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Abstract. Fault-tolerant control systems have been researched with the objective of in-
creasing reliability and safety in process control. Thus, knowledge on the effects of possible
faults on the referred plant or process is necessary for designing a control system which
maintains its functionality even with the occurrence of faults. In this report, the appli-
cation of fault handling characteristics with a nonlinear model-based predictive control
(NMPC) strategy applied to a robot manipulator model is presented. The utilized NMPC
strategy employs a nonlinear prediction model, obtained by training a fully connected
cascade artificial neural network (FCC-ANN). The optimization task is solved at each
sampling period with the bound optimization by quadratic approximation (BOBYQA)
method. Tests by means of numeric simulations were performed, with two different ap-
proaches of fault handling added to an NMPC controller. The first is through model
adaptation and the second using a robust approach by worst case optimization. The re-
sults show that both methods improve the closed-loop response of the control system in
comparison to NMPC without a specific fault handling strategy for a 50% actuator torque
loss fault.
Keywords: Faults, NMPC, Robot manipulator, Adaptive control, Robust control

1. Introduction. Practically every control system is subject to the occurrence of faults,
such as sensor and actuator faults or even mechanical wearing of parts. Considering a
controller designed to operate in nominal process conditions, faults might lead to perfor-
mance loss or even instability. In many cases, the task to be performed and the safety of
the operation can be compromised [1].

Fault detection and fault-tolerant control have been extensively researched for robot
manipulators. Dixon et al. [2] treated fault detection for robot manipulators (RMs) sub-
ject to parametric uncertainty. In such work, the authors mention that RMs are often
employed in hazardous or remote places, as in space, underwater and radioactive envi-
ronments, and thus, fault tolerance is applied to minimizing the risks involved. Another
fault-tolerant approach for RMs was presented by She et al. [3], for space applications.
Since the RMs sent to space are designed to perform many different tasks and the cost
of maintaining a robot in space is very high, fault tolerance is essential to ensure the
robot effectiveness. Ma and Yang [4] state that fault tolerance in RMs is necessary for
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avoiding the possibilities of damage in the hardware and injuries to people close to the
robot. Additionally, a gas welding application with RM and fault detection can be found
in [5].

The possible fault modes depend on the process characteristics. In some cases, logical
approaches or methods based on discrete event systems theory [6] can be used to detect
and identify the occurrence of a determined fault. Once a fault is detected, the controller
is able to take decisions as restarting or locking the system or executing the task in an
alternative way. At this point, it is important to differentiate events that cause total
loss of functionality (failure) or relative performance loss (fault) [7]. Fault-tolerance is a
characteristic of controllers which are able to deal with effects caused by system faults,
maintaining stability and reliability or even reducing dynamic performance loss [8].

One of the main forms of fault treatment starts with the identification of expected
patterns from a determined situation. In the area of multiphase motor control, as an
example, attention is typically paid to the detection of an open phase condition, which
creates characteristic variations in direct and quadrature axis currents [9]. Regarding
control of robot manipulators, joint lock or mechanical wear, among others conditions, are
observed. When it is possible to determine the characteristics created by the occurrence
of a fault, it is said that such fault has a signature, which can be used to identify it [10].

Faults can be diagnosed through redundancy, using more than one source for the same
information. Redundancy can be:

• physical, through the use of multiple sensors for a measured variable, or
• analytical, in which a representative process model is used to generate error signals,

namely residuals, between the state variables of the real process and the process
simulated with the model.

Physical redundancy seems, at first, more reliable and simple since it is not necessary
to define and tune a representative model. However, aspects as sensor calibration, main-
tenance, cost, noise and increased volume with additional sensors and necessary hardware
for interrogating them are drawbacks of physical redundancy [7]. Analytical, or model-
based, redundancy, in its turn, is presented as a cheaper solution, which does not demand
additional hardware, provided that the utilized microcontroller or processor is sufficient
to implement the state estimation algorithms. Figure 1 shows, in a simplified form, the
block diagram of an analytical fault identification and treatment system. The control
signal applied to the process is simultaneously applied to a reference model. The error
between the reference model and the real process output, namely residual, is applied to
a residual analysis block, which identifies the type and cause of the fault. Finally, the
controller or supervisory system is updated and adapted using the fault information. In
the present work, an active fault treatment mechanism was used, which employed an algo-
rithm for estimating the actuator fault magnitude so that the error between the reference
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Figure 1. Model-based fault identification and treatment system based on [7]
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model and the real process is minimized. Also, a robust approach with two reference
models was used in order to minimize NMPC cost function in the worst case.

