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Abstract. Small- and medium-sized manufacturers have no financial resources. There-
fore, making a profit at the fiscal year-end is a high priority. In order to manage a
manufacturing process, we make discussion from a mathematical finance point of view,
not from a conventional management engineering point of view. That is, an idea of
a production level corresponding to a look-back option level being discussed in finance
engineering is introduced. One profit-controlling factor in the manufacturing business is
inventory-asset management. This study reports a method that manages inventory assets
at the end of the fiscal year. The method is based on the route-dependent options of math-
ematical finance and is validated in a theoretical verification based on inventory assets
over five years (from 2007 to 2011). Suitable inventory asset management is essential
to keep a profit. There is no case applying mathematical finance thinking to inventory
management.
Keywords: Route dependent options, Inventory asset management, Fokker-Plank equa-
tion, Stochastic partial differential equation of log-normal type, Production process

1. Introduction. Many studies of economic process management have assumed an ex-
ponential distribution of the failure rate of production processes [1]. The optimum pro-
duction cycle time and economic production quantity that minimizes the total expected
costs of setup and inventory maintenance are determined under the given demand and
production rates [2, 3]. In general, inventory management is considered as part of a logis-
tics system. Logistics integrates the storage, transportation, distribution, and processing
subsystems into a total system. Therefore, optimization cannot be based on the inventory-
management system alone. Although inventory-management expenses are necessary for
corporate management, measuring the number of inventories in actual companies is a
difficult task. The difficult points of inventory management are to predict a demand fore-
cast. Then, many companies are carrying out stochastic prediction. Also, it is difficult
to order at what point so as not to cause loss of opportunity due to excess inventory and
out of stock.

On the other hand, there are several reports on evaluation and risk management of
production processes utilizing mathematical finance. With respect to financial analysis,
a rate of return and volatility at the time of long term investment was researched to
compare a rate of return and volatility of short term investment [4, 5]. In this research,
Monte Carlo method was utilized in order to simulate a rate of return. Further, there is a
report saying that, as a result of investigation of long-term return on investment and its
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dispersion characteristics, geometric Brownian motion models describing a price of risk
assets differ substantially from actual phenomenon [6].

With respect to a stochastic model, a stochastic Euler-Lagrange equation in order to
characterize both of dynamics of a total investment amount and impact of various political
measures on capital accumulation based on data of a Japanese gas company in the period
from 1981 to 1995 has been introduced. In addition, it has proposed a dynamic factor
demand model in order to analyze a dynamic cost structure [7].

With respect to stochastic analysis in our previous research, we have reported that
production elements in manufacturing processes are treated as stochastic production op-
eration. In particular, in order to analyze a manufacturing process as a stochastic process,
we have introduced an idea of a production level corresponding to an energy level being
discussed in physics [9]. To achieve the production system goals, we propose the use
of a mathematical model that focuses on the selection process and adaptation mecha-
nism of the production lead time [8]. We model the throughput time of the production
demand/production system in the production stage by using a stochastic differential equa-
tion of the log-normal type, which is derived from its dynamic behavior. By applying Black
Scholes equation in mathematical finance using this model and risk-neutral integral, we
have defined and computed the evaluation equation for the compatibility condition of the
production lead time [21, 22]. Furthermore, we apply the synchronization process and
show that the throughput of the production process is reduced [8, 9].

This study introduces the idea of finance into inventory-asset management. The conven-
tional inventory control method is an important research subject in the field of operations
research (OR), and there are most stochastic and statistical methods. We present stochas-
tic differential equations and there is no dynamic method utilizing mathematical finance
yet. For example, the relation among the stochastic processes of inventory assets is as-
sumed to derive from the fluctuation of demand amount. We model the stochastic process
of stock management as a stochastic diffusion process. In other words, stock management
is described by a partial differential equation of lognormal type. We evaluate the asset
process based on the option evaluation value after the stock asset value has passed its min-
imum under the demand fluctuation. This approach is equivalent to the route-dependent
look-back option in option evaluation theory. According to the route-dependent look-back
option, we evaluate the corresponding asset inventory on actual average and variance data
collected from 2007 to 2011. Although it is difficult to construct a stochastic model, it
is possible to apply option theory from treating inventory as assets. In particular, in
small and medium-sized enterprises, we are concentrating on the fact that inventory man-
agement is stochastic, that is, not being excessive inventory as much as possible due to
capital relationships and avoiding opportunity losses. Considering these items, we report
the paper as one approach.

2. Production Business of a Small-to-Midsize Firm.

2.1. Production systems in the production equipment industry. The production
methods used in equipment are briefly covered in this paper (refer to Figure 1). We refer
to the production system in manufacturing equipment industry studied in this paper.
This is not a special system but “Make-to-order system with version control”. Make-to-
order system is a system which allows necessary manufacturing after taking orders from
clients, resulting in “volatility” according to its delivery date and lead time. In addition,
“volatility” occurs in lead time depending on the contents of make-to-order products
(production equipment).
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Figure 1. Business structure
of company of research target

Figure 2. Production flow process

However, effective utilization of the production forecast information on the orders may
suppress certain amount of “variation”, but the complete suppression of variation will be
difficult. In other words, “volatility” in monthly cash flow occurs and of course influences
a rate of return in these companies. Production management systems, suitable for the
separate make-to-order system which is managed by numbers assigned to each product
upon order, is called as “product number management system” and is widely used.

