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Abstract. Highway elevation is an important factor for performing quantitative and
qualitative analysis of traffic safety, traffic operation and management. Google Earth
provides public accessible highway elevation data which is deemed as a credible elevation
source by many researchers and transportation practitioners. However, the raw elevation
dataset, extracted from Google Earth, shows multiple types of outliers. Hence, we pre-
sented a local enhancement mechanism integrated with Butterworth filter to remove noises
in the raw elevation data. Segment’s elevation under local extrema grades was adjusted
by the local enhancement mechanism before the Butterworth smoothing process. This
operation helped reduce the side effect of over-smooth phenomenon for the Butterworth
filter. Elevation data for three typical freeway segments, with some typical categories of
outliers, has been analyzed and smoothed. The smoothing results provided evidence that
the proposed smoothing model was good at reducing the noises in the raw elevation data.
This research can help traffic regulators, administrative departments and field researchers
construct trustable and large-scale elevation dataset for nationwide highways.
Keywords: Denoising, Outlier smooth, Google Earth, Validation, Accuracy

1. Introduction. Highway elevation plays an important role in determining many trans-
portation factors such as traffic congestion, freeway geometrical design, vehicle pollution
measurement and prediction, and calculation of fuel consumption. In fact, more and more
researchers have focused on the elevation and its derivatives’ effect on traffic safety [1,2],
fuel consumption [3,4] and speed [5,6]. Wang et al., performed several studies to predict
and reduce the freeway crashes on the basis of elevation distribution [7,8]. Similarly,
Banihashemi found that elevation fluctuation in the horizontal curvature is a significant
factor for ensuring rural highways’ safety [9]. In addition, Wood et al., analysed roadway
grades’ influence on vehicle’s fuel consumption and speed. It showed that grade variation
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caused additional 1% to 3% power consumption for light-duty vehicles [10,11]. Travesset-
Baro et al., quantified the influence of the roadway gradient on fuel consumption for both
electrical and non-electrical cars under mountainous freeways [12].

For the sake of implementing the above-mentioned studies, reliable elevation dataset
is one of the prerequisites. Initially, transportation practitioners and researchers tried to
collect elevation data by manually finding out the interested highway segments and draw-
ing the corresponding elevation isolines. Recently, some new and easy accessible elevation
sources were sought by researchers. These sources involved the National Elevation Dataset
[13], the global 30 arc-second elevation dataset [14], the Global Digital Elevation Model
[15], the Shuttle Radar Topography Mission [16] and the Light Detection and Ranging
data [17], etc. However, these data sources play a limited role for the field researchers as
the data resolution is low in some places. For instance, the resolution for the National
Elevation Dataset is approximately 60 meters in Alaska area.

Meanwhile, transportation researchers have raised some methods to extract elevation
from Google Earth (GE) for obtaining more reliable elevation data [18,19]. Factually, GE
showed better data quality compared with other elevation datasets. However, the GE
elevation may not reflect the complete ground-truth data on account of the following two
reasons. First, as GE only records elevation for the buildings or structures on the top
level, elevation data are prone to be inaccurate in the segments with overhead buildings
or tunnels. Second, some researchers found that the images of the ground surface from
GE may be distorted unexpectedly [20]. Thus, the elevation data for the corresponding
segments are likely to be biased. Therefore, the applicability of GE elevation data may
be largely confined for traffic practitioner, researchers and regulators. As a result, it is
urgent to develop an efficient denoising method for the elevation dataset.

Data cleaning and denoising is one of the hot topics in many fields such as signal
processing [21,22], image smoothing [23], multiple source data fusion [24]. The elevation
data is one dimension data and outliers in the raw elevation data randomly scatter in
the series. Such characteristic implies that smoothing algorithms for signal processing
are more suitable for ruling out abnormal elevation data. Some popular signal denoising
methods, involving empirical mode decomposition (EMD) and wavelet transform (WT),
are potential choices for removing elevation noises. However, the EMD method may
still leave some outliers after noise removal process because of mode mixing phenomenon
[25,26]. The WT method is possible to introduce some unexpected fluctuation into the
elevation data [27]. Therefore, the above-mentioned methods are not applicable for the
smoothing purpose for GE elevation data.

