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Abstract. This paper deals with a nonlinear adaptive control design based on synergetic
control theory to stabilize an electric power system including superconducting magnetic
energy storage (SMES) system. With the help of this method, the developed controller
can not only improve transient stability and voltage regulation of the system including
SMES device, but also ensure the asymptotical stability of the overall closed-loop system
by considering a damping coefficient and an unknown, but bounded, small perturbation in
mechanical input as unknown parameters. The dynamic characteristics of the proposed
control are studied in a single-machine infinite bus (SMIB) system with SMES. The sim-
ulation results are presented to validate the effectiveness and feasibility of the developed
control scheme and compared with those of an adaptive immersion and invariance (I&I)
technique. Further, they exhibit that even though the presented method has simpler de-
sign procedure, it can offer better transient performances than the adaptive I&I method
in damping oscillations.
Keywords: Transient stability, Generator excitation, SMES, Synergetic control theory

1. Introduction. There has been recently wide interest in the application of the en-
ergy storage system such as super conducting magnetic energy storage (SMES), flywheel
energy storage system (FESS), battery storage system (BESS) [1-6] to improve power
system stability and operation. In particular, they have shown the feasibility and ef-
fectiveness of energy storage to enhance transient stability and to damp power system
oscillation. Consequently, considerable attention has been paid for the use of energy
storage devices due to their ability to further enhance power transfer capability and to
augment both small-signal and transient stability in the power systems. Among a family
of energy storage technologies, a device of our particular interest is the superconducting
magnetic energy storage (SMES) in this paper because active and reactive power can
be injected and absorbed simultaneously. Also, this device is capable of increasing grid
transfer capability through enhanced dynamic voltage stability, compensating reactive
power for voltage regulation, improving transient stability, and suppressing power system
oscillations in the systems [2]. Until now, there has been considerable research addressing
the application of SMES with the help of the linearization method based on small pertur-
bation theory and linearized dynamical models. However, there is less attention that has
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devoted to a combination of generator excitation and SMES control based on nonlinear
control strategy [7-13]. In [7], the authors presented a nonlinear adaptive algorithm for a
power system including generator excitation, and a thyristor-controlled superconducting
magnetic energy storage control to improve transient stability in spite of having unknown
or varying parameters. In [8], despite having a large disturbance, a robust nonlinear
excitation and SMES controller was proposed to enhance transient stability of a single-
machine infinite bus (SMIB) system. A combination of the feedback linearization with
H∞ method was applied for the design of a combined generator excitation and SMES
control for power systems. The strategy can achieve the desired transient stability im-
provement through both simulation and experimental results [9]. In spite of disturbances
and unknown parameters in the system, a Hamiltonian function design strategy [10] was
adopted for designing a robust adaptive controller of synchronous generators with SMES
to enhance power system stability. In [6], a backstepping method has been further ex-
tended to the non-strict feedback form of a class of nonlinear systems. The scheme is
used not only to design the generator excitation and SMES controller in the SMIB model,
but also to improve the power system stability such as generator terminal voltage, and
the power oscillation. Mahmud et al. [11] developed a dynamic model of SMES based on
the equivalent circuit. Afterwards, the feedback linearizing control was designed to sat-
isfy the stability requirements and simultaneously to improve the dynamic stability. An
advanced control method, in particular, an immersion and invariance (I&I) method [12],
was applied to the design of a nonlinear coordinated generator excitation and SMES con-
troller for transient stability enhancement of power systems. Further, Kanchanaharuthai
[13] proposed an adaptive nonlinear I&I controller for transient stability enhancement
and voltage regulation of power systems with SMES, even if there are some unknown
parameters in the system. The adaptive I&I control technique can guarantee the overall
closed-loop dynamics and the great achievement of the desired dynamic performances
but its design procedure was rather complicated. Additionally, although the I&I control
methodology is the most effective and can be applied for various types of systems [14, 15],
it has main disadvantages. In particular, this method has no systematic ways in selecting
the mapping from an algebraic equation, an appropriate target dynamics, and a suitable
Lyapunov (energy) function, respectively. These lead to main difficulties for using this
method.