All productions are controlled with numbered products and instructions are given for
each numbered product.

Thus, ordering design, logistics and suppliers are conducted for each manufacturer’s
serial numbers in most cases except for semifinished products (unit incorporated into the
final product) and strategic stocks.

Therefore, careful management of the lead time or production date may not suppress
“volatility” in manufacturing (production).

2.2. Production flow process. A manufacturing process that is termed as a production
flow process is shown in Figure 2. The production flow process, which manufactures
low volumes of a wide variety of products, is produced through several stages in the
production process. In Figure 2, the processes consist of six stages. In each step S1-S6 of
the manufacturing process, materials are being produced.

Figure 2 represents a manufacturing process called a flow production system, which
is a manufacturing method employed in the production of control equipment. The flow
production system, which in this case has six stages, is commercialized by the production
of material in steps S1-S6 of the manufacturing process.

The direction of the arrow represents the direction of the production flow. In this
system, production materials are supplied from the inlet and the end product will be
shipped from the outlet.
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2.3. Nonlinear characteristic of net sales. Figures 3-5 display graphs in which no
significant difference is apparent between cumulative revenues related to production costs
and revenues related to production throughput.

Figures 3-5 plot the rate of return on net sales of specific control equipment produced
by some domestic enterprises from 1996 through 1998. The rate of return on sales gives
rise to the nonlinear characteristics.

The dashed line in the figures is the fitted curve representing the relationship between
the rate of return on sales and sales volume fee. In the data, the return rate plummeted
from 0.3 at a sales fee of 480 to 0.15 at a sales fee of 440 (see Figure 3). This sharp drop
represents the relationship in Equation (7).

Figure 3. Rate of return on
sales volume 1

Figure 4. Rate of return on
sales volume 2

Figure 5. Rate of return on sales volume 3
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The resulting straight line appears in the vicinity of the phase transition and is equiv-
alent to the oscillation point of the reference line in elements displaying nonlinear char-
acteristics (such as the Esaki diode) [14].

hs(S) = F (S) + ξ(hs0) (1)

where F (S) represents the basic characteristics of the return rate, and ξ(hs0) is a neigh-
borhood of local nonlinearity around hs0 . The following mathematical model is derived
from the data plotted in Figures 3-5 [14].

a
dhs

dt
+ bhs + S = SE (2)

hs = hs1 + hs2 (3)

hs2 = F̃ (S
′
) (4)

S
′
= c

∫
hs1dt (5)

F̃ (S
′
) = F (S) + ξ(hS0) (6)

SE − bhs0 = S
′

(7)

where a, b, and c are cost coefficients, hs is the rate of return and hs1 is the rate of return
contributing to the sales volume. hs2 is a nonlinear characteristic of the rate of return
(introduced by costs that cannot contribute directly to sales and that lead to production
delays), and (hs0 , S0) is the median of the nonlinear characteristic.

Physically, Equation (2) represents the temporal variation of the rate of return hs; that
is, the relationship between the deviation of the rate of return and the sales or rate of
return. Although sales are essentially proportional to production costs, not all of the
production cost can be invested in sales.

Equation (3) is the sum of the rate of return and the nonlinear element. In other words,
it embodies the cost of production and nonproduction costs that make no contribution to
sales [15].

Assumption 2.1. The production structure is nonlinear.

Assumption 2.2. The production structure is a closed structure; that is, the production
is driven by a cyclic system (production flow system).

Assumption 2.1 indicates that the determination of the production structure is consid-
ered a major factor, which includes the generation value of production or the throughput
generation structure in a stochastic manufacturing process (hereafter called the manu-
facturing field). Because such a structure is at least dependent on the demand, it is
considered to have a nonlinear structure.

Because the value of such a product depends on the throughput, its production structure
is nonlinear. Therefore, Assumption 2.1 reflects the realistic production structure and is
somewhat valid. Assumption 2.2 is completed in each step and flows from the next step
until stage S6 is completed. Assumption 2.2 is reasonable because new production starts
from S1.

Based on the control equipment, the product can be manufactured in one cycle. The
production throughput required to maintain 6 pieces of equipment/day is as follows:

(60 × 8 − 28)

3
× 1

6
≃ 25 (min) (8)

where the throughput of the previous process is set as 20 (min). In Equation (8), “28”
represents the throughput of the previous process plus the idle time for synchronization.
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“8” is the number of processes and the total number of all processes is “8” plus the
previous process. “60” is given by 20 (min) × 3 (cycles).

One process throughput (20 min) in full synchronization is

Ts = 3 × 120 + 40 = 400 (min) (9)

Therefore, a throughput reduction of about 10% can be achieved. However, the time
between processes involves some asynchronous idle time.

As a result, the above test run is as follows. Tables 3-7 are shown in Appendix B.

