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Abstract. The present paper investigates a design method for a one-degree-of-freedom
control system with proportional-integral-derivative (PID) compensation. In the control
system, the tracking performance and stability are in a trade-off relationship, and the
servo performance and the regulation performance are also in a trade-off relationship de-
pending on the design of the tracking performance. The present paper proposes a simple
design method of the PID parameters. In the proposed system, the PID parameters are
decided such that the tracking performance is optimized subject to the assigned robust
stability. Furthermore, the tracking performance is seamlessly adjusted between the servo
performance and the regulation performance. The effectiveness of the proposed method
is demonstrated through numerical examples.
Keywords: PID control, Sensitivity function, Robust stability, Servo performance, Reg-
ulation performance, Trade-off design

1. Introduction. The proportional-integral-derivative (PID) control [1, 2, 3] has been
widely used in industry because its performance is adjusted intuitively based on user
experiments, even if the control structure is simple. Furthermore, the meanings of the
control parameters are clear, i.e., proportional, integral, and derivative compensation and
denoted by P, I, and D, respectively. Since the control performance of the PID control is
decided by the PID parameters, numerous studies have examined PID parameter tuning.

The present study discusses a design method for controlling a one-degree-of-freedom
(1DOF) system. In a 1DOF system, trade-off design is necessary because multiple per-
formance characteristics can change simultaneously based on the design of the controller.
The trade-off relationship between the tracking performance and stability is well known.
If the stability of a control system is insufficient, the control system will become unstable
due to even a slight plant perturbation. On the other hand, poor tracking performance
is obtained when stability is ensured too much.
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Since the stability margin is adjusted using the sensitivity function, the stability margin
is assigned by designing the maximum value of the sensitivity function [4]. Using the
sensitivity function, the PID parameters are decided such that the tracking performance
is optimized, in which case the assigned stability margin is achieved [5, 6, 7, 8]. In order
to obtain intermediate performance for a servo with regulation optimization, Arrieta and
Vilanova proposed an intermediate design method [9, 10]. Using this design method,
the PID parameters are decided by selecting servo-optimized, regulation-optimized, or
intermediate performance.

In the present study, we propose a new trade-off design method. In the proposed
method, the tracking performance is optimized subject to the assigned stability margin.
Moreover, the tracking performance is designed between the servo performance and reg-
ulation performance. As a result, the optimal PID parameters are decided seamlessly
between the reference response and the disturbance response.

This paper is organized as follows. Section 2 presents a control system and the control
objective, and Section 3 presents the proposed control system. In Section 4, we present
and analyze numerical simulations using our design strategy. Concluding remarks are
presented in Section 5.

2. Problem Formulation. Consider the PID control system illustrated in Figure 1. In
this system, the controlled plant is a first-order plus dead-time model, which is given as
follows:

P (s) =
K

Ts + 1
e−Ls (1)

where K, T , and L are the gain, time-constant, and dead-time, respectively. The controller
is represented by a PID control law as follows:

U(s) = Kp

{(
1 +

1

Tis

)
E(s) −

(
Tds

Tds/N + 1

)
Y (s)

}
(2)

E(s) = R(s) − Y (s)

where U(s), Y (s), and R(s) are the control input, plant output, and reference input,
respectively, and Kp, Ti, and Td are the proportional gain, integral time, and derivative
time, respectively. Moreover, N denotes the derivative filter constant and is set to 10, as
is the usual practice in industry. This control law is rearranged as follows:

U(s) = Cr(s)R(s) − Cy(s)Y (s) (3)

Cr(s) = Kp

(
1 +

1

Tis

)
(4)

Cy(s) = Kp

(
1 +

1

Tis
+

Tds

Tds/N + 1

)
(5)

Figure 1. Block diagram of a PID control system
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The tracking performance is evaluated using the integral absolute error (IAE), which
is defined as follows:

J =

∫ ∞

0

|e(t)|dt (6)

e(t) = r(t) − y(t)

Robust stability is guaranteed using the following sensitivity function:

S(s) =
1

1 + P (s)Cy(s)
(7)

The relationships between the maximum value of the sensitivity function, Ms, and the
gain gm, and the phase margin, ϕm, respectively, are as follows [11]:

gm ≥ Ms

Ms − 1
(8)

ϕm ≥ 2 arcsin

(
1

2Ms

)
(9)

where Ms is defined as:

Ms
△
= max

ω
|S(jω)| = max

ω

1

|1 + P (jω)Gy(jω)|
(10)

Although the stability margin is broadened with small Ms, since the relationship be-
tween the tracking performance and the stability margin is a trade-off relationship, the
recommended range of Ms is from 1.4 to 2.0 [3]. The gain and the phase margins for
Ms = 1.4, 2.0 are given as follows:

• Ms = 1.4 : gm ≥ 3.5, ϕm ≥ 41◦

• Ms = 2.0 : gm ≥ 2.0, ϕm ≥ 28◦

In order to achieve the assigned robust stability, the PID parameters are decided such
that the desired value of Ms is obtained, i.e., the following constraint condition is satisfied
[7]: ∣∣Ms − Md

s

∣∣ = 0 (11)

where Md
s denotes the desired value of Ms. Therefore, the performance index Equation (6)

is optimized such that the constraint is satisfied.
The objective of the present study is to obtain a simple design method of the PID

parameters such that the performance function is optimized subject to the desired robust
stability.

3. Controller Design Based on a Trade-off Relationship.

3.1. Servo/regulation tuning. The tuning points for the reference/disturbance opti-
mization are shown in Figure 2. In this figure, Jr on the vertical axis indicates the eval-
uation of the reference response, and Jd on the horizontal axis is that of the disturbance
response. Moreover, Jr

∗ denotes the evaluation on the reference response optimization
design, and Jd

∗ denotes the evaluation on the disturbance response optimization design.
Hence, the meanings of Jr

r , Jd
r , Jr

d , and Jd
d are as follows:

• Jr
r : Reference response evaluation on the reference response optimization design

• Jd
r : Reference response evaluation on the disturbance response optimization design

• Jr
d : Disturbance response evaluation on the reference response optimization design

• Jd
d : Disturbance response evaluation on the disturbance response optimization design
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On the other hand, Jrd
∗ denotes the optimization design of both the reference and dis-

turbance responses, and hence, Jrd
r and Jrd

d are the reference and disturbance response
evaluations on the optimization design of the reference and disturbance responses, respec-
tively.

In a 1DOF system, since Jr and Jd are not independently optimized, the ideal point
described in Figure 2 is not achieved. Therefore, the servo performance Jr and the
regulation performance Jd must be mediated based on the trade-off between the reference
optimization Jr and the disturbance optimization Jd [5, 6]. An intermediate tuning
between Jr with Jd has been proposed [9, 10]. In this method, the performance index for
the intermediate design is defined as follows:

Jrd =
√

(Jrd
r − Jo

r )2 + (Jrd
d − Jo

d)2 (12)
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where Jo
r denotes the optimal evaluation of the reference response, and Jo

d denotes that
of the disturbance response. Here, Jr

r is nearly equal to Jo
r , and Jd

d is nearly equal to Jo
d .

The intermediate tuning Jrd corresponds to the equality weighting described in Figure 2.
In order to interpolate the trade-off between servo/regulation optimization and obtain

a seamless design method, the proposed performance index is defined as follows:

Jα
rd =

√
α(Jrd

r − Jo
r )2 + (1 − α)(Jrd

d − Jo
d)2 (0 ≤ α ≤ 1) (13)

In Equation (13), α = 0 corresponds to the disturbance response optimization, and α = 1
corresponds to the reference response optimization. Moreover, Equation (13) with α = 0.5
is comparable to Equation (12), and hence, the proposed performance index includes the
conventional trade-off design method [9, 10]. The new trade-off design image using α is
shown in Figure 3.

3.2. Simple decision of PID parameters.

3.2.1. Optimal decision method. In the present study, we propose a simple decision method
of the PID parameters for a normalized system. The use of the transformation ŝ = Ts
provides a normalized form of the controlled plant and the PID compensators as follows:

P̂ (ŝ) =
e−τ ŝ

ŝ + 1
(14)

Ĉr(ŝ) = κp

(
1 +

1

τiŝ

)
(15)

Ĉy(ŝ) = κp

(
1 +

1

τiŝ
+

τdŝ

τdŝ/N + 1

)
(16)

where the normalized PID parameters are defined as follows:

κp = KpK, τi =
Ti

T
, τd =

Td

T
, τ =

L

T
(17)

where κp, τi, τd, and τ are the normalized gain, normalized integral time, and normalized
dead-time, respectively.

For the normalized control system, the normalized PID parameters optimized subject to
the stability margin constraint, in which Md

s = 1.4, 1.6, 1.8, and 2.0. In the present study,
the optimal parameters are obtained numerically with the MATLAB function fmincon1.
In Figure 4, the calculated κp for each τ , α, is plotted by a ◦ symbol, where τ is set
to be from 0.2 to 1.2 in 0.1 increments, and α is also set to be from 0 to 1.0 in 0.1
increments. Moreover, τi and τd are plotted in Figure 5 and Figure 6, respectively. Using
the obtained data, the decision rule of the normalized PID parameters is proposed. In the
present study, the calculated normalized parameters are approximated by the following
equations:

κp = a0(α) + a1(α)τa2(α) (18)

a0(α) = x00 + x01α, a1(α) = x10 + x11α, a2(α) = x20 + x21α

τi = b0(α) + b1(α)τ + b2(α)τ 2 + b3(α)τ 3 (19)

b0(α) = y00 + y01α, b1(α) = y10 + y11α, b2(α) = y20 + y21α, b3(α) = y30 + y31α

τd = c0(α) + c1(α)τ (20)

c0(α) = z00 + z01α, c1(α) = z10 + z11α

where the coefficients for each Md
s are given in Table 1.

1Mathworks, Inc.
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Figure 4. Optimal κp for τ and α and the approximated surface
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Table 1. xij, ykl and zmn in Equation (18)-Equation (20) for Md
s

Md
s 1.4 1.6 1.8 2.0

x00 0.1521 0.2484 0.3235 0.3635

x01 0.04199 0.01711 −0.02680 −0.06098

x10 0.4659 0.5794 0.6641 0.7586

x11 −0.02869 −0.008122 0.03400 0.04427

x20 −0.9807 −1.011 −1.0395 −1.035

x21 −0.03788 −0.02278 0.02127 0.03574

y00 0.2027 0.08962 0.1040 0.07031

y01 0.7444 1.025 1.115 1.203

y10 1.718 2.180 2.019 2.106

y11 −1.399 −1.904 −1.764 −1.880

y20 −1.435 −1.742 1.410 −1.440

y21 1.304 1.759 1.410 1.507

y30 0.4870 0.5874 0.4268 0.4591

y31 −0.4421 −0.5908 −0.4268 −0.4738

z00 0.001796 0.02239 0.02739 0.02729

z01 −0.013732 −0.02483 −0.02678 −0.02991

z10 0.3695 0.2929 0.2624 0.2490

z11 −0.05715 −0.02371 0.02220 0.07068
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3.2.2. Confirmation of the assigned stability and the trade-off design. The reliability of
the proposed method is confirmed by two comparisons: a comparison of the optimized
normalized parameters and the calculated normalized parameters using Equation (18)
through Equation (20), and a comparison of the assigned Md

s and the actual calculated
Ms. The achieved trade-off performance is also shown, and the feature of the proposed
method is shown.

The normalized parameters κp, τi, and τd calculated using Equation (18) through Equa-
tion (20) are shown as surfaces on Figure 4, Figure 5, and Figure 6, respectively. These
surfaces are calculated by not only the preliminarily used τ and α for obtaining the ◦
symbols in Figure 4, Figure 5, and Figure 6, but also their interpolated values among
the preliminarily used τ and α. Here, Figure 4, Figure 5, and Figure 6 show that the
calculated surfaces are well approximated by the optimized points.

The obtained Ms corresponding to the assigned Md
s is shown in Figure 7, where 0.2 ≤

τ ≤ 1.2 and 0 ≤ α ≤ 1. The maximum errors of the assigned Md
s with respect to the

actual obtained Ms are shown in Table 2. Since the errors are quite small, the assigned
stability margin is achieved using the proposed design method.

The trade-off performance of the proposed method is confirmed. The trade-off relation-
ship between Jr and Jd is shown in Figure 8, where τ is 1.2, and α is changed from 0 to
1.0 in 0.05 increments. This figure indicates that the trade-off design between Jr and Jd

is accomplished by designing α.
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Table 2. Maximum error of
∣∣Ms − Md

s

∣∣
Md

s 1.4 1.6 1.8 2.0

max
∣∣Ms − Md

s

∣∣ 0.0094 0.013 0.028 0.034
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4. Numerical Examples. Consider the following controlled plant:

P (s) =
2.5

19.6s + 1
e−4.9s (21)

where the reference input is set as a unit step function, and the control input is disturbed
by the signal generated by a unit step function after 150s.

4.1. Performance comparison for α. The simulation results with respect to Md
s = 1.4,

1.6, 1.8, and 2.0 are shown in Figure 9 through Figure 12, where α is set to 0, 0.25, 0.5,
0.75, and 1.0. These figures show that the control performance improves as Md

s increases.
Furthermore, the trade-off design between the tracking performance and the regulation
performance is adjusted by tuning α.

4.2. Performance comparison for Md
s . The robust stability for Md

s is confirmed. The
controlled plant is changed to P̃ (s) after 200s.

P̃ (s) =
5.1

21.5s + 1
e−6.2s (22)

Using α = 0.25, the PID parameters are designed based on P (s) for Md
s = 1.4, 1.6, 1.8,

2.0, respectively. The simulation results are shown in Figure 13. It can be seen that the
transient response is superior with large Md

s , whereas the robust margin is large with
small Md

s .

5. Conclusions. In the present study, we proposed a simple tuning method of a PID
control system. In the proposed method, the trade-off between the tracking performance
and the regulation performance is adjusted seamlessly. Since the robustness for plant
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perturbation is assigned using the sensitivity function, the robust stability is designed
based on the accuracy of the plant model. Our future work is an extension for a second-
order system.
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