
International Journal of Innovative
Computing, Information and Control ICIC International c⃝2017 ISSN 1349-4198
Volume 13, Number 6, December 2017 pp. 1915–1928

EFFICIENT STORAGE METHOD FOR MASSIVE REMOTE SENSING
IMAGE VIA SPARK-BASED PYRAMID MODEL

Mengzhao Yang1, Haibin Mei1, Yuhao Yang1 and Dongmei Huang1,2,∗

1College of Information
2Digital Ocean Research Institute

Shanghai Ocean University
No. 999, Huchenghuan Rd., Nanhui New City, Shanghai 201306, P. R. China

mzyang@shou.edu.cn; ∗Corresponding author: dmhuang@shou.edu.cn

Received May 2017; revised September 2017

Abstract. The amount of remote sensing (RS) image has grown considerably and the
Big Data era of images has truly emerged. Traditional storage and processing methods
cannot meet the requirements of the growing massive image data. So how to provide
effective storage and high-performance computation service has brought a great challenge
to the research community. In this paper, we present the efficient storage of massive
remote sensing image via Spark-based Pyramid model. Based on selection of rational
number of image layer via the maximum division layer algorithm, we design the Spark-
oriented distributed construction method. We use RDDs (Resilient Distributed Datasets)
on Spark system to represent data structures for metadata and ranks, and there is no need
to materialize these data structures across multiple iterations. Using our construction
method and RDDs caching technology, we design the efficient storage structure of RS
image data, which can achieve high-performance processing of massive RS image on Spark
system. Experimental results show that proper values can be obtained via optimization
parameters of image tile. Also throughput rate and construction performance are much
higher than MapReduce and Hadoop.
Keywords: Remote sensing image, Efficient storage, Pyramid model, Spark system

1. Introduction. Nowadays, the rapid development of remote sensing technology has
proliferated high-quality images that occupy larger and larger storage spaces. The remote
sensing community has recognized the challenge in processing large and complex satellite
datasets to derive customized products. Traditional image processing applications are
inadequate, so challenges including efficient storage and high-performance computation
service are produced and have to be solved urgently. Recently, cloud computing tech-
nologies [1, 2] such as MapReduce programming and Hadoop system are the open-source
software framework for efficient storage and distributed processing of massive image data,
which can resolve these problems and have become a research hotspot.

Several efforts have been made in the past few years towards efficient storage and
processing via high-performance cloud computing technologies. MapReduce is a great
parallel programming framework, and is suitable for handling Big Data such as massive
RS images. Firstly, for high-performance computing services, MapReduce can split the
large image datasets for distributed processing, which is amenable to a broad variety
of real-world tasks [3, 4]. Then based on MapReduce programming, parallel processing
of remote sensing images is presented and used to solve some problems within the field
of remote sensing application such as detection, classification and retrieval [5, 6, 7, 8].
Although MapReduce is an efficient solution to big data problem, there are a lot of
limitations. MapReduce is only a computing architecture, and has no sharing and storing

1915



1916 M. YANG, H. MEI, Y. YANG AND D. HUANG

files system. Then, Hadoop system is presented based on the MapReduce programming
model, which can provide processing, storage, and analysis of large amounts of distributed
and unstructured data [9]. Sharing, storing, and retrieving large files on a Hadoop cluster
can be undertaken by its distributed file system called HDFS (Hadoop Distributed File
System) [10]. Over recent years, Hadoop system has become a highly popular solution
to store and process a large amount of image data for analysis purpose. Cloud storage
from HDFS [11, 12] can increase the storage utilization ratio and improve the storage
performance by being aware of the quality of service of the DataNodes. Rajak et al.
[13] present the MapReduce framework for performing remote sensing data and storing
the output in HBase. The speedup and performance of their tests are shown by uilizing
Hadoop. Also extending MapReduce programming model [14], better performance tests
for processing large archives of Landsat images are performed with the Hadoop framework.
Later, based on HDFS storage method, classification and detection of large-scale RS
image [15, 16, 17] are implemented and speedup using these methods is improved greatly.
Recently, Park et al. [18] explore in-storage computing challenges and opportunities
for the Hadoop, and integrate a MapReduce system with devices of solid state drives
(SSD) to achieve a remarkable performance gain. On the other hand, massive video data
can also be stored efficiently by making use of HDFS [19], and the proposed approach
can detect moving objects and provide the accuracy coordinates via MapReduce for data
intensive computing. However, MapReduce and Hadoop system are suitable only for batch
processing jobs, and they do not do well for graph, iterative, incremental and many other
kinds. They read and write from disk and that slows down the processing speed. Thus
implementing interactive jobs and models in some special applications becomes impossible
due to the huge space and I/O consumption by frequent accessing jobs. Verma and Patel
[20] have discussed the working model and the programming frameworks via experimental
analysis, and found that Spark is many times faster than Hadoop HDFS on single node
implementation.