• (test run1): Each throughput in every process (S1-S6) is asynchronous, and its
process throughput is asynchronous. Table 3 represents the manufacturing time
(min) in each process. Table 4 represents the variance in each process performed by
workers. Table 3 represents the target time, and the theoretical throughput is given
by 3 × 199 + 2 × 15 = 627 (min).

In addition, the total working time in stage S3 is 199 (min), which causes a
bottleneck. Figure 21 is a graph illustrating the measurement data in Table 3,
and it represents the total working time for each worker (K1-K9). The graph in
Figure 22 represents the variance data for each working time in Table 3.

• (test run2): Set to synchronously process the throughput.
The target time in Table 5 is 500 (min), and the theoretical throughput (not

including the synchronized idle time) is 400 (min). Table 6 represents the variance
data of each working process (S1-S6) for each worker (K1-K9).

• (test run3): The process throughput is performed synchronously with the reclassi-
fication of the process. The theoretical throughput (not including the synchronized
idle time) is 400 (min) in Table 7.

Table 8 represents the variance data of Table 7. “WS” in the measurement tables
represents the standard working time. This is an empirical value obtained from
long-term experiments.

3. Distribution System and Diffusion Equation of the Production Process.
Figure 6 schematizes the network interprocess division. The network capacity (i.e., the
statically acceptable amount of production) in an interprocess network (a production
field) is denoted as R. Once the current process is complete, the interprocess network
indicates the sequential flow to the next process. The production density function Si(x, t)
for the i-th equipment is given by

[J(x, t)dt − J(x + dx, t)dt]R = [Si(x, t + dt) − Si(x, t)]Rdx (10)

where J is the production flow, t is the time variable and x is the spatial variable [10, 11].

∂Si(x, t)

∂t
= D

∂2Si(x, t)

∂x2
. (11)

where D is the diffusion coefficient.
This equation is equivalent to the diffusion equation derived from the minimization con-

dition of free energy in a production field. Therefore, the connections between processes
can be treated as a diffusive propagation of products (see Figure 6) [10, 11].

The production process, which is connected in one dimension, is modeled as follows.
During the production process, the production units are moved from one process (node)
to another. This production flow is equivalent to the transmission rate in communications
engineering, defined as the rate of data flow between connected nodes.

Accordingly, the production model is treated similarly to heat propagation in physics.
Mathematically, the production process is modeled by a continuous-diffusion type of par-
tial differential equation comprising temporal and spatial variables [10].
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Figure 6. Network inter-
process division of worker

Figure 7. Unit of production
by changing the excitation
force

Setting the network capacity (available static production volume) to R in an interpro-
cess network (production field, equivalent to a stochastic field), we obtain the following:

[J(x)dt − J(X + dx)dt]R = [S(t + dt) − S(t)]Rdx (12)

where J is the production flow and S is the production density.
In the present model, the production flow indicates the displacement of production

processes in the direction related to the production density. In other words, the production
cost per production is as follows.

Definition 3.1. Production cost per unit production

J = −D
∂S

∂x
(13)

where D is a diffusion coefficient.

From Equation (12), we obtain

−∂J

∂x
=

∂S

∂t
(14)

From Equations (13) and (14), we obtain

∂S

∂t
= D

∂2S

∂x2
(15)

where t ∈ [0, T ], x ∈ [0, L] ≡ Ω, S(0, x) = S0(x), BxS(t, x)|x=∂Ω.
This equation is equivalent to the diffusion equation derived from the minimization

condition of free energy in a production field [10]. The connections between processes can
be treated as a diffusive propagation of products (refer to Figure 6).

As shown in Figure 7, X represents the production elements that constitute a unit
production and varies X → X

′
at [t + dt]. In other words, the unit production varies by

exciting the external force and is the basis for revenue generation (an increase of potential
energy). Therefore, in the transition Si(t, x) → Si(t, x

′
), the production cost, which is the

cumulated external force, increases. The connections between production processes are
referred to as “joints”.

In the general idea of production flow, we define the joint propagation model at multiple
stages in the production process and the potential energy in the production field.
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Thereafter, we can construct a control system, which increases the process throughput,
by calculating the gradient function in the autonomous distributed system. The gradient
function is described in the next opportunity.

∂S

∂t
+ ∆(v · S) =

1

2
∆(D2S) + λ (16)

where λ denotes a forced external force function and v denotes a production propagation
speed. Here, λ is omitted here.

We assume that S defines as follows: S represents a production density with a fluc-
tuation, and v also causes a fluctuation in throughput. As a result, a production is
proportional to the slope of production density.

Definition 3.2. Mathematical model of each stage

dx(t) =
{

a(t, x)dt + c(t, x)dB̃(t)
}

+ D(t, x)dB(t) (17)

where B̃ and B denote an independent Brownian motion. c denotes a fluctuation term,
which follows a stochastic differential equation.

The first term on the right-hand side of Equation (17) denotes the flow of the medium,
and the second term represents the fluctuation of diffusion. Moreover, a(t, ·) denotes an
average lead-time and c(t, x)dB̃(t) denotes a fluctuation around processes [12, 13].

