compare SAEA with a variant of SAEA, which is denoted as
MSSA. The MSSA is a multi-start SA based local search algorithm. At each iteration,
MSSA randomly selects m elements to generate an initial solution, which is further im-
proved by the SA based local search procedure. When the maximum number of iterations
(itermax) is reached, we stop the MSSA and return the best solution found during the
search.

We ran 10 times MSSA with itermax = 400 on the Type 1 instances. In order to show
the advantage of SAEA over MSSA visually, we plot a figure based on the data of the
Type 1 instances. Figure 1 compares the deviations of the best known solution value to
the average solution value found by SAEA and MSSA, respectively.

From Figure 1, it can be seen that the deviation produced by SAEA is much smaller
than that of MSSA. Based on the results in this figure, the conclusion is that the proposed
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Figure 1. The deviation of the best known solution value to the average
solution value found by SAEA and MSSA

evolutionary strategies are able to escape from the local optima produced by SA local
search procedure.

4. Conclusions. In this paper, we presented a simulated annealing based evolutionary
algorithm (SAEA) for the maximum diversity problem. Firstly, a random population is
generated to diversify the initial elite solutions. Afterward, the crossover operator is ap-
plied to generating good quality solutions. The newly generated solutions are enhanced
by using the SA based local search procedure. It achieves a good compromise between
intensification and diversification in the search process. Computational experiments on
two sets of benchmark instances have demonstrated that our proposed algorithm is effi-
cient. In future work, we try to solve other related NP hard problems with the proposed
SAEA.
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