As a result, to overcome difficulties in the I&I strategy, this paper deals with the
design of an adaptive nonlinear control for power systems with SMES via synergetic
control theory. This method was first proposed by the Russian researcher Kolesnikov
[16, 17]. A variety of successful applications of synergetic control approach, to a power
electronics system [18, 19], a power system [20-26], a quadrotor helicopter system [27], a
grid-connected photovoltaic system [28], a robotic manipulator [29], are reported in the
literature. Therefore, the main features of the proposed method can be summarized as
follows:

1) The use of a synergetic control scheme to stabilize the power systems including SMES
has not been investigated before,

2) The overall closed-loop system is asymptotically and transiently stable at a desired
equilibrium point in spite of having unknown parameters,

3) Enhancement of transient stability together with frequency and voltage regulations of
the system considered is achieved, and

4) As compared with the adaptive I&I method [13], the developed design procedure is con-
siderably simpler, but effective. Also, the presented control law offers better dynamic
performance such as small overshoot and fast reduction of oscillation.
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The rest of this paper is organized as follows. A dynamic model of an SMIB power
system including SMES is briefly described in Section 2. Adaptive synergetic controller
design and stability analysis are mentioned in Section 3 while simulation results are stated
in Section 4. Finally, a conclusion is given in Section 5.

2. Power System Model with SMES. According to the result presented in [12, 13],
an SMIB power system with generator excitation control of a synchronous generator (SG)
and SMES control can be expressed as

δ̇ = ω − ωs

ω̇ =
1

M
(Pm − Pe − Pd − Pq − D(ω − ωs))

Ṗe = (−a + (ω − ωs) cot δ)Pe +
bV∞ sin 2δ

2X ′
dΣ

+
V∞ sin δ

X ′
dΣ

· uf

T ′
0

Ṗd =
Pd

Pe

Ṗe +
PeX2 cot δ

V∞
· 1

Td

(
−

(
PdV∞

PeX2 cot δ
− Ide

)
+ ud

)
+

IdPeX2

V∞
(cot2 δ + 1)(ω − ωs)

Ṗq =
Pq

Pe

Ṗe +
PeX2

V∞
· 1

Tq

(
−

(
PqV∞

PeX2

− Iqe

)
+ uq

)
(1)

where δ is the power angle of the generator, ω denotes the relative speed of the generator,
D ≥ 0 is a damping constant, Pm is the mechanical input power, Pe is the electrical power,
without SMES, delivered by the generator to the voltage at the infinite bus V∞, Pd and
Pq are the electrical power from SMES, ωs is the synchronous machine speed, ωs = 2πf ,
H represents the per unit inertial constant, f is the system frequency and M = 2H/ωs is
an inertia constant of SG. X ′

dΣ = X ′
d + XT + XL is the reactance consisting of the direct

axis transient reactance of SG, the reactance of the transformer, and the reactance of the
transmission line XL. Similarly, XdΣ = Xd + XT + XL is identical to X ′

dΣ except that Xd

denotes the direct axis reactance of SG. T ′
0 is the direct axis transient short-circuit time

constant. uf is the field voltage control input to be designed. For SMES devices, Id and
Iq denote active and reactive currents in the synchronous d − q frame. Ide and Iqe are
equilibrium points of SMES currents, and Td and Tq are time constants of SMES models.
ud and uq are the SMES control input to be designed.