We report a stochastic approach for a production process based on the production
density equation [10], i.e., a fluctuation is induced by a stochastic characteristic of a lead-
time function. In this case, we apply stochastic analysis to evaluating the manner in
which the production density is constrained.

Generally, Equation (16) with constraint such as Equation (17) can be derived as fol-
lows:

∂S(t, x) =

[
1

2

∂2

∂x2

{
D2(t, x) + c2(t, x)

}
S(t, x) − ∂

∂x

(
a(t, x)S(t, x)

)]
dt

+
∂

∂x

{
c(t, x)S(t, x)

}
∂B̃t (18)

where S(t, x) denotes a production density and is derived as follows [10]:

S(t, Ix
h) =

∫ t

0

P (τ, x0; t, I
x
h)S(τ, x0)dτ (19)

where Ix
h ≡ [x, x + h].

From Equation (19), a production density distribution varies according to increasing a
production density.

S(t, x) satisfies a Fokker-Plank equation as follows [17, 18, 19, 20].

∂S(t, x)

∂t
=

1

2

∂2

∂x2

{
D2(t, x)S(t, x)

}
− ∂

∂x
{a(t, x)S(t, x)} (20)

where x(t) satisfies Equation (17).
According to Okazaki’s analysis, we obtain as follows [16]:

∂S(t, x) =

[
1

2

∂2

∂x2

{
D2(t, x) + c2(t, x)

}
S(t, x) − ∂

∂x

(
a(t, x)S(t, x)

)]
dt

+
∂

∂x

{
c(t, x)S(t, x)

}
∂B̃t (21)

where D2(t, x)+ c2(t, x) denotes a trend, a(t, x)S(t, x) denotes a fluctuation of stages and
c(t, x)S(t, x) denotes also a fluctuation of lead-time.
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Definition 3.3. Trend of a production density distribution

m(t, x) = E[S(t, x)] (22)

According to Equation (16), m(t, x) is derived as follows:

∂

∂t
m(t, x) =

1

2

∂2

∂x2

[{
D2(t, x) + c2(t, x)

}
m(t, x)

]
−{a(t, x)m(t, x)} (23)

where the dispersion covariance of a production density χ(t, x, x
′
) is defined as follows.

Definition 3.4. Dispersion covariance of a production density χ(t, x, x
′
)

χ[t, x, x
′
] = E

[
S(t, x) · S(t, x

′
)
]
, t ∈ R, x

′ ∈ R (24)

where R denotes Euclidean space.

From Equation (22), we obtain as follows:

Cov.
[
S(t, x) · S(t, x

′
)
]

= χ(t, x, x
′
) − m(t, x) · m(t, x

′
) (25)

According to a stochastic process theory, the following equation holds.

d
{

S(t, x) · S(t, x
′
)
}

= S(t, x) · dS(t, x
′
) + S(t, x

′
) · dS(t, x)

+
1

2
· 2 · d < S(•, x), S(•, x′

) >t (26)

χ[t, x, x
′
] =

1

2

∂2

∂x2

[{
D2(t, x) + c2(t, x)

}
S(t, x

′
) − ∂

∂x′ a(t, x
′
)S(t, x

′
)

]
dt

+ S(t, x
′
)
1

2

∂2

∂x′2

[
{D2(t, x) + c2(t, x)}S(t, x) − ∂

∂x
a(t, x)S(t, x)

]
dt

+
∂

∂x
{c(t, x)S(t, x)} ∂

∂x′

{
c(t, x

′
)S(t, x

′
)
}

+ S(t, x)
∂

∂x′

{
c(t, x

′
)S(t, x

′
)
}

dB̃t

+ S(t, x
′
)

∂

∂x
{c(t, x)S(t, x)}dB̃t (27)

Then, we obtain the dispersion covariance of a production density between stages as
follows by taking the average value.

∂

∂t
χ[t, x, x

′
] =

1

2

∂2

∂x2

{
D2(t, x) + c2(t, x)

}
χ(t, x, x

′
)

+
1

2

∂2

∂x′2

{
D2(t, x

′
) + c2(t, x

′
)
}

χ(t, x, x
′
)

− ∂

∂x
a(t, x)χ(t, x, x

′
) − ∂

∂x′

{
a(t, x

′
)χ(t, x, x

′
)
}

(28)

where a(t, x) > 0, b(t, x) > 0 and c(t, x) > 0.

Definition 3.5. Correlation function of lead-time function between stages

dxi+1(t) =

{
a

(
t, xi+1

)
dt +

∫
R

c
(
t, xi, xi+1

)
dB̃

(
dt, dxi+1

)}
+ b

(
t, xi+1(t)

)
dBi

t (29)

The production density distribution satisfies as follows based on Equation (29):

dS(t, x) =
1

2

∂2

∂x2

{
b2(t, x) +

∫
R

c2(t, x, z)dzS(t, x)

}
− ∂

∂x
{a(t, x)S(t, x)}

+

∫
R

∂

∂x

{
c(t, x, x

′
)S(t, x)

}
B̃(dt, dx

′
) (30)
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4. Preparation for Numerical Calculation.