Moving average (MA) is one of the widely-used methods for ruling out noises by aver-
aging adjacent neighbours’ values [28]. The method is efficient in smoothing out random
and short-term intense fluctuation and maintain the longer tendency of the original data.
The denoise logic of MA method suits for removing outliers in the raw elevation data.
Hence, we employed MA model as one of potential workable scenarios for smoothing out
the exceptional values in GE elevation. Additionally, Butterworth filter (BWF) is one of
the best-known and popular infinite impulse response filters. The BWF was designed to
achieve the smoothing effect by obtaining mild transition between stopband and passband
as much as possible. The superiority of BWF is that the noises existing in the elevation
data can be regarded as high frequency component and it is easier to distinguish the noise
from the noise-free data [29-32]. Hence, the BWF is also the potential smoothing method
in our study.

However, previous studies showed that the BWF has the over-smooth phenomenon.
Specifically, some truly minor elevation variation is likely to be ruled out by the BWF
method. To reduce such side effect and obtain the optimization smoothing result, we
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integrated a local enhancement mechanism (LEM) with the digital BWF method. Specif-
ically, the LEM calculated grades, from the raw elevation data, for all the segments and
determined the local maximum and minimum grade values. Then, the elevation for the
local extrema grades was proportionally revised by the LEM. Lastly, we employed the
digital BWF to rule out outliers in the revised elevation data. The smoothing results by
the proposed methodological framework showed that the BWF method successfully kept
the truly smaller fluctuation in the raw elevation data. In addition, most obvious outliers
and anomaly elevation data have been corrected. The research can help transportation
administrative department and researchers build nationwide elevation databases for dif-
ferent road classes.

The remaining part of the paper is organized as follows. Section 2 briefly introduces
elevation extraction process and typical outliers in the raw GE elevation data are illus-
trated in Section 3. Section 4 describes methodologies used for this study and smoothing
results are revealed in detail in Section 5. We conclude the paper and provide future work
in Section 6.

2. Elevation Data Extraction. GE stores worldwide ground elevation and the data
can be extracted from application programming interface (API) of GE. Smart Transporta-
tion Applications and Research Laboratory (STAR Lab) of the University of Washington
has developed a Google Earth Elevation Data Extraction System (GEEDES) tool for
the purpose of extracting expressway’s elevation data. The elevation extraction process
mainly includes four steps which have been described in detail in our previous work [20].
The concrete steps for elevation extraction are briefly illustrated as follows.

• Step 1: Acquiring freeway points’ coordinates based on geographic information
systems (GIS) map. The GIS map containing centerlines for both traffic directions
is a prerequisite for Step 1. With the available GIS map, we acquired the relative
coordinates’ set by disintegrating the centerlines into discrete points. We employed
all roads network of linear referenced data (ARNOLD) map as the GIS map in our
study.

• Step 2: Determining parameters of GE viewbox based on spatial information. The
step is to assure that routes of interest will be shown in accordance with GE form.
This is done by transforming geometric information of sampling points into GE
relative coordinates.

• Step 3: Implementing the procedure of elevation extracting. After obtaining the
sampling points’ coordinates, we used GEEDES tool to extract elevation for in-
teresting points. The shortage of this method is that only top-level elevation can
be obtained. So, the routes with high-rise infrastructure or under tunnels may be
recorded with inaccurate elevation.

• Step 4: Computing the link gradient. Freeway link grade is important for the
transportation researches and is a key factor in designing roadway vertical curve.
For a given link, its gradient is computed as Equation (1).

Grade(i) =
EEnd(i) − EStart(i)

Length(i)
(1)

where EStart(i) is the elevation of beginning point for link i. The EEnd(i) is the ending
point’s elevation of the link. Parameter Grade(i) means the grade for the link i while
Length(i) is the total length of link i. A positive value of Grade(i) represents an uphill
slope while a negative value for downhill segment. Sampling interval of GE elevation is
10 ft per point along freeways in this study.
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3. Outliers in Raw GE Elevation. For the sake of finding outliers in the raw elevation
data, the research team developed a process by checking the reasonable grade for single
link as well as grade variation between neighbouring freeway links. American Association
of State Highway and Transportation Officials (AASHTO) published A Policy on Geo-
metric Design of Highways and Streets, known as Green Book, which provides principles
for determination of link’s reasonable grade scopes [33]. The gradient values, beyond the
reasonable range in the Green Book, are labelled as outliers. Concretely, 7% is the max-
imum grade which can be available in some mountainous regions and speed limit in the
area should be less than 60 mph (95 km/h). What is more, 6% is the generally maximal
grade existing in some hilly downtown regions and mountainous segments.