In order to simplify the state-space equation of the system (1), let us introduce the
vector of the state variable as x = [x1, x2, x3, x4, x5]

T = [δ, ω − ωs, Pe, Pd, Pq]
T . Thus, the

dynamic model of the power system with SMES can be expressed as an affine nonlinear
system as follows:

ẋ = f(x) + g(x)u(x) (2)

where

f(x) =



f1(x)

f2(x)

f3(x)

f4(x)

f5(x)

 =



x2

1

M
(Pm − Dx2 − x3 − x4 − x5)

(−a + x2 cot x1)x3 +
bV∞ sin 2x1

2X ′
dΣ

x4

x3

f3(x) − x3 tan x1(cot2 x1 + 1)x2 −
x4

Td

+
x3X2 cot x1

V∞Td

Ide

x5

x3

f3(x) − x5

Tq

+
x3X2

V∞Tq

Iqe
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g(x) =


0 0 0
0 0 0

g31(x) 0 0
g41(x) g42(x) 0
g51(x) 0 g53(x)

 =



0 0 0
0 0 0

V∞ sin x1

X ′
dΣ

0 0

x4V∞ sin x1

x3X ′
dΣ

x3X2 cot x1

V∞
0

x5V∞ sin x1

x3X ′
dΣ

0
x3X2

V∞


,

u(x) =



uf

T ′
0

ud

Td

uq

Tq


The region of operation is defined as the set D =

{
x ∈ S × R × R × R × R| 0 < x1 <

π
2

}
. The open loop operating equilibrium is denoted by xe = [x1e, 0, Pee, Pde, Pqe]

T =

[δe, 0, Pm, 0, 0]T .
In this paper, the adaptive synergetic controller is developed to enhance the system

stability of power systems with SMES by considering a damping coefficient and an un-
known small perturbation of mechanical power as unknown parameters [13]. Let us define
θ = [θ1, θ2]

T = [−D,Pm]T as the vector of unknown constant parameters of interest; con-
sequently, the system (2) and (3) can be expressed as follows.

ẋ1 = x2

ẋ2 =
1

M
(θ2 + θ1x2 − x3 − x4 − x5)

ẋ3 = f3(x) + g31(x)
uf

T ′
0

ẋ4 = f4(x) + g41(x)
uf

T ′
0

+ g42(x)
ud

Td

ẋ5 = f5(x) + g51(x)
uf

T ′
0

+ g53(x)
uq

Tq

(3)

Thus, the objective of this paper is to solve the problem of the transient stabilization of
the system (3) with unknown constant parameters θ, which can be formulated as follows:
with the help of the adaptive synergetic control technique, an adaptive control law and a
parameter update law in (4) are expressed in the following form:

u = ϕ
(
x, θ̂

)
,

˙̂
θ = ϖ

(
x, θ̂

)
(4)

where θ̂ is the estimate of θ = [θ1, θ2]
T . Subsequently, the overall closed-loop system

consisting of the power system dynamics together with the adaptive control and the
update law in (4), namely,

ẋ = f(x) + g(x)ϕ
(
x, θ̂

)
,

˙̂
θ = ϖ

(
x, θ̂

)
(5)

is asymptotically stable at the only equilibrium (xe, θ) and x → xe, θ̂ → θ as t → ∞.
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3. Design of Adaptive Synergetic Controller.

3.1. Synergetic control method. In accordance with the result proposed in [16], syner-
getic control scheme is an invariant-manifold-based control method and can be applied for
controlling nonlinear, dynamic, and high-dimensional systems. As mentioned previously
in Section 1, this method has been successfully applied for many practical applications.
The synergetic control technique based on the analytical design of the aggregated regula-
tor (ADAR) method [16, 17, 30] is briefly mentioned.

Let us consider an n-dimensional nonlinear dynamic equation1 in the following form:

ẋ(t) = f(x, u, t) (6)

where x ∈ Rn denotes the system state variable vector, u ∈ Rm is the control input vector
to be designed, t is time, and xe ∈ Rn denotes an assignable equilibrium point to be
stabilized, respectively. The synergetic control design procedure can be summarized in
the following steps as follows.