4.1. Trend function of production density distribution. We present an example
for numerical parameters such as follows: a > 0, b > 0 and c > 0 are constant parameters.
Let S(0, x) = δ(x), which denotes as follows:

δ(x) = lim
σ→0

1√
2πσ

exp

(
− x2

2σ2

)
, x ∈ R (31)

Under the parameter conditions a > 0, b > 0, and c > 0, a production density exists
between any two stages.

Then, according to Equation (23), we obtain as follows:

∂

∂t
m(t, x) =

1

2

(
r

∂2

∂x2

)
− am(t, x) (32)

According to Equation (23), we obtain as follows:

∂χ(t, x, x
′
)

∂t
=

1

2
r

{
∂2χ(t, x, x

′
)

∂x2
+

∂2χ(t, x, x
′
)

∂x′2

}
− a

{
∂χ(t, x, x

′
)

∂x
+

∂χ(t, x, x
′
)

∂x′

}
(33)

From Equation (32), we obtain as follows:

m(t, x) =
1√
2πrt

exp

(
−(x − at)2

2r2t2

)
(34)

Similarly, according to Equation (33), we obtain as follows:

χ(t, x, x
′
) =

1

2π(r2 − c4)t
exp

(
− 1

2(r2 − c4)t

×
{

r(x − at)2 − 2c2(x − at)(x
′ − at) + r(x

′ − at)2
})

(35)

where r = D2 + c2.
From Equation (35), the numerical data of correlation function can be calculated for x

and x
′
of production density.

dS(t, x) =
1

2

[{
D2 +

∫
R

c2(t, x, x
′
)

}
∂2S(t, x)

∂x2
− a

∂S(t, x)

∂x

]
dt

+
∂

∂x

[ ∫
R

c(t, x, x
′
)S(t, x)B̃(dt, dx

′
)

]
(36)

where B̃(dt, dx
′
) denotes any of the k interval F1 = I1 × J1, F2 = I2 × J2, · · · , Fk =

Ik × Jk ⊂ R2. (B(F1), B(F2), · · · , B(Fk))
′
in B̃(dt, dx

′
) denotes a k-dimensional normal

distribution with average zero. However, from Equation (18) in case of a single Brownian
motion, we obtain as follows:

∂S(t, x) =
1

2

[ (
D2 + c2

) ∂2S(t, x)

∂x2

]
∂t − a

∂

∂x
S(t, x)∂t + c

∂

∂x
S(t, x)B̃(t) (37)

The aforementioned calculation clarifies that the production density distribution fluctu-
ation follows a normal distribution (see Equation (34)). In the case of single Brownian
motion, this trend denotes a stochastic diffusion partial differential equation (Equation
(37)). In other words, the motion of the trend is affected by the coefficient c, which is
generated by lead-time fluctuations.
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With respect to the lead-time distribution, we derive the following expression from
Equation (17):

dx(t) =
{

adt + cdB̃(t)
}

+ DdB(t) (38)

In the derivation of Equation (39), we derive the stochastic model of a production density
distribution is as Equation (37).

Letting B̃(t) ≈ B(t), Equation (39) simplifies to

dx(t) = adt + (c + D)dB(t) (39)

4.2. Rate of return.
Log-normal distribution characteristics of rate of return. For a small-to-midsize

firm, it is of the upmost importance not to cause default in a cash flow, and it is necessary
for business continuity. We also analyzed a return acquisition rate defined by Equation
(40). The result is shown in Figure 8.

Figure 8. Probability density function of rate-of-return deviation: actual
data (solid line) and data based on theoretical equation (dotted line)

From the data of monthly rate of return observed, its probability density function was
calculated (Figure 8). As a result, it was found that the probability density function
conforms to log-normal distribution (Figure 8, Theoretical).

Theoretical curve was calculated using EasyFit software (http://www.mathwave.com/),
and as a result of Kolmogorov and Smirnov test, the observed values conformed to
a log-normal type probability density function. Because, in the goodness-of-fit test of
Kolmogorov-Smirnov, a null hypothesis that it is “log-normal” was not rejected with re-
jection rate 0.2, and this data conforms to “log-normal” distribution. P -value was 0.588.
The parameters of a theoretical curve were: µp = −0.134 (average), σp = 0.0873 (standard
deviation), γp = −0.900. The theoretical curve is given by the following equation.

f(x) =
1√

2π(x − γp)σp

exp

{
− 1

2

(
(ln x − γp) − µ

σp

)2}
(40)
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Definition 4.1. Rate of return deviation Q(t)

dQ(t)

Q(t)
= µ(t)dt + σ(t)dZ(t) (41)

The acquisition rate model is described as follows [22]:

dS(t)

S(t)
= µs(t)dt + σs(t)dZ(t) (42)

where S(t) is assumed that (Q(s), σ(s); s ≤ t) is measurable variables.

Figure 9. Retention of production processes

4.3. Process retention recovery analysis. Figure 9 shows the process retention situ-
ation. According to this figure, the acquisition rate process, which starts from the initial
value S(0) = S0 of the acquisition rate S(t), reaches the setting value di at time τ f

i . We
obtain as follows:

di = min
0≤τ≤t

S(τ) (43)

Here we have

τ s
i = min

τi∈[0,T ]
[S(τi) − di | S(0) = S0]

= max
τi∈[0,T ]

[
d̃i − S(τi) | S(0) = S0

]
(44)

where d̃i and di are called the first and second lower limits, respectively.
In this algorithm, the process is transited to the congested state under the influence of

the above-described input burst from the no-retention state [25] and arrives first at d̃.
Thus, the retention state is assumed to depend on the previous path of S(t).
We define the arrival times of the first and second lower limits as τ̃ s

i and τ s
i , respectively.

Definition 4.2. Second lower limit arrival time τ̃ s
i

0 ≤ τ̃ f
i ≤ t,

t < τ s
i ≤ T (45)

Definition 4.3. τ̃ s
i and τ s

i

τ̃ s
i = max

0≤τ̃i≤t

[
d̃i − S(τ̃i) | f(0) = S0

]
(46)
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τ s
i = max

t<τi≤T
[di − S(τi) | S(0) = S0] (47)

At this time, d̃i and di are evaluated as follows:

d̃i = min
0≤τ̃s

i ≤t
S (τ̃ s

i ) (48)

di = min
t<τs

i ≤T
S (τ s

i ) (49)

The expected gain under the look back option in Finance is as follows [25]:

S(T ) − min
{

d̃i, di

}
(50)

The look-back option in the production processes corresponds to the evaluation of the
stock volume at the final time, when the option was exercised at the time of minimum
stock.

Therefore, to derive the call option price Θ
[
S(t), d̃i

]
at time t, we apply option pricing

theory and hence evaluate the stock volume by the risk-neutral method [25].

Definition 4.4. Call option price Θ
(
f, d̃i

)
Θ

(
f, d̃i

)
= e−rτE

[
f̃(T ) − min

{
d̃i, di

}
| f(t) = S0

]
= e−rτE

[
f̃(T ) − d̃i | di > d̃i

]
P

{
di > d̃i

}
+ E

[
f̃(T ) − di | di ≤ d̃i

]
P

{
di ≤ d̃i

}
= e−rτ

(
E

[
f̃(T ) | f(t) = S0

]
− d̃i · P

{
di > d̃i

}
− E

[
di | di ≤ d̃i

]
P

{
di ≤ d̃i

})
(51)

where E[·] denotes the expected value when the average is
(
r − σ2

s

2

)
τ and the volatility is

σ2
sτ . r denotes the rate of risk neutral.

Definition 4.5. Distribution function F
(
d̃i

)
of di in log-normal process

F
(
d̃i

)
= P

(
d̃i ≤ di

)
= Φ

 ln
(
d̃i/S0

)
− (r − σ2

s/2) T

σs

√
T


+

(
S0

d̃i

)(−2r/σ2
s)

× Φ

 ln
(
d̃i/S0

)
+ (r − σ2

s/2) T

σs

√
T

 (52)

where Φ(·) denotes the normal distribution with the average zero and volatility σs [25].

Thus, we obtain the following equation by omitting the calculation.

Θ
[
S, d̃i

]
= e−rτE

[
S(τ) − min

{
di, d̃i

}
| Si(t) = S0

]
= S0 − d̃ie

−rτ{Φ(d1) − V Φ(d2)} − S0

(
1 +

σ2
s

2r

)
Φ(d3) (53)

Please refer to the Appendix A for detailed equation derivation process [25].

d1 =
ln

(
d̃i/S0

)
+

(
r − σ2

s

2

)
τ

σs

√
τ

(54)
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d2 =
− ln

(
d̃i/S0

)
+

(
r − σ2

s

2

)
τ

σs

√
τ

(55)

d3 =
− ln

(
d̃i/S0

)
−

(
r + σ2

s

2

)
τ

σs

√
τ

(56)

V =
σ2

s

2r

(
S0

d̃i

)1− 2r

σ2
s

(57)

This evaluation value is expressed as the difference between the minimum value
{

di, d̃i

}
during the period and the value S(τ) at the end of the period.

5. Numerical Results. Table 1 shows the gross profit margins from 2007 to 2011 de-
rived from the actual average µs and variance σs data. µs and σs represent the normalized
average value of product inventory and volatility for one year in each fiscal year respec-
tively.

The gross profit margin was the highest in 2011. Table 2 gives the gross profit margin
against the average value. Consistent with Table 1, the highest gross margin was achieved

in 2011. That is, as Θ
(
S, d̃i

)
increases, and Rs is pushed down as an excess inventory

asset. Incidentally, the gross profit margin of the Lehman stock was the lowest in 2009.
In other words, when the inventory assets decrease, they can be managed at the end of
the period by calculating the look-back option assets. However, the correlation between
the determination of an appropriate look-back option and the gross profit margin must
also be calculated.

Table 1. Gain under the look-back option

µs σs Θ
(
S, d̃i

)
Gross profit margin

2007 0.509 0.244 0.5282 0.405

2008 0.667 0.166 0.6098 0.378

2009 0.715 0.119 0.6349 0.360

2010 0.454 0.141 0.513 0.419

2011 0.485 0.172 0.5261 0.42

Average 0.566 0.168 0.5665 0.396

Table 2. Gross margin on average

Gross margin on average
2007 1.022
2008 0.954
2009 0.909
2010 1.058
2011 1.060
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Figure 10. System evalua-
tion for stochastic inventory
process (2007)

Figure 11. System evalua-
tion for stochastic inventory
process (2008)

Figure 12. System evalua-
tion for stochastic inventory
process (2009)

Figure 13. System evalua-
tion for stochastic inventory
process (2010)

Figures 10 through 14 show the system evaluation of the stochastic inventory process
from 2007 to 2011, obtained by calculating Equation (53) under the parameter settings
of Table 1. Figure 15 shows the 5-yearly average (2007 through 2011) of this evaluation.

Figures 16 to 20 are actual examples of some parts inventory for manufacturing control
equipment, which is the actual data from 2007 to 2011.
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Figure 14. System evalua-
tion for stochastic inventory
process (2011)

Figure 15. System evalua-
tion for stochastic inventory
process (average)

Figure 16. Inventory volume (2007) Figure 17. Inventory volume (2008)

6. Conclusions. Management of inventory assets at the end of the fiscal year is crucial
for small- and medium-sized manufacturers. Such management can be achieved by utiliz-
ing the path-dependent option evaluation theory of mathematical finance. In a later study,
we will report on the relation between the path-dependent option and phase transition.
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Figure 18. Inventory volume (2009) Figure 19. Inventory volume (2010)

Figure 20. Inventory volume (2011)
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Appendix A. Calculation According to the Refer. We calculate Equation (51) by
using the third term of right hand in Equation (52) as follows [23, 24, 25]:

E
[
d̃i ≤ di

]
· P

(
d̃i ≤ di

)
=

∫ d̃i

0

lF (l)
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= d̃iF
(
d̃i

)
−

∫ d̃i

0

Φ

 ln(l/S) −
(
µs − σ2

s

2

)
τ

σs

√
τ

 dl

−
∫ d̃i

0

(
S

l

)(1−2µs)/σ2
s

Φ

 ln(l/S) +
(
µs + σ2

s

2

)
τ

σs

√
τ

 dl

= d̃i

Φ

 ln(l/S) −
(
µs − σ2

s

2

)
τ

σs

√
τ

 +

(
S

d̃i

)−(2µs−σ2
s)/σ2

s

×Φ

− ln(l/S) +
(
µs − σ2

s

2

)
τ

σs

√
τ

 − d̃iΦ

− ln(l/S) −
(
µs − σ2

s

2

)
τ

σs

√
τ


+ SeµsτΦ

− ln(l/S) −
(
µs + σ2

s

2

)
τ

σs

√
τ

 − S

(
S

d̃i

)−2µs/σ2
s

· σ2
s

2µs

×

Φ

 ln(l/S) +
(
µs − σ2

s

2

)
τ

σs

√
τ

 − eµsτ

(
S

d̃i

)2µs/σ2
s

× Φ

 ln(l/S) −
(
µs + σ2

s

2

)
τ

σs

√
τ


(58)

According to Equation (51),

Θ
(
S, d̃i

)
= S − e−µsτ

d̃i

Φ

 ln
(
d̃i/S

)
+

(
µs − σ2

s

2

)
τ

σs

√
τ

 + Φ

− ln
(
d̃i/S

)
−

(
µs − σ2

s

2

)
τ

σs

√
τ


+

(
S

d̃i

)1− 2µs
σ2

s

Φ

− ln
(
d̃i/S

)
+

(
µs − σ2

s

2

)
τ

σs

√
τ

 − Φ

− ln
(
d̃i/S

)
−

(
µs − σ2

s

2

)
τ

σs

√
τ


− S

(
S

d̃i

)−2µs/σ2
s

·
(

σ2
s

2µs

)
eµsτ × Φ

− ln
(
d̃i/S

)
−

(
µs + σ2

s

2

)
τ

σs

√
τ


+ SeµsτΦ

 ln
(
d̃i/S

)
−

(
µs + σ2

s

2

)
τ

σs

√
τ


= S − e−µsτ d̃i

Φ

 ln
(
d̃i/S

)
+

(
µs − σ2

s

2

)
τ

σs

√
τ


+

(
S

d̃i

)1− 2µs
σ2

s

Φ

 ln
(
d̃i/S

)
+

(
µs − σ2

s

2

)
τ

σs

√
τ

 −
(

S

d̃i

)− 2µs
σ2

s

(
2µs

σ2
s

)

×Φ

− ln
(
d̃i/S

)
+

(
µs − σ2

s

2

)
τ

σs

√
τ

 − S

(
2µs

σ2
s

)
Φ

− ln
(
d̃i/S

)
−

(
µs + σ2

s

2

)
τ

σs

√
τ
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− SΦ

− ln
(
d̃i/S

)
−

(
µs + σ2

s

2

)
τ

σs

√
τ


= S − e−µsτ d̃i

Φ

 ln
(
d̃i/S

)
+

(
µs − σ2

s

2

)
τ

σs

√
τ

 +

(
S

d̃i

)1− 2µs
σ2

s −
(

S

d̃i

)− 2µs
σ2

s

(
σ2

s

2µs

)
× Φ

− ln
(
d̃i/S

)
+

(
µs − σ2

s

2

)
τ

σs

√
τ


− S

{
1 +

(
σ2

s

2µs

)}
Φ

− ln
(
d̃i/S

)
−

(
µs + σ2

s

2

)
τ

σs

√
τ

 (59)

Then, according to Equation (59),

Θ
(
S, d̃i

)
= S − d̃ie

−µsτ

Φ

 ln
(
d̃i/S

)
+

(
µs − σ2

s

2

)
τ

σs

√
τ

 +

{(
S

d̃i

)1− 2µs
σ2

s −
(

S

d̃i

)− 2µs
σ2

s

(
σ2

s

2µs

)}

× Φ

− ln
(
d̃i/S

)
+

(
µs − σ2

s

2

)
τ

σs

√
τ


− S

(
1 +

σ2
s

2µs

)
Φ

− ln
(
d̃i/S

)
−

(
µs − σ2

s

2

)
τ

σs

√
τ

 (60)

Appendix B. Analysis of Actual Data in the Production Flow System.

Table 3. Total manufacturing
time at each stage for each worker

WS S1 S2 S3 S4 S5 S6
K1 15

�� ��20
�� ��20

�� ��25
�� ��20

�� ��20
�� ��20

K2 20
�� ��22

�� ��21
�� ��22

�� ��21
�� ��19

�� ��20
K3 10

�� ��20
�� ��26

�� ��25
�� ��22

�� ��22
�� ��26

K4 20 17 15 19 18 16 18
K5 15 15

�� ��20
�� ��18

�� ��16 15 15
K6 15 15 15 15 15 15 15
K7 15

�� ��20
�� ��20

�� ��30
�� ��20

�� ��21
�� ��20

K8 20
�� ��29

�� ��33
�� ��30

�� ��29
�� ��32

�� ��33
K9 15 14 14 15 14 14 14

Total 145 172 184 199 175 174 181

Table 4. Volatility of Table 3

K1 1.67 1.67 3.33 1.67 1.67 1.67
K2 2.33 2 2.33 2 1.33 1.67
K3 1.67 3.67 3.33 2.33 2.33 3.67
K4 0.67 0 1.33 1 0.33 1
K5 0 1.67 1 0.33 0 0
K6 0 0 0 0 0 0
K7 1.67 1.67 5 1.67 2 1.67
K8 4.67 6 5 4.67 5.67 6
K9 0.33 0.33 0 0.33 0.33 0.33



SUITABLE INVENTORY ASSET MANAGEMENT 1811

Figure 21. Total work time for
each stage (S1-S6) in Table 3

Figure 22. Volatility data for
each stage (S1-S6) in Table 3

Table 5. Total manufacturing
time at each stage for each worker

WS S1 S2 S3 S4 S5 S6
K1 20 20

�� ��24 20 20 20 20
K2 20 20 20 20 20 22 20
K3 20 20 20 20 20 20 20
K4 20

�� ��25
�� ��25 20 20 20 20

K5 20 20 20 20 20 20 20
K6 20 20 20 20 20 20 20
K7 20 20 20 20 20 20 20
K8 20

�� ��27
�� ��27

�� ��22
�� ��23 20 20

K9 20 20 20 20 20 20 20
Total 180 192 196 182 183 182 180

Table 6. Volatility of Table 5

K1 0 1.33 0 0 0 0
K2 0 0 0 0 0.67 0
K3 0 0 0 0 0 0
K4 1.67 1.67 0 0 0 0
K5 0 0 0 0 0 0
K6 0 0 0 0 0 0
K7 0 0 0 0 0 0
K8 2.33 2.33 0.67 1 0 0
K9 0 0 0 0 0 0

Table 7. Total manufacturing
time at each stage for each worker

WS S1 S2 S3 S4 S5 S6
K1 20 18 19 18 20 20 20
K2 20 18 18 18 20 20 20
K3 20

�� ��21
�� ��21

�� ��21 20 20 20
K4 20 13 11 11 20 20 20
K5 20 16 16 17 20 20 20
K6 20 18 18 18 20 20 20
K7 20 14 14 13 20 20 20
K8 20

�� ��22
�� ��22 20 20 20 20

K9 20
�� ��25

�� ��25
�� ��25 20 20 20

Total 180 165 164 161 180 180 180

Table 8. Variance of Table 7

K1 0.67 0.33 0.67 0 0 0
K2 0.67 0.67 0.67 0 0 0
K3 0.33 0.33 0.33 0 0 0
K4 2.33 3 3 0 0 0
K5 1.33 1.33 1 0 0 0
K6 0.67 0.67 0.67 0 0 0
K7 2 2 2.33 0 0 0
K8 0.67 0.67 0 0 0 0
K9 1.67 1.67 1.67 0 0 0