Additionally, the Green Book provides some advice for the allowed grade changing
range along freeways which mediate some sag vertical curves as well as crest. The curve’s
changing rate can be diverse under different freeway speed limits. For instance, with a
given segment at speed limit of 60 mph, its length should not be less than 151 ft for 1%
grade variation. In other words, 0.0065% is the largest permitted gradient change for 10
ft (i.e., 1% grade change for 151 ft). This principle serves as standard for determining
outliers in the raw elevation data. After data quality control process, we have determined
six types of errors in the raw GE elevation dataset. Typical outliers and reasons are
discussed as follows.

(1) Spikes in the Elevation Curves
After checking with GE in 3D view, it was found that some overlapping infrastructures,

traffic signs, large-size trucks are the primary causes for the spikes. Figure 1(a) shows
example of spikes and the reason for that is the overhead bridge. As only elevation of top
layer is recorded in the GE, the elevation for the underneath freeway segment is presented
by the overhead bridge elevation instead of ground truth elevation.

(2) Sudden Dips in the GE Road Surface
Another typical type of anomaly is the sudden dips existing in the original GE elevation

dataset which are demonstrated in Figure 1(b). After searching the GE 3D view of such
outliers’ segments, it was determined that flyover regions, bridges crossing rivers and
valleys were more likely to have such outlier. The elevation around these areas was
apparently different from its neighbours.

(3) Buckling Road Surface
Some cases of buckling road surface are demonstrated in Figure 1(c). We have manually

checked this category of outlier in different states and found that most of such outliers
happened in hilly regions. As freeway street view from Google Map was recorded by on-
board cameras, the images of buckling surface were taken as ground truth images. After
inspecting a series of images for the outlier, we found that elevation recorded in GE is
incorrect, which affirms the existence of outlier on buckling road surface.

(4) Surface Discontinuity at State and Road Boundaries
Elevation acquired from road surface that near boundaries of states may often include

some errors when the boundaries are separated by rivers and valleys. As we do not
have sufficient information about expressway elevation locating at the boundary of other
States, it is not an easy task to rule out such errors. Similar problem also happens at
road boundaries as they often begin at freeway intersections.

(5) Choppy Roadway Surface
Some roadways appear in the form of successive choppy with small elevation fluctu-

ations. Such examples have been shown in Figure 1(d). After checking many choppy
segments in GE, we found that mountainous regions and bridges over rivers are the most
likely areas containing such outliers. Elevation curve in these segments possesses some
variations and abnormal grade change can be detected easily.
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(a)

(b)

(c)

(d)

(e)

Figure 1. Examples of typical outliers in the GE highway elevation
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(6) Quality Issue in the GIS Map
As we extracted freeway elevation based on roadway centerlines, data quality of the

extracted elevation largely depends on GIS map marginally. It was found that some
roadway centerlines do not match GIS roadway centerlines well in the ARNOLD GIS
map (Figure 1(e)). In another word, elevation extracted from these areas may be not
accurate.

4. Methodology.

4.1. Elevation smoothing with LEM and BWF.

4.1.1. Elevation pre-process by the LEM. Butterworth filter, proposed by a British engi-
neer, is designed with the goal of obtaining smoothing frequency variation in the transition
band. However, one of the drawbacks of the BWF is that higher order of BWF is the
over-shoot phenomenon which degrades BWF performance [34]. In other words, true fluc-
tuations in the elevation dataset may be wrongly replaced with flatted values by higher
order of BWF.