• Step 1: Define a macro-variable as φ(x) where φ(x) is a function of the system
states. Based on synergetic control theory, this macro-variable will be used to de-
termine a stabilizing control law u(x) = u(x, φ(x)) capable of driving the system
trajectories into the desired manifold M which is defined by φ(x) = 0 and achieving
the desired control specifications.

• Step 2: Design a control law capable of steering the system states onto the speci-
fied manifold M and then remaining on this manifold thereafter, with an evolution
constraint which can be expressed in the following equation

T φ̇(x) + φ(x) = 0, T > 0 (7)

where T is a controller parameter which affects the rate of convergence of the system
trajectories reaching the manifold M.

• Step 3: Take time derivative of the selected macro-variable φ(x) with respect to
the system variable x, take account of the chain rule of differentiation, and then
substitute (2) or (6) into (7), and we have

T
∂φ(x)

∂x
f(x, u, t) + φ(x) = 0 (8)

Subsequently, by defining a suitable macro-variable and selecting the control param-
eter T , the expression above (8) can be directly solved to find the desired controller
u(x) which can be written as:

u(x) = ϕ(x, φ(x), T, t) (9)

It is easy to note from (9) that after solving the evolution constraint in (8), we have
an analytical control law capable of guaranteeing the desired control specifications. The
resulting control law relies upon the system state variable, the selected macro-variable,
and the control parameter T , respectively. Based on these control parameters chosen by
the designer, many interesting characteritics for the overall closed-loop dynamics such as
global stability, parameter insensitivity, and dynamic properties can be obtained.

1It is assumed that throughout this paper all functions and mappings are C∞.
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3.2. Adaptive control design. In this subsection, the design procedure based on syn-
ergetic control scheme above is developed step by step. From (3), an error coordinate
variable is defined as:

e(t) =


e1(t)
e2(t)
e3(t)
e4(t)
e5(t)

 =


x1 − x1e

x2 − x2e

x3 − x3e

x4 − x4e

x5 − x5e

 =


x1 − δe

x2

x3 − Pm

x4

x5

 (10)

Step 1: In order to apply the synergetic control to the modeled system, based on the
error variables (10), let us introduce the following macro-variable:

φ(x) =

 φ1(x)
φ2(x)
φ3(x)

 =


e1(t) + e2(t) + β11(t)e3(t) + β12(t)

∫ t

0
e3(τ)dτ

e1(t) + e2(t) + β21(t)e4(t) + β22(t)
∫ t

0
e4(τ)dτ

e1(t) + e2(t) + β31(t)e5(t) + β32(t)
∫ t

0
e5(τ)dτ

 (11)

where βi1(t), βi2(t), (i = 1, 2, 3) denote the adaptive rules which are continuous functions
yet to be specified.

Step 2: The aims of the proposed controller design are to steer the system trajectories
and force them to remain on the desired manifold φ(x) = 0 thereafter. In the dynamic of
the evolution, each macro-variable is provided as

Tiφ̇i + φi = 0, Ti > 0, i = 1, 2, 3 (12)

where Ti are the pre-specified controller parameters indicating the converging speed of
the closed-loop dynamics to the desired manifold φ(x) = 0.

Thus, the time derivative of the error variables (11) along the system trajectory (3)
becomes φ̇1(x)

φ̇2(x)
φ̇3(x)

 =


ė1(t) + ė2(t) + β̇11(t)e3(t) + β11(t)ė3(t) + β̇12(t)

∫ t

0
e3(τ)dτ + β12(t)e3(t)

ė1(t) + ė2(t) + β̇21(t)e4(t) + β21(t)ė4(t) + β̇22(t)
∫ t

0
e4(τ)dτ + β22(t)e4(t)

ė1(t) + ė2(t) + β̇31(t)e5(t) + β31(t)ė5(t) + β̇32(t)
∫ t

0
e5(τ)dτ + β32(t)e5(t)