Spark runs on top of existing HDFS infrastructure to provide enhanced and additional
functionality. It takes MapReduce to the next level with less expensive shuffles in the data
processing. With capabilities like in-memory data storage and near real-time processing,
the performance can be several times faster than other Big Data technologies. Tradition-
ally, it runs applications in Hadoop clusters up to 100x faster in memory and 10x faster
on disk [21]. By reducing number of read/write cycle to disk and storing intermediate
data in-memory, Spark makes it possible for iterative machine learning algorithms and
incremental applications. Multiple K-means algorithms [22, 23] have been designed on
Spark platform to prove that they are popular for fast processing particularly where iter-
ations are involved. By incorporating strips of RS data with RDDs of Spark, Huang et al.
[24] simultaneously introduce in-memory parallel processing of massive RS data and take
a multi-tasking algorithm to indicate its great efficiency. More recently, in the efficient
storage field on Spark, an application-attuned dynamic data storage system is presented
[25], which aims to offer an affordable and efficient storage tier management. Based on
RDD and in-memory clustering computing model, the storage mechanisms of memory-
based distributed RDD [26, 27] are proposed, and dynamic space allocation strategy is
designed. They balance the asymmetric memory requirement among execution contain-
ers, and maximize the probability of the in-memory caching of RDD data so as to improve
the performance. Especially, in the Geo-spatial information science, Yu et al. [28] demon-
strate GeoSpark as an efficient cluster computing framework for storing and processing
large-scale spatial data at interactive performance. However, the Spark default serializa-
tion strategy has low utilization of cache which has greatly influenced the efficiency of
Spark task execution. For solving this problem of low computational efficiency caused by



EFFICIENT STORAGE METHOD FOR MASSIVE REMOTE SENSING IMAGE 1917

insufficient memory, Xia and Yang [29] propose an optimized serialized storage strategy,
which combine with the running cost of RDD and count of Action. Nowdays, the size
of one scene of satellite image data is even a few GB, and for example, mosaic remote
sensing images may be more than 10GB or 50GB [10]. If we divide the large size RS
image into too many small files, HDFS has to be modified to provide better storage per-
formance. How to achieve efficient storage of massive metadata to fit Spark system is still
a great challenge. Image Pyramid is a hierarchy model which is simple but effective to
represent the large-scale satellite image at different level of details (LOD). In this paper,
we focus on the construction of Spark-based Pyramid model to realize efficient storage of
RS image. Using the maximum division algorithm, we evaluate the rational number of
layer for image Pyramid construction. Based on RDD caching technique, we design the
Spark-oriented image Pyramid model, which can meet the requirements of the efficient
construction. Using our construction method, we realize encoding of image tiles and effi-
cient storage of RS image data. The results show that throughput rate and construction
performance via our method are much higher than traditional cloud computing system
such as MapReduce and Hadoop platform.

The rest of this paper is organized as follows. The Pyramid model to represent remote
sensing image is introduced in Section 2. Resilient distributed datasets caching technology
is described in Section 3. Spark-oriented image Pyramid model is designed in Section 4.
Results are compared in Section 5 and conclusions are drawn in Section 6.

2. The Pyramid Model to Represent Remote Sensing Image. In general, the
size of one satellite image data is three or four hundred MB, and even a few GB (such as
True Marble image data, each file is 1.5GB). In order to process the huge amount of data
quickly such as image view, image enhancement and image editing, the general hardware
configuration cannot meet the requirements. Image Pyramid model is an effective way to
solve this problem, and its core idea is to block and stratify a large-scale RS image.

Image Pyramid model is a hierarchy model to represent large-scale satellite image at
different LOD. The following is an example of a four-level Pyramid as shown in Figure
1. The Pyramid level refers to the number of reduced resolution datasets created when
the Pyramid is built. The base of the Pyramid is the original RS image whose resolution
is 1024 × 1024. Up the pyramid, the resolutions become smaller which are 512 × 512,
256× 256, and 128× 128 at the top of the pyramid. It can be concluded that the larger
the resolution of one image is, the more levels the pyramid that is built for the image has.

Figure 1. Pyramid model of an image



1918 M. YANG, H. MEI, Y. YANG AND D. HUANG

From Figure 1, the image of the Pyramid model is segmented into rectangular tiles,
where all tiles have the same pixel dimensions, e.g., 128× 128 pixels. A tile at one level
of the Pyramid will therefore map onto many tiles on the immediately higher resolution
level. That is, the tiles at the higher resolution level cover part of the geographical area of
the former. Using this representation, it is possible to recursively resolve certain regions
of a dataset in more detail than other regions.

3. Resilient Distributed Datasets Caching Technology. Spark uses RDD which
implements in-memory data structures used to cache intermediate data across a set of
nodes. Since RDD can be kept in memory, algorithms can iterate over RDD data many
times without accessing from disk. There are two ways to create RDD: parallelizing an
existing collection in your driver program, or referencing a dataset in an external storage
system, such as a shared filesystem, HDFS, HBase, or any data source offering a Hadoop
inputting format.

RDDs support two types of operations: transformations, which create a new dataset
from an existing one, and actions, which return a value to the driver program after running
a computation on the dataset. For example, Map is a transformation that passes each
dataset element through a function and returns a new RDD representing the results. On
the other hand, Reduce is an action that aggregates all the elements of the RDD using
some function and returns the final result to the driver program (although there is also a
parallel reduceByKey that returns a distributed dataset).

When you persist an RDD, each node stores any partitions of it that it computes in
memory and reuses them in other actions on that dataset (or datasets derived from it).
This allows future actions to be much faster (often by more than 10x). Caching is a key
tool for iterative algorithms and fast interactive use. RDD caching process is shown in
Figure 2.

Figure 2. RDD caching process

By default, each transformed RDD may be recomputed each time you run an action on
it. However, in this paper we persist an RDD in memory using the caching method, in
which case Spark will keep the elements around on the cluster for much faster access the
next time you query it. As shown in Figure 2, after a series of RDD-1 transformation,
RDD-N is got finally and stored into HDFS. In this transformation process, RDD-1 will
have an intermediate result. If the result is cached to memory, it will not calculate its



EFFICIENT STORAGE METHOD FOR MASSIVE REMOTE SENSING IMAGE 1919

previous RDD-0 when implementing transformation from RDD-1 to RDD-m, which leads
to substantial speedups on future reuse and computation.

4. Spark-Oriented Image Pyramid Model.

4.1. Construction flow of Spark-oriented image Pyramid. Traditional image Pyra-
mid construction is based on sampling operators to re-sample the images, which brings
a large amount of calculation and cannot control the image layering flexibly. However,
Spark-oriented image Pyramid is a more efficient model that utilizes the Pyramid orga-
nization, elastic datasets RDD and caching technology to deal with massive RS data.
We consider both layering and blocking for the image in the construction of image Pyra-
mid. According to the resolution of original RS image, the maximum number of layers
is obtained by the maximum division layer algorithm (MDLA). Meanwhile, original RS
image is divided into equal size tiles, and blank spaces of them are filled with null values.
Based on the maximum number of layers and tile metadata structures of each layer, tile
caching mechanism of multi-resolution hierarchical image is built finally. Figure 3 shows
the construction flow of Spark-oriented image Pyramid.

Figure 3. Construction flow of Spark-oriented image Pyramid

From Figure 3, after the original image data is read into library, it will be blocked and
stored in different storage DataNodes of HDFS. The different block data can be processed
as different RDDs, and further transformed to RasterRDD which can be directly used by
Spark. The new generated RasterRDD is the image data of a new layer and also is the
input data in the next layer. In this process, image data of each layer is blocked according
to Quadtree structure. After the maximum number of layers level is acquired, we pass
two parameters level and RasterRDD into the Sinklevel function of Ingest object to
build the Pyramid model. From the minimum resolution at the top of the image, image
tiles will be reconstructed and fused with the decrease of level value. When level ≤ 1, the
generated attribute data AttributeData and net data NetData in the building Pyramid
process are finally written into the HDFS.

4.2. Spark-oriented distributed construction method. Before using remote sensing
image data, it must be processed by each image for its large amount of data. After
processing, the size of the original image is not too large and the number of level is
generally not more than 20 layers when constructing the image Pyramid model. In this



1920 M. YANG, H. MEI, Y. YANG AND D. HUANG

paper, the zoom maximum level of the remote sensing image is influenced by the resolution
of the original image. Meanwhile, considering different width and height of image sizes,
the maximum number of layers needs to be calculated by two aspects: width and height.
The final number of layers is selected as the maximum value from two aspects. The
maximum division layer algorithm is described in Algorithm 1.

Algorithm 1 Maximum division layer algorithm

Require: coordinate range of original remote sensing image Extent; pixel value of remote
sensing image cellSize; image tile slice size tileSize.

Ensure: final number of division layers level.
1: Evaluate pixel size of remote sensing image: W0 ← Extent.width, H0 ←

Extent.height;
2: Evaluate resolution of the ith layer (1 ≤ i ≤ 20): Resw = Wi/(2

i × titleSize);
3: Stop evaluation and achieve the value i as maximum value of division layers, if

cellSize.width + k ≥ Resw (k is a correction constant). Or repeat Step 2, if
cellSize.width + k < Resw;

4: Reassign Wi ← Hi, and evaluate Resh according to Step 2 and Step 3;
5: Evaluate the maximum value level ← max(Resw, Resh);
6: Return final number of division layers level.

From Algorithm 1, we firstly evaluate the width and height of image according to
coordinate range of original RS image. Then the resolutions Resw and Resh in width
and height direction are acquired respectively while the terminate condition is checked by
comparing cellSize+ k and Res. Finally, final number of division layers level is obtained
by evaluating level ← max(Resw, Resh).

Based on the maximum division layer algorithm above, we design the Spark-oriented
distributed construction method, which depends on the resolution of the original remote
sensing image. The original image is divided by slicing and converted to the data struc-
ture rasterRDD, which can be directly processed by Spark. Spark-oriented distributed
construction method is described in Algorithm 2.

From Algorithm 2, we firstly acquire the range and cell value of inputting RS image.
Then final number of division layers level is acquired by using the maximum division layer
algorithm MDLA. Later rasterData is produced via checking the terminate condition
and distributed Pyramid model is established by calling SinkLevel function recursively.
Finally, attribute data attributeData and net data netData are produced and written
into the HDFS.

The data sets in the calculation process can be stored in memory by RDD caching
technique, which can reduce the number of accessing data, shorten the image computation
time, and improve the construction speed of Pyramid image model. Therefore, it can meet
the requirements of the efficient construction of image Pyramid model and fast processing.

4.3. Efficient storage strategy of massive image data. Traditional database storage
platforms such as ArcSDE or Oracle are quite complicated for massive RS image. We
use HDFS to store and manage image tiles, and do not need to build additional indexes
information, which can greatly improve accessing efficiency of massive images. Here we
mainly study the efficient storage way that is based on the distributed file system in
Spark. After splitting and blocking the original image, the image layer of Pyramid model
is generated by stitching it, and the pixels in each image layer are mapped to the original
image according to the mapping algorithm. In this paper, the tile data of each partition
image is not stored separately when processing image partition, but it is implemented



EFFICIENT STORAGE METHOD FOR MASSIVE REMOTE SENSING IMAGE 1921

Algorithm 2 Spark-oriented distributed construction method

Require: data source of remote sensing image source; image tile slice size tileSize.
Ensure: final number of hierarchical layers level; attribute data attributeData; meta

data metaData;
1: Read the partitioned image data into Spark and acquire range of remote sensing image

Extent;
2: Evaluate cell value of remote sensing image cellSize = Extent.width/cols;
3: Divide layers using the maximum division layer algorithm MDLA (tileSize, cellSize,

Extent.width);
4: Acquire image resolution Res at each layer and the number of division layer i;
5: If the terminal condition is satisfied, return i and implement Step 6, else i = i + 1,

and produce rasterData in the next layer and return Step 4;
6: Ingest data of current layer to Spark and input two parameters: level = i, rdd =

rasterRDD;
7: Call SinkLevel function to establish the distributed Pyramid model and judge

whether the level is larger than the terminate condition;
8: If level meets the condition, call SinkLevel function to produce next rasterRDD and

level = level − 1. Then call Sinklevel recursively;
9: If level does not meet the condition, the calculation is stopped. The produced at-

tribute data attributeData and net data netData are written into the HDFS;

with distributed storage for each layer of image after its partition. So tile data of a few
layers will be stored into one or more DataNodes on Spark system. Then the range of
image tile data is determined by encoding value SpatialKey and level number i. Finally,
data values in the metadata tiles are obtained. Figure 4 shows the coding process of the
Pyramid structure of image tiles.

Figure 4. Image tiles coding process

From Figure 4, we use the TMS (Tile Map Service) [30] algorithm to code the remote
sensing image tiles. TMS is the specification which is established by OSGeo (Open Source
Geospatial Foundation). The basic principle is cutting the map into many tiles in advance,
and storing tiles on the server according to the layer level. The hierarchical images can
be obtained by exploiting Quadtree method later. In this paper, the easy URL way is
used by TMS to request image tiles, and the request way with multiple parameters is not
considered here. Given an http : //URLTyphoonLayerName/z/x/y.png, URL is the
server net address, TyphoonLayerName is the layer name of Typhoon, z represents the
zoom level of image, and (x, y) shows the image tiles coordinates.

In the coding process, tile encoding value is regular in Cartesian coordinates system
and projection algorithm is also introduced into programming. So an accurate index
relationship is established between the encoding value and coordinates. Through latitude
and longitude of coordinates, tile encoding value can be obtained. On the contrary,



1922 M. YANG, H. MEI, Y. YANG AND D. HUANG

longitude interval can be also found via encoding value. This mapping process includes
following computation functions.

n = 2zoom − 1 (1)

where zoom is the level number of current layer.
Then x and y coordinates of image tile: xtile and ytile, can be acquired by the accurate

index relationship as follows.

xtile =

(
lon deg + 180

360

)
× n (2)

ytile =
(1− log(tan(lat deg) + sec(lat deg))/π)

2
× n (3)

where lon deg is the degree of longitude. lat deg is the degree of latitude.
On the contrary, using tile coding value, values of longitude and latitude can also be

got by Equation (2) and Equation (3). The computation process is as follows.

lon deg =
xtile

n
× 360− 180 (4)

lat deg = arctan

(
sinh

(
π ×

(
1− 2× ytile

n

)))
(5)

Therefore, in the process when constructing Pyramid model on Spark system, we can
determine the loaded image tiles according to the central coordinates and level number
of original remote sensing image. Similarly, when clicking on base map, we can also
determine the range of latitude and longitude according to the encoding value of image.
Finally coordinates of one pixel can be exactly fixed on the image tile.

The Pyramid model in this paper is constructed based on Spark framework, and its
purpose is to accelerate the process of image processing by Spark in-memory comput-
ing. We process the original remote sensing image as computable data organization and
store it in HDFS. Two types of data structures are produced after processing. One class
data is attribute data of JSON file format, and the other data is net data without head
information as shown in Figure 5.

Figure 5. Two types of data for distributed storage



EFFICIENT STORAGE METHOD FOR MASSIVE REMOTE SENSING IMAGE 1923

From Figure 5, the attribute data includes index data, image range data and metadata,
which is respectively stored in the 0th layer to the Nth layer. Net data includes data
offset and image net data information, which is respectively stored in the 0th layer to the
Nth layer. When constructing the image Pyramid model, these image data will be stored
in each node of HDFS.

5. Prototype System and Experiment Results.

5.1. Design of system framework. In our experiment, 8 Inspur servers are deployed
in OpenStack cloud platform. Using virtualization technology of OpenStack, we set up 2
control nodes of NameNode, SecondaryNameNode and 5 Worker nodes in the Minicom-
puter cluster. Server nodes are connected to each other by Gigabit Ethernet card and
each node contains 8 cores and 16G computing memory. Our cloud platform is equipped
with Ubuntu 14.04 system. Open source software includes Hadoop 2.6.3 and Spark 1.5.2.
Based on the construction algorithm of image Pyramid model, we develop interface li-
brary of algorithm, and realize the fast layering, slice blocking and parallel construction
of image Pyramid model. The overall architecture of the experiment is shown in Figure
6.

Figure 6. Design of our system framework

From Figure 6, design and implementation of our system is based on the distributed file
storage system. In the actual operation, firstly the large amount of remote sensing data is
stored in HDFS via accessing layer interface. Then, using the developed interface library,
remote sensing data is read into the Spark cluster for distributed computing. Finally, the
remote sensing image is processed and classified into two types of data, and restored in
the distributed file system for sharing and rendering in all the clients. In the process of
hierarchical and block calculation of the Spark mode, the generated intermediate image
data can be cached into the memory via Spark RDD caching method. So they can be
directly invoked by the client until the intermediate result is released by the memory.
There is no need for multiple I/O operations, which is the greatest advantage of the
Spark calculation mode.

5.2. Parameters optimization and selection of image tile. The performance results
are greatly influenced by two parameters, which are image data size and slice value of
image tile (tileSize). In order to verify the advantage of our method, slice value parameter
of image tile should be determined firstly. Without considering the transmission efficiency
of the LAN network environment, we design a Spark-oriented system of image processing
according to the overall structure of the experiment. We select three groups of RS images



1924 M. YANG, H. MEI, Y. YANG AND D. HUANG

as test pattern. These three groups of images are separated to the small size group with
images 1GB, the middle size group of images from 4GB, and the big size group of images
8GB. Comparisons of slice time and response time are given by selecting two different
parameters: data size and tileSize. The results of response time and slice time (the unit
of time is second) are respectively shown in Figure 7 and Figure 8.

Figure 7. Response time when selecting different data size and tileSize value

Figure 8. Slice time when selecting different data size and tileSize value

From Figure 7 and Figure 8, the larger the tile value is, the longer the response time is
and the shorter the slice time for the image tile is. At the same time, when the data size
of RS image increases, the slice time is increasing, but the response time of the client is
basically unchanged in the error range. Taking account of the rapid response requirement
of client, we should set value of tileSize parameter as small as possible, but too small
block is not easy for the client to give a coherent zoom. In addition, when the data size
of remote sensing image is large, it can improve the efficiency of image processing, but it
is not easy for the client to render. So we should select equilibrium parameter value to
meet both requirement of client response and image processing.

5.3. Performance comparison of image Pyramid construction. In order to test
distributed construction efficiency of image Pyramid model, we evaluate the throughput
rate when layering image and slicing tile, and compare their performance of image Pyramid
model using different methods. Based on optimization parameters of image tile, we set
tileSize = 256 and select large-scale Typhoon images of “Sepat” sent by FY-2C satellite
to verify our algorithm.

Firstly, the construction algorithm is respectively applied on Hadoop stand-alone mode
and Hadoop distributed mode (using MapReduce programming model). Data size in the
experiment is 100MB, 1GB, 10GB, 100GB respectively and comparison results are shown
in Figure 9 and Figure 10.

From Figure 9 and Figure 10, when the data size of RS image is small, the throughput
rate of stand-alone mode is lower than that of the distributed mode; however, construction
performance of its image Pyramid is faster than that of the distributed mode. When
the data size is increasing, both the throughput rate and construction performance in
distributed model of image Pyramid model are higher.



EFFICIENT STORAGE METHOD FOR MASSIVE REMOTE SENSING IMAGE 1925

Figure 9. Throughput rate comparison between two Hadoop modes

Figure 10. Construction performance comparison between two Hadoop modes

Secondly the algorithm is applied in Spark framework and Hadoop MapReduce pro-
gramming framework respectively, and test parameters in the experiment remain un-
changed. In order to show computation efficiency clearly, we increase data size up to
10GB, 100GB, 500GB and 1TB respectively. Experimental results are shown in Figure
11 and Figure 12.

From Figure 11 and Figure 12, when the image data size is small, both throughput rate
and construction performance show small difference between two kinds of frameworks
in the construction of RS image Pyramid model. However, when the image data size
is increasing, throughput rate and construction performance based on Spark are much
higher than Hadoop. Especially, when the data size reaches up to 1TB, the throughput
rate and construction performance will be improved by 40% ∼ 50% approximately.

Above all, in the first part test as shown in 5.2, we found that the algorithm in the dis-
tributed environment is not necessarily better over stand-alone mode, but when the image
data size is larger enough, the distributed environment has a faster efficiency. In the sec-
ond test as shown in 5.3, under two different distributed computing frameworks, we have
compared the advantages and disadvantages of the algorithm in the throughput rate and
construction performance. The experimental results show that the construction method



1926 M. YANG, H. MEI, Y. YANG AND D. HUANG

Figure 11. Throughput rate comparison between two modes

Figure 12. Construction performance comparison between two modes

of Spark-based Pyramid model has better efficiency and performance. This is because
RDD caching on Spark is much more efficient than other low-level caching approaches
such as OS buffer caches and HDFS caching, which can only reduce disk I/O. Especially
in the massive remote sensing image, our method can improve efficiency greatly.

6. Conclusion. We have implemented an efficient storage method for massive remote
sensing image via Spark-based Pyramid model. From experiment and results, we have
compared slice time and response time when selecting two different parameters: data
size and tileSize. Based on the comparison, we set suitable parameter of image tile and
give performance comparison of image Pyramid construction. The results show that
throughput rate and construction performance are much higher. Especially, when the
data size of remote sensing image is massive, performance of our method is more obvious
over Hadoop and MapReduce, which shows the achievement of this proposed method.
The main causes of these speedups are in-memory computation via RDD caching method
and efficient storage strategy of massive image data.

We have demonstrated that we have achieved some good advantages in throughput rate
and construction performance, but many exciting directions remain to be explored. In



EFFICIENT STORAGE METHOD FOR MASSIVE REMOTE SENSING IMAGE 1927

future work, we plan on implementing some practical applications such as image detection,
image retrieval and image classification based on our storage method of Spark-based image
Pyramid model.

Acknowledgment. This work was supported by the National Natural Science Foun-
dation of China (No. 41671431), the Ability Construction Project in Local University
of Shanghai Science and Technology Commission (No. 15590501900), the Youth Science
and Technology Project of Shanghai Ocean University (No. A2-0203-00-100216), and the
Doctoral Start-up Fund for Scientific Research of Shanghai Ocean University (No. A2-
0203-00-100346).

REFERENCES

[1] C. A. Lee, S. D. Gasster, A. Plaza and C. I. Chang, Recent developments in high performance com-
puting for remote sensing: A review, IEEE Journal of Selected Topics in Applied Earth Observations
& Remote Sensing, vol.4, no.3, pp.508-527, 2011.

[2] D. Fustes, D. Cantorna, C. Dafonte, A. Iglesias and B. Arcay, Applications of cloud computing and
GIS for ocean monitoring through semote sensing, Smart Sensing Technology for Agriculture and
Environmental Monitoring, Lecture Notes in Electrical Engineering, vol.146, pp.303-321, 2012.

[3] J. Dean and S. Ghemawat, MapReduce: Simplified data processing on large clusters, Conference on
Symposium on Operating Systems Design & Implementation, pp.107-113, 2004.

[4] J. Dean, Experiences with MapReduce, an abstraction for large-scale computation, International
Conference on Parallel Architecture and Compilation Techniques, pp.1-10, 2006.

[5] E. B. Tesfamariam, Distributed Processing of Large Remote Sensing Images Using MapReduce – A
Case of Edge Detection, LAP LAMBERT Academic Publishing, 2011.

[6] Z. Lv, Y. Hu, H. Zhong, J. Wu, B. Li and H. Zhao, Parallel K-means clustering of remote sensing
images based on MapReduce, International Conference on Web Information Systems and Mining,
pp.162-170, 2010.

[7] S. Venkatraman and S. Kulkarni, MapReduce neural network framework for efficient content based
image retrieval from large datasets in the cloud, International Conference on Hybrid Intelligent
Systems, pp.63-68, 2013.

[8] M. H. Almeer, Cloud Hadoop map reduce for remote sensing image analysis, Journal of Emerging
Trends in Computing & Information Sciences, vol.3, no.4, pp.637-644, 2012.

[9] X. Pan and S. Zhang, A remote sensing image cloud processing system based on Hadoop, IEEE
International Conference on Cloud Computing and Intelligence Systems, pp.492-494, 2012.

[10] F. C. Lin, L. K. Chung, C. J. Wang, W. Y. Ku and T. Y. Chou, Storage and processing of massive
remote sensing images using a novel cloud computing platform, Giscience & Remote Sensing, vol.50,
no.3, pp.322-336, 2013.

[11] G. H. Song, J. N. Chuai, B. W. Yang and Y. Zheng, QDFS: A quality-aware distributed file stor-
age service based on HDFS, IEEE International Conference on Computer Science and Automation
Engineering, pp.203-207, 2011.

[12] A. Patel and M. A. Mehta, A novel approach for efficient handling of small files in HDFS, IEEE
Advance Computing Conference, pp.1258-1262, 2015.

[13] R. Rajak, D. Raveendran, M. C. Bh and S. S. Medasani, High resolution satellite image processing
using Hadoop framework, IEEE International Conference on Cloud Computing in Emerging Markets,
pp.16-21, 2015.

[14] R. Giachetta, A framework for processing large scale geospatial and remote sensing data in MapRe-
duce environment, Computers & Graphics, vol.49, no.C, pp.37-46, 2015.

[15] I. Chebbi, W. Boulila and I. R. Farah, Improvement of satellite image classification: Approach based
on Hadoop/MapReduce, International Conference on Advanced Technologies for Signal and Image
Processing, pp.31-34, 2016.

[16] B. C. Sunny, R. Ramesh, A. Varghese and V. Vazhayil, Map-reduce based framework for instrument
detection in large-scale surgical videos, IEEE International Conference on Control Communication
& Computing India, pp.606-611, 2016.

[17] M. Z. Yang, H. B. Mei and D. M. Huang, An effective detection of satellite image via K-means clus-
tering on Hadoop system, International Journal of Innovative Computing, Information and Control,
vol.13, no.3, pp.1037-1046, 2017.



1928 M. YANG, H. MEI, Y. YANG AND D. HUANG

[18] D. Park, J. Wang and Y. S. Kee, In-storage computing for Hadoop MapReduce framework: Chal-
lenges and possibilities, IEEE Trans. Computers, vol.PP, no.99, pp.1-14, 2016.

[19] J. Parsola, D. Gangodkar and A. Mittal, Efficient storage and processing of video data for moving
object detection using Hadoop/MapReduce, International Conference on Signal, Networks, Com-
puting, and Systems, pp.137-147, 2017.

[20] J. P. Verma and A. Patel, Comparison of MapReduce and spark programming frameworks for big
data analytics on HDFS, International Journal of Computer Science & Communication, vol.7, no.2,
pp.80-84, 2016.

[21] J. L. Reyes-Ortiz, L. Oneto and D. Anguita, Big data analytics in the cloud: Spark on Hadoop vs
MPI/OpenMP on Beowulf, Procedia Computer Science, vol.53, no.1, pp.121-130, 2015.

[22] T. Sharma, V. Shokeen and S. Mathur, Multiple K means++ clustering of satellite image using
Hadoop MapReduce and Spark, International Journal of Advanced Studies in Computer Science
and Engineering, vol.5, pp.23-31, 2016.

[23] I. Kusuma, M. A. Ma’Sum, N. Habibie, W. Jatmiko and H. Suhartanto, Design of intelligent K-means
based on Spark for big data clustering, IEEE International Workshop on Big Data and Information
Security, pp.89-95, 2017.

[24] W. Huang, L. Meng, D. Zhang and W. Zhang, In-memory parallel processing of massive remotely
sensed data using an Apache Spark on Hadoop YARN model, IEEE Journal of Selected Topics in
Applied Earth Observations & Remote Sensing, pp.1-17, 2016.

[25] K. R. Krish, B. Wadhwa, M. S. Iqbal, M. M. Rafique and A. R. Butt, On efficient hierarchical storage
for big data processing, IEEE International Symposium on Cluster, Cloud and Grid Computing,
pp.403-408, 2016.

[26] X. J. Tan, C. S. Deng and X. G. Dong, SparkDE: A paralleled version differential evolution based
on RDD model in cloud computing, Computer Science, vol.43, no.9, pp.116-119, 2016.

[27] H. H. Wang, Research on the In-Memory Data Management Technology on Spark Data Processing
Framework, Master Thesis, Beijing University of Technology, 2016.

[28] J. Yu, J. Wu and M. Sarwat, A demonstration of GeoSpark: A cluster computing framework for
processing big spatial data, IEEE the 32nd International Conference on Data Engineering, pp.1410-
1413, 2016.

[29] Y. Xia and F. Yang, Research on serialization storage strategy based on Spark cluster, The 5th
International Conference on Machinery, Materials and Computing Technology, pp.454-459, 2017.

[30] D. Xu, Z. Yuan, T. Yu, D. Xie and F. Zheng, The research of remote sensing image segmentation and
release which are based on Tile Map Service, International Symposium on Geomatics for Integrated
Water Resources Management, pp.1-4, 2012.