A difficulty found with the use of analytical redundancy in dynamic control systems
is the occurrence of faults which do not necessarily cause abrupt changes in the process
behavior. However, such type of fault may result in performance and safety problems
if not treated, as already mentioned before [1, 11]. The gradual effect of such faults
makes the fault identification process more difficult, since the process is also subject
to modeling errors, noise and environmental conditions. Thus, for each process, it is
necessary to perform an analysis of which method to use and how the residuals are going
to be generated and classified.

With the diagnostic and identification system working, the decisions to design and
adjust the controller must be made. Within fault-tolerant control context, two main
approaches are known:

• robust control: the control algorithm is designed considering a set of possible or
expected faults, using previous knowledge on the effect of such faults in the sys-
tem; therefore, a controller capable of settling all the possible undesirable effects is
sought to be designed, with the drawback of generally slower and more conservative
dynamics;
• adaptive control: using information on the occurring fault, the controller is automat-

ically adjusted or modified according to the new dynamic behavior of the controlled
process.

Among model-based control methods, model-based predictive control (MPC) has the
advantages of considering constraints when generating the control actions and, for being
model-based, it can be directly adapted from information on new conditions of the pro-
cess [17]. The main idea in MPC techniques is to minimize a cost function, seeking to
optimize the control loop performance [12]. In the present work, two strategies based on
nonlinear MPC (NMPC), to attenuate the effect caused by an actuator power loss fault in
a two-degrees-of-freedom (2DOF) RM, were tested, being one based on adaptive control
and the other on robust control. The utilized prediction model was a fully connected cas-
cade (FCC) artificial neural network (ANN), trained as a one-step-ahead predictor and
executed recurrently for N -steps-ahead predictions.

The contributions of this work are to present an NMPC which can be tuned to control
an RM with the same performance in different operating regions. Also, the prediction
model is an FCC neural network, which is efficient for mapping nonlinear characteristics
with fewer synaptic connections than the traditional MLP networks. Regarding to fault
tolerance, as NMPC is highly depending on the prediction model, this work presents
two forms of dealing with an actuator fault without relying on model linearization, thus
exploiting the robot nonlinear dynamics. The main contribution for fault tolerant NMPC
is to provide an adaptive and robust control algorithm which is easy to implement and is
suitable with the ANN model and the optimization method BOBYQA. Also, it is worth
noticing that BOBYQA does not depend on the cost function derivatives, which makes
it practical for dealing with nonlinear models such as the FCC.

This paper is organized as follows: in Section 2 the basic concepts on MPC, including
an expansion for a nonlinear model (NMPC) are presented; in Section 3 a nonlinear 2DOF
RM model and simulation results from the application of an NMPC controller with and
without the occurrence of a 50% power loss in one of the two actuators, without using
any fault-tolerant approaches are presented. The employed fault-tolerant approaches are
presented in Section 4. Simulation results are presented in Section 5. Concluding remarks
are discussed in Section 6.
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2. Model-Based Predictive Control (MPC). MPC is the name given to a family
of digital control algorithms which use an explicit mathematical model to represent the
process dynamics and predict the process future behavior. Through mathematical analysis
of the future behavior, an optimization algorithm is employed to find an optimum sequence
of variations in the control actions. For measuring how good a control sequence is, a cost
function is evaluated under a possible set of physical and operational constraints of the
process. The cost function usually takes account of a compromise between control efforts
(the energy employed in the control actions) and reference tracking errors [12, 13], as
shown in Equation (1) [15]. Y is a vector with N predicted future output samples,
obtained with the application of a vector ∆U containing M control action variations. N
and M are named prediction and control horizons, respectively, and must be designed
according to the available processing time at each sampling period and on modeling
precision. Q̄ is a weighthing matrix for future tracking errors between the predicted output
vector and the future reference vector Yref while Γ̄ is used to weight control efforts.

Jc[Y (∆U), ∆U ] = (Y − Yref )
T Q̄(Y − Yref ) + ∆U Γ̄∆U (1)

As shown in Equation (1), it is necessary to calculate Y as a function of ∆U , being ∆U
generated iteratively by a search algorithm1. In the case of linear models, a state space
model or even a sequence of step response sample can be used as prediction models [12].
A more detailed explanation of MPC techniques can be found in [21].

2.1. Nonlinear FCC-ANN model. While many successful applications of MPC with
linear prediction models can be found in literature, processes with strong nonlinearities
require different approaches in order to achieve high dynamic performance. In this work a
nonlinear model was considered, with a trained ANN as a nonlinear prediction model [15].
More specifically, the ANN has an FCC topology, trained as a one step ahead predictor,
using SuperNN library [16], and executed recurrently during cost function evaluations.
The search for the optimal ∆U is performed through BOBYQA (bound optimization by
quadratic approximation) optimization algorithm, using NLopt library [18].

The use of ANNs for modeling is interesting for NMPC, because training is performed
over experimental acquired data, without depending on an analytical model. Thus, some
typically difficult modeling effects, such as joint friction and actuator non-idealities can be
identified [10]. Since errors between the model and the real process dynamics may exist,
due to possible disturbances or model mismatching, a reference model, using an instance
of the trained ANN, is executed in parallel to the real process, applying the same control
actions. Then, at each sampling instant, the errors between the state variables of the real
process, obtained by feedback information, and the reference model are taken and added
to the predicted outputs in the cost function evaluation, enabling null tracking error to
constant output references. Online training, state observers and disturbance estimators
are alternatives for eliminating steady-state errors [14]. However, the method described
earlier is shown to be sufficient for achieving null steady-state error without parameter
tuning and with easy implementation.

For RMs, other advantages of using ANN models are that ANNs result in accurate
models, without linearization or model simplification, which leads to smaller prediction
errors. Also, the ANN model used in the present work does not use acceleration informa-
tion, which can be problematic in practice [2].

The control algorithm, without considering faults, can be resumed in the following
steps, at each sampling period:

1In the unconstrained linear model case, an analytical expression can be obtained to calculate the
optimal ∆U .
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• read process state variables;
• execute a simulation step in the reference model and obtain prediction errors;
• through the optimization algorithm, generate a vector ∆U , evaluate the resulting

cost and, iteratively, search for the optimal ∆U ;
• increment the control actions with elements of ∆U referred to the first following

sampling period.

2.2. Nonlinear cost function evaluation. In the nonlinear approach utilized in this
work, the cost function is evaluated through the simulated prediction of the process be-
havior. As a closed expression for prediction, such as used in state-space or step response
models, is not practical with an ANN model, prediction is performed through the simula-
tion of the ANN model for a given control action sequence generated by the optimization
algorithm, using as initial conditions the process current state. Cost weights were set to
the tracking errors, seeking reference tracking. To evaluate the cost function, for a given
∆U , the following steps are taken:

• load current process state variables to FCC-ANN model, and set a variable cost ←
[∆τ1(k|k) . . . ∆τ1(k + M − 1|k)]T ρ1[∆τ1(k|k) . . . ∆τ1(k + M − 1|k)] + [∆τ2(k|k) . . .
∆τ2(k + M − 1|k)]T ρ2[∆τ2(k|k) . . . ∆τ2(k + M − 1|k)];
• execute N simulation steps, varying the control actions according to ∆U in the first

M steps;
• at each simulated step, increment cost as: cost ← cost + λ1[θ1(k + i|k) + eθ1(k) −

Rθ1(k + i)]2 + λ2[θ2(k + 1|k) + eθ2(k)−Rθ2(k + 1)]2 + λ∆1[∆θ1(k)]2 + λ∆2[∆θ2(k)]2,
where Rθ1,2 are the references for θ1 and θ2, eθ1,2(k) are the prediction errors, as
explained before, ∆θ1,2(k + i|k) = θ1,2(k + i|k) − θ1,2(k + i − 1|k), k is the current
sampling period, i is the prediction step and the notation (k + i|k) indicates a
prediction for instant k + i using process information obtained in k;
• return cost.