=

 − 1
T1

φ1(x)

− 1
T2

φ2(x)

− 1
T3

φ3(x)

 (13)

Rearranging (13), the expression above can be shown as

ė3 = f3(x) + g31(x)
uf

T ′
0

= − 1
β11

(
ė1(t) + ė2(t) + β̇11(t)e3(t) + β̇12(t)

∫ t

0
e3(τ)dτ + β12(t)e3(t) + 1

T1
φ1(x)

)
ė4 = f4(x) + g41(x)

uf

T ′
0

+ g42(x)ud

Td

= − 1
β21

(
ė1(t) + ė2(t) + β̇21(t)e4(t) + β̇22(t)

∫ t

0
e4(τ)dτ + β22(t)e4 + 1

T2
φ2(x)

)
ė5 = f5(x) + g51(x)

uf

T ′
0

+ g53(x)uq

Tq

= − 1
β31

(
ė1(t) + ė2(t) + β̇31(t)e5(t) + β̇32(t)

∫ t

0
e5(τ)dτ + β32(t)e5 + 1

T3
φ3(x)

)
(14)

Step 3: In order to design a stabilizing controller, Lyapunov stability strategy will
be adopted to verify the stability of the overall closed-loop dynamics including unknown
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parameters. Since there are two unknown parameters in the system (3), for simplicity, let

us define the estimation error θ̃ = θ − θ̂. Thus, we define a Lyapunov function as follows:

V
(
φ, θ̂, t

)
=

1

2

(
φ2

1 + φ2
2 + φ2

3 +
1

γ1

θ̃2
1 +

1

γ2

θ̃2
2

)
(15)

with constant adaptation gains γ1 > 0, γ2 > 0 and ˙̃θ = − ˙̂
θ. The time derivative of the

Lyapunov function can be stated as

V̇ (t) = φ1φ̇1 + φ2φ̇2 + φ3φ̇3 −
1

γ1

θ̃1
˙̂
θ1 −

1

γ2

θ̃2
˙̂
θ2 (16)

After differentiating (15) and substituting (13) into (16), we have

V̇ (t) = φ1

[
ė1(t) + ė2(t) + β̇11(t)e3(t) + β11(t)ė3(t) + β̇12(t)

∫ t

0

e3(τ)dτ + β12(t)e3(t)

]
︸ ︷︷ ︸

− 1
T1

φ1

+φ2

[
ė1(t) + ė2(t) + β̇21(t)e4(t) + β21(t)ė4(t) + β̇22(t)

∫ t

0

e4(τ)dτ + β22(t)e4(t)

]
︸ ︷︷ ︸

− 1
T2

φ2

+φ3

[
ė1(t) + ė2(t) + β̇31(t)e5(t) + β31(t)ė5(t) + β̇32(t)

∫ t

0

e5(τ)dτ + β32(t)e5(t)

]
︸ ︷︷ ︸

− 1
T3

φ3

− 1

γ1

θ̃1
˙̂
θ1 −

1

γ2

θ̃2
˙̂
θ2 (17)

Based on Lyapunov stability theory, V̇ (t) must be a negative definite function. Conse-
quently, an appropriate control law is chosen as

u
(
x, θ̂

)
=

[
uf

(
x, θ̂

)
T ′

0

ud

(
x, θ̂

)
Td

uq

(
x, θ̂

)
Tq

]T

(18)

with

uf

(
x, θ̂

)
T ′

0

= − 1

β11(t)g31(x)

[
β11(t)f3(x) + x2 + ˙̂x2 + β12(t)e3 +

1

T1

φ1

]
ud

(
x, θ̂

)
Td

= − 1

β21(t)g42(x)

[
β21(t)

(
f4(x) + g41(x)

uf

Tf

)
+ x2 + ˙̂x2 + β22(t)e4 + 1

T2
φ2

]
uq

(
x, θ̂

)
Tq

= − 1

β31(t)g53(x)

[
β31(t)

(
f5(x) + g51(x)

uf

Tf

)
+ x2 + ˙̂x2 + β32(t)e5 +

1

T3

φ3

]
(19)

where ˙̂x2 = 1
M

(
θ̂2 + θ̂1x2 − x3 − x4 − x5

)
.

After substituting the control law u
(
x, θ̂

)
given in (18), we have

V̇ (t) =
3∑

i=1

[
− 1

Ti

φi + β̇i1(t)ei+2(t) + β̇i2(t)

∫ t

0

ei+2(τ)dτ

]
φ2

i
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+ θ̃1

(
x2

M
(φ1 + φ2 + φ3) −

1

γ1

˙̂
θ1

)
︸ ︷︷ ︸

−kγ θ̃2
1

+ θ̃2

(
1

M
(φ1 + φ2 + φ3) −

1

γ2

˙̂
θ2

)
︸ ︷︷ ︸

−kmθ̃2
2

(20)

According to the concept reported in [31], a suitable selection for the adaptive rules is
given by

β̇i1(t) = −ηi1φiei+2(t), β̇i2(t) = −ηi1φi

∫ t

0
ei+2(τ)dτ (21)

where ηi1 and ηi2 are positive constants indicating the adaption speed of the control gains.
After substituting the adaptive rules (21) into (20), we get

V̇ (t) = −
3∑

i=1

[
1

Ti

+ ηi1e
2
i+2(t) + ηi2

(∫ t

0

ei+2(τ)dτ

)2
]

︸ ︷︷ ︸
αi(t)

φ2
i − kmθ̃2

2 − kγ θ̃
2
1 ≤ 0 (22)

where αi(t) is always positive. It can be seen that there exists a time tf such that
ei+2(t) = 0, i = 1, 2, 3 for all t ≥ tf and eventually we have αi(t) = 1

Ti
together with

V̇ (t) = −
∑3

i=1
φ2

i

Ti
− kmθ̃2

2 − kγ θ̃
2
1 ≤ 0. From (20), two unknown parameters of the

controlled system can be straightforwardly estimated by the following parameter update
laws:

˙̂
θ1 = γ1

[
kγ θ̃1 +

x2

M
(φ1 + φ2 + φ3)

]
,

˙̂
θ2 = γ2

[
kmθ̃2 +

1

M
(φ1 + φ2 + φ3)

]
(23)

where γj, km, kγ, (j = 1, 2) are positive design parameters. In the next subsection, the
stability analysis of the closed-loop dynamics with the control law (18) and (19) and the
parameter adaptive law (23) is considered.

3.3. Stability analysis. In this subsection, the model-based adaptive synergetic con-
trol law (18) ensures the overall closed-loop stability of the power systems with SMES
(3). Therefore, we can summarize the adaptive synergetic control design in the following
theorem.

Theorem 3.1. For the power system with SMES (3), the adaptive synergetic controller
(18) and corresponding parameter update law (23) can guarantee that all state trajectories
of the closed-loop adaptive system are bounded, that the unknown parameters are estimated(
limt→∞

(
θ − θ̂

)
= 0

)
, and that the overall closed-loop system (3) with the controller is

asymptotically stable at the equilibrium point (xe, θ).

Proof: To demonstrate the closed-loop stability of the presented control strategy, it is
easy to see that based on Barbalat’s Lemma [32], the developed controller will stabilize
the system (3), even if there are unknown parameters in the system. This completes the
proof.

4. Simulation Results. In this section, the proposed controller is tested via simulations
of SMIB power system with SMES as shown in Figure 1 [13]. The performance of the
proposed control scheme is evaluated and verified in MATLAB environment under the
following large disturbance.

• Effect of severe disturbance
The system is in a pre-fault steady state, a symmetrical three phase short circuit
occurs at t = 0.5 sec. The fault is removed by opening the breaker of the faulted
line at t = 0.7 sec. The transmission line is recovered without the fault at t = 2 sec.
The system is eventually in a post-fault state.
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Figure 1. A single line diagram of SMIB model with SMES

Figure 2. Controller performance in Case 1 – Power angles (δ) (rad.),
frequency (ω − ωs) rad/s. and terminal voltage (Vt) pu

The physical parameters (pu.), the controller parameters, and initial conditions used for
this power system model are the same as those used in [13]. The time domain simulations
are carried out to investigate the system stability enhancement and the dynamic perfor-
mance of the designed controller and the parameter adaptive law, as given in (18) and
(23), in the system under study. The performance of the proposed controller (adaptive
synergetic controller) is compared with that of the adaptive I&I controller [13].

The simulation results are presented and discussed below. For this case, in order to
demonstrate the results, time histories of power angle, frequency, and terminal voltage
under the proposed method and the adaptive I&I method are shown in Figure 2. Figure
3 shows comparative plots of the parameter estimates for unknown parameters using dif-
ferent approaches. It can be observed from Figures 2 and 3 that the developed control
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Figure 3. Unknown constant paramters in Case 1 – Damping coefficient

estimate
(
θ̂1

)
and mechanical input power estimate

(
θ̂2

)

Figure 4. Adaptive rules for the control gains
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Figure 5. The selected macro-variable φ(x) = [φ1(x), φ2(x), φ3(x)]T

law can dampen the oscillation more effectively than the adaptive I&I controller. In par-
ticular, it is easy to observe that using the proposed method, the overshoot magnitude of
oscillations, rising time, and settling time are obviously reduced, which indicate transient
performances are improved. It is also seen from Figure 3 that the parameter estimate
of the developed scheme quickly approaches to the real value of the damping coefficient
constant and mechanical power input without any oscillations. On the contrary, even if
the adaptive I&I controller eventually converges to the real value, it still has considerable
oscillations. This indicates the proposed controller offers superiority over the adaptive I&I
controller. Figure 4 shows the adaptive rules that can adjust themselves according to the
changes in each stage. Figure 5 illustrates time responses of the selected macro-variable,
capable of approaching to the desired manifold φ(x) = 0 after the fault is cleared.

From the simulation results with this case, it can be seen that when the adaptive
synergetic control scheme is applied to the SMIB power system with SMES, the advantages
over the result presented in [13] are as follows.

• The proposed control law is effectively designed for transient stabilization and voltage
regulation following small and large disturbances.

• The developed control strategy can make the overall closed-loop dynamics converge
more quickly to a desired equilibrium point than the advanced (I&I) strategy. In
particular, it obviously outperforms the adaptive I&I one in terms of damping en-
hancement in the power oscillation together with smaller overshoot magnitude and
shorter settling time.

• The process of designing the desired control law is seldom uncomplicated because
it does not require the mapping from an algebraic equation, an appropriate target
dynamics, and a suitable Lyapunov (energy) function, respectively, as required in
[13].
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5. Conclusion. In this work, the nonlinear adaptive controller has been constructed us-
ing the synergetic design for the transient stability enhancement and voltage regulations of
a single-machine infinite-bus power system with superconducting magnetic energy storage
system. The simulation results have shown that the developed control method is tested
under large and small disturbances in the power systems and can stabilize the power an-
gle, terminal voltage, and frequency. From the developed design procedure, it can be seen
that the presented scheme is obviously simpler than the adaptive I&I one. In contrast, it
provides better transient control performance than the adaptive I&I control. Moreover,
despite having unknown parameters, the comparative results confirm the effectiveness of
the proposed controller capable of damping power oscillations in the closed-loop system
dynamics, improving voltage and frequency regulation, and enhancing transfer capability.
Future study will be devoted to extension of this approach to a robust adaptive control
design in the presence of matched and mismatched uncertainties together with external
disturbances.
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