To reduce the side effect of BWF, we integrated a local enhancement mechanism (LEM)
with basic Butterworth filter to denoise the elevation data. Firstly, the LEM checked
grade distribution for all segments. Secondly, the LEM determined local extrema gra-
dient values and the corresponding elevation data. Thirdly, the segments’ elevation was
proportionally increased or decreased based on Equation (2). For instance, the original
segment’s elevation, with gradient between −0.02 and 0.02, is prone to be overfitted by
the BWF. So, the LEM mechanism modified the corresponding elevation series so that
the gradient was two-fold steeper than its initial grade at least. This operation intended
to cancel out the over-smooth drawback of the BWF. The first calculation expression in
Equation (2) demonstrated the process of obtaining the corresponding modified eleva-
tion data. Additionally, the rest expressions in Equation (2) showed specific calculation
processes of substituting initial elevation for other grades. Segments, with the absolute
grade values exceeding 7%, were labelled as significant outlier segment (Osig). We kept
the elevation data of Osig segments as its original values.

Elebw =































(2 + 0.2 ∗ rand) ∗ grade(t) ∗ ∆mile + eleinit|grade(t)| ∈ [0, 0.02]

(1 + 0.1 ∗ rand) ∗ grade(t) ∗ ∆mile + eleinit|grade(t)| ∈ (0.02, 0.03]

(0.5 + 0.05 ∗ rand) ∗ grade(t) ∗ ∆mile + eleinit|grade(t)| ∈ (0.03, 0.05]

(0.1 + 0.01 ∗ rand) ∗ grade(t) ∗ ∆mile + eleinit|grade(t)| ∈ (0.05, 0.07]
eleinitgrade(t) is Osig

(2)

where grade(t) is the original gradient value for the tth segment. The length of the
segment t is ∆mile. The symbol |grade(t)| represents the absolute value for the grade(t).
The eleinit is the initial elevation and Elebw is the corresponding modified elevation data.

4.1.2. Elevation smooth by the BWF. The above proposed LEM mechanism provided us
the new elevation data where smaller fluctuation in the raw elevation data was intensified.
With the help of the LEM mechanism, we can alleviate the shortage of the BWF method
when smoothing the elevation series. The transfer function of the BWF was depicted in
Equation (3).

H(z) =
a0 + a1z

−1 + · · · + akz
−k

1 + b1z−1 + · · · + bkz−k
(3)

where ai (i = 0, 1, . . . , k) and bi (i = 1, 2, . . . , k) were the set of coefficients that decided
frequency response of filter, k represented the order of filter. Equation (3) presented the
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transformation function in the form of Z-domain from where we could find zeros and poles.
In fact, zeros’ points helped construct numerator and poles for building the denominator
in transfer function. After obtaining the numerator and denominator, we could gain the
smooth elevation data with formula shown in Equation (4).

Elesm(n) =

k
∑

i=0

ai ∗ Elebw(n − i) −

k
∑

i=1

bi ∗ Elesm(n − i) (4)

The Elebw(n− i) represented the above LEM modified elevation data and Elesm(n− i)
was the previous input smoothed elevation. Parameters of ai and bi were coefficients of
filter in Equation (3). The Elesm(n) was the output smoothed elevation data.

For the sake of finding ai and bi (i = 0, 1, 2, . . .k) in Equations (3) and (4), we established
similar transfer function as Equation (5). Then a relation between similar transfer function
(see Equation (5)) and digital transfer function (see Equation (3)) was built through
Equation (6) where C is a constant. Hence, we can get the coefficients of ai and bi by
solving the simultaneous Equations (3), (5), (6) and (7).

G(p) =
A0 + A1p + · · ·+ Akp

k

B0 + B1p + · · ·+ Bkpk
(5)

p =
C (1 − z−1)

1 + z−1
(6)

G(p) = H(z) (7)

4.2. MA method. MA is a popular method to rule out singularities and maintain the
trend of data series. The window size of MA is set differently according to different
applications. The moving average method employed in our study for smoothing is an
equal weighted method which calculates point elevation based on its neighbours. Given
a freeway segment with the elevation series elem−n, elem−n+1, . . . , elem+n, the elevation
eleMA was calculated as Equation (8). It is noted that smooth result is mainly affected by
window size. Specifically, smaller window size cannot rule out the noises in raw elevation
data completely while larger window size would neglect truly fluctuation details in the
raw data.

eleMA =
elem−n + elem−n+1 + · · ·+ elem+n

n
=

1

2n + 1

m+n
∑

i=m−n

elei (8)

4.3. Goodness of fit. To measure the denoising effect of BWF and MA, the smoothed
elevation data has been compared with ground truth data under frequently used statistical
indicators. As no ground-truth elevation data can be accessed in public, we took gradient
data from Highway Safety Information System (HSIS) [35] as real data in the light of the
following two reasons. Firstly, grade data for freeway segments is available in Washington
State (WA). Second, the Washington State Department of Transportation (WSDOT)
updates the freeway grade in the HSIS database every year since 2002. Thus, it is trustable
to use the HSIS gradient data as ground truth data.

The indicators for evaluating the fitness effect included mean squared deviation (MSD),
Pearson product-moment correlation coefficient (Pearson’s r) and mean absolute deviation
(MAD) [36-38]. For a given freeway segment t, Grdsmth(t) and GrdHSIS(t) represented
grade obtained from smoothed elevation and HSIS database, respectively. The mean value
of Grdsmth(t) and GrdHSIS(t) were denoted as Grdsmth(t) and GrdHSIS(t) (see Equations
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(9) and (10)). The expressions for MAD, MSD and Pearson’s r were shown from Equations
(11) to (13).

Grdsmth(t) =
1

n

n
∑

i=1

Grdsmth(t) (9)

GrdHSIS(t) =
1

n

n
∑

i=1

GrdHSIS(t) (10)

MAD =

∑n

t=1
|Grdsmth(t) − GrdHSIS(t)|

n
(11)

MSD =

∑n

t=1
|Grdsmth(t) − GrdHSIS(t)|2

n
(12)

r =

∑n

i=1

[(

Grdsmth(t) − Grdsmth(t)
)

×
(

GrdHSIS(t) − GrdHSIS(t)
)]

√

∑n

i=1

(

Grdsmth(t) − Grdsmth(t)
)2

×

√

∑n

i=1

(

GrdHSIS(t) − GrdHSIS(t)
)2

(13)

5. Results. To evaluate the smoothing effects, we applied the proposed smoothing model
and MA on the three typical highway segments which locate in WA. For simplicity, the
proposed elevation smoothing framework is denoted as revised-BWF. The first highway
segment is in the southbound of Interstate 5 with the milepost from 0 to 8.67 mile. The
second segment is in the northbound of Interstate 405 from 0 to 10 miles. The last segment
is in the westbound of Interstate 90 from 162 to 172 miles. The selected three segments
possess different kinds of outliers which result in abnormal grades. Elevation of Interstate
5 has been modelled in detail for illustration of noise elimination, and Interstate 405 and
90 are then denoised for verification.

5.1. Revised-BWF smooth result. Two parameters are required for the revised-BWF
algorithm which included cutoff frequency (CF) and order (Ord). In our study, elevation
data sampling rate was settled as 1.90× 10−3 which was calculated by 1 divided 528 (528
points were sampled per mile). After a series of experiments, we found that optimum CF
was bounded with scope between 2.00×10−5 and 1.00×10−6 (with interval of 1.00×10−6)
while limits of Ord was from 1 to 8. As trial and error (TE) is the method which tries all
possibilities to find optimum solution, it is suitable to find optimal revised-BWF param-
eter settings by searching all possible combinations of Ord and CF [39]. For each order
of revised-BWF, we used TF rule to exhaust CF settings by comparing its smooth result
against HSIS data. The revised-BWF settings and corresponding statistical indicators
are shown in Figure 2 and Table 1.

It can be seen from Figure 2 that statistical indicators do not change obviously after Ord
arrives 4. The first three rows of Table 1 demonstrated that the revised-BWF smoothed
data is getting closer to HSIS data with increase of order. The best performance of revised-
BWF is obtained when the Ord is 3 and CF is 1.40 × 10−5. The minimum MSD was
2.93×10−5, MAD was 4.27×10−3 and maximal Pearson’s r was 0.98 which depicted that
the revised-BWF smoothed elevation is close to HSIS data. The variation of statistical
indicators, in Figure 2, confirmed our above analysis. Thus, it is reasonable to say that
optimal revised-BWF smoothing elevation is acquired with parameter setting of Ord as 3
and CF as 1.40 × 10−5.
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Figure 2. Tendency of statistical indicators of with different parameter
settings for revised-BWF

Table 1. Statistics indices for the revised-BWF results for Interstate 5 segment

Ord CF MAD MSD Pearson’s r

1 1.00 × 10−5 5.06 × 10−3 4.99 × 10−5 9.58 × 10−1

2 1.30 × 10−5 4.28 × 10−3 3.18 × 10−5 9.73 × 10−1

3 1.40 × 10−5 4.27 × 10−3 2.93 × 10−5 9.76 × 10−1

4 1.40 × 10−5 4.35 × 10−3 3.00 × 10−5 9.75 × 10−1

5 1.40 × 10−5 4.43 × 10−3 3.12 × 10−5 9.74 × 10−1

6 1.40 × 10−5 4.49 × 10−3 3.23 × 10−5 9.73 × 10−1

7 1.40 × 10−5 4.55 × 10−3 3.32 × 10−5 9.72 × 10−1

8 1.40 × 10−5 4.60 × 10−3 3.40 × 10−5 9.72 × 10−1

Table 2. Statistical performance of denoising with revised-BWF and MA
for Interstate 5

Start

point

(mile)

End

point

(mile)

MSD Pearson’s r MAD

MA
revised-

BWF
MA

revised-

BWF
MA

revised-

BWF

0 8.67 1.81 × 10−4 2.93 × 10−5 8.54 × 10−1 9.76 × 10−1 9.00 × 10−3 4.27 × 10−3

5.2. Comparison between revised-BWF and MA. The revised-BWF smoothing
process illustrated above was used on Interstate 5 elevation data. In order to test validity
of the revised-BWF, MA was used to denoise on the elevation data of the same Interstate
5 segment. We tested MA performance with window size changing from 50 ft to 2000
ft. The optimal MA result was acquired when the window size was set to 500 ft. The
comparison of MA and BWF was displayed in Table 2 where the revised-BWF showed
better performance. The statistical indicators for both revised-BWF and MA were dis-
played in Table 2. It showed that the revised-BWF model obtained better smoothing
result than the MA method. Specifically, the MSD of the revised-BWF is 80% lower than
the counterpart of MA while MAD for revised-BWF is less than half of the MA. In terms
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(a) Raw elevation data

(b) Moving average smoothed elevation data

(c) Revised-BWF smoothed elevation data

Figure 3. Smoothing effects on elevation with revised-BWF and MA

of Pearson’s r, elevation smoothed by the revised-BWF is 14% closer to HSIS data than
MA-smoothed elevation.

In addition, we compared the performance of the two algorithms in removing the outliers
in the elevation data for the Interstate 5. Elevation distribution of original data, MA
smoothed data, the revised-BWF smoothed data are depicted from (a) to (c) of Figure 3.
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Figure 4. Smoothing effect on Grade with revised-BWF and MA

Different types of errors such as dips, choppy surface and spikes are found in the original
elevation data in Figure 3(a). After smoothing process with MA algorithm, the elevation
curve (see Figure 3(b)) is much flatter in comparison with Figure 3(a) and major outliers
were removed. However, part of elevation curve still presents some abnormal elevation
variation. With milepost ranging from 2.8 to 3.2 miles, the MA-elevation data still showed
abnormal fluctuation. However, Figure 3(c) provided evidence that the revised-BWF
discarded these anomalous data and substituted them with smoothing and reasonable
elevation data.

What is more, we further verified the performance of revised-BWF and MA by ex-
amining the grade curves of revised-BWF and MA depicted in Figure 4. Positive grade
in Figure 4 represents for uphill road segment while negative means downhill segment.
For simplicity, grade exceeding 9% or lower than −9% will be set as 9% and −9% re-
spectively. It can be seen that the grade distribution calculated by raw GE data do not
confirm to HSIS data (ground truth data). The grade curve obtained from MA elevation
data mainly fits with HSIS data. However, spikes can still be seen in the grade curve,
from MA-smoothed elevation data. Some grade values are still beyond reasonable ranges.
In another word, MA method fails to rule out all outliers in elevation data. Figure 4(c)
shows grade curve obtained from revised-BWF smoothed elevation data which indicates
the same data variation as HSIS data. Such grade distribution means the revised-BWF
method performs better in eliminating anomalies in elevation data than MA algorithm.

5.3. Validation of smoothing result. The revised-BWF has been applied to Interstate
405 and Interstate 90 for the purpose of performance comparison. We made use of the TE
rule to choose optimal parameter settings of revised-BWF for Interstate 405 and Interstate
90 too. After testing all combinations, we determined CF and Ord as 1.10 × 10−5 and 1
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for the sake of smoothing Interstate 405 elevation. The corresponding parameter settings
for Interstate 90 were 9.00 × 10−6 and 8 respectively. The smoothed elevation and grade
curves for both Interstate have been shown in Figure 5.

The raw Interstate 405 elevation curve, shown in Figure 5(a1), has many spikes which
were corrected by the revised-BWF method completely. Grade distributions of Interstate
405 obtained from raw GE elevation, revised-BWF and HSIS data shown in Figure 5(a2)
demonstrates that grade acquired from revised-BWF smoothed data is consistent well
with HSIS data which is considered as ground truth data. Similar result can be drawn
from Figure 5(b) which are smooth elevation and grade curves of Interstate 90. The
smoothed elevation and grade data for Interstate 405 and 90 show that revised-BWF
method can provide reliable elevation data.

(a1) Initial and revised-BWF (a2) Initial, HSIS and revised-BWF

smoothed elevation smoothed gradient

(a) Revised-BWF smooth result comparison for Interstate 405 segment

(b1) Initial and revised-BWF smoothed elevation (b2) HSIS and revised-BWF smoothed gradient

(b) Revised-BWF smooth result comparison for Interstate 90 segment

Figure 5. Smoothed results comparison for Interstate 405 and Interstate
90 segments

The experimental results show the robust and satisfied performance for the proposed
smoothing method. Roughly speaking, the revised-BWF ruled out sudden dips, bumps
and other outliers successfully in the raw elevation data for the three freeway segments.
Alternately, the denoised elevation data series, by the moving average method, still re-
vealed some obvious noises which is shown in the subplot (b) of Figure 3. The reasons for
the above phenomenon can be ascribed to the following aspects. First, the Butterworth
filter in the proposed smooth framework is good at eliminating the elevation outliers.
Factually, the revised-BWF tried to achieve the denoise result by obtaining the maximum
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smoothing elevation data series. Second, the moving average method employed adjacent
elevation to predict and obtain the smoothing result. Hence, the smoothing elevation is
still the noisy series when minor outlier exists in the neighbouring elevation data.

What is more, the grade distribution, obtained from revised-BWF smoothed elevation,
for Interstate 5, 90 and 405 segments agreed well with the ground truth data (HSIS data).
Although, the potential drawback of the basic BWF is that the gentle elevation fluctuation
may be ruled out incorrectly. The grade distributions demonstrate that the proposed
LEM mechanism alleviate the drawback in the basic BWF filter effectively. Specifically,
the LEM sharpened elevation variation for the segments’ grades at local extrema values.
The corresponding elevation values were enlarged or diminished by the LEM operation
based on the grade values. This step preserved minor elevation fluctuation from being
over-smoothed. In sum, the proposed elevation smooth framework achieved the aim of
getting rid of abnormal elevation data without losing the elevation details.

6. Conclusions. This research assessed the performance of LEM-aided BWF for ruling
out outliers of GE elevation data. The raw elevation data, extracted from the GE, showed
obvious typical outliers and anomalies. These outliers limit further usage of GE elevation
for both transportation engineers and researchers. Hence, we proposed a revised-BWF
smoothing algorithm to denoise the elevation data. The LEM was introduced to modify
the raw GE elevation data to avoid the BWF’s over-smooth drawback. The optimal
smoothing parameters for BWF were determined by the train-and-error rule. The revised-
BWF performance has been evaluated on typical freeway segments of Interstate 5, 405
and 90. For the sake of contrast, moving average was used to smooth the same segments
as those of the revised-BWF. The HSIS data was employed as ground truth data for
performance comparison. The results showed that statistical indicators of MSD and
MAD for the revised-BWF were much smaller than the counterparts of moving average.
The Pearson’s r for the revised-BWF were much bigger than that of the moving average.
The results suggest that BWF can remove noises existing in raw elevation data efficiently.
The method proposed by this research can help traffic management departments and
field researchers obtain high quality elevation dataset. With such data, future research
could concentrate on evaluating the influence of elevation on fuel consumption, traffic flow
capacity and so on.
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