3. 2DOF Robot Manipulator. The utilized model was taken from [10] and it is based
on a 2DOF robot manipulator, as shown in Figure 2. In such robot, the control actions
are the joint torques τ1(t) and τ2(t). The first link, with angle position θ1(t) relative to
the gravity force vector, has length l1 and mass m1, while the second link, with angle
position θ2(t) relative to link 1 axis, has length l2 and mass m1. In the following, the time
dependency (t) is omitted for θ1(t), θ2(t), τ1(t) and τ2(t) for reading simplification.

The mathematical model is given through a set of four state variables: the two angles,
θ1 and θ2 and their respective variation rates, θ̇1 and θ̇2, respectively, as shown in Equation

g
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Figure 2. 2DOF RM, adapted from [10]
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(2) [10].
ẋ = M−1(T − F − V −G) (2)

being:

x =
[

θ̇1 θ̇2

]T
(3)

M =

[
m2l

2
2 + 2m2l1l2c2 + l21(m12) m2l

2
2 + m2l1l2c2

m2l
2
2 + m2l1l2c2 m2l

2
2

]
(4)

T = [ τ1 τ2 ]T (5)

V =

[
−m2l1l2s2θ̇2

2 − 2m2l1l2s2θ̇1θ̇2

m2l1l2s2θ̇2
2

]
(6)

G =

[
m2l2gs12 + (m12)l1gs1

m2l2gs12

]
(7)

with m12 = m1 + m2, c2 = cos(θ2), s2 = sin(θ2), s1 = sin(θ1) and s12 = sin(θ1 + θ2). The

angles θ1 and θ2 can be obtained by the integration of θ̇1 and θ̇2, which are calculated
using (2)-(7).

In addition to the terms presented in [10], vector F was defined as viscous friction and
back-electromotive forces from the motors which drive the joints, given by:

F =
[

βθ̇1 βθ̇2

]T
(8)

The utilized parameters are given in Table 1.

Table 1. Model parameters, adapted from [10]

Parameter Value Unit
m1 5 kg
m2 5 kg
l1 0.3 m
l2 0.3 m
β 5 Nms/rad
g 9.81 m/s2

The model was simulated in open loop, by applying torque steps in both joints, seeking
trajectories for θ1 and θ2 varying between −60◦ to 60◦. With the obtained data, an FCC-
ANN with 12 neurons in hidden layers, symmetric sigmoid activation function in the
hidden layers and linear activation function in the output layer was trained to validate
the methodology. Figure 3 shows a validation test, in which the capability of the FCC-
ANN in approaching the robot dynamics can be observed, with very similar responses.
Figure 4 shows the errors in θ1 and θ2 between the trained FCC-ANN and the simulated
model in validation phase.

FCC-NMPC control was applied to the robot model with step reference profiles for θ1

and θ2 in ideal conditions and, in sequence, with the occurrence of a 50% power loss fault
in the actuator connected to the first joint (τ1). Such fault is not critical, since it does not
prevent the control loop from working, but compromises the control performance if not
considered by the controller. The parameters required to set the controller are shown in
Table 2. The sampling period Ts was the same as used by [10]. The prediction and control
horizons were set as high as possible in a manner that the optimization algorithm was
able to converge in a time Ts/3. The parameters ρ1,2 and λ1,2,∆1,∆2 were set empirically
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Figure 3. Validation of the trained FCC-ANN with the simulated model
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Figure 4. θ1 and θ2 validation errors between the trained FCC-ANN and
the simulated model

Table 2. Controller parameters

Description Parameter Value
Prediction horizon N 15
Control horizon M 6
Sampling period Ts 0.015 s
Control action τ1 weight ρ1 0.01
Control action τ2 weight ρ2 0.01
Output θ1 tracking error weight λ1 0.07
Output θ2 tracking error weight λ2 1.4
Output variation rate ∆θ1 tracking error weight λ∆1 900
Output variation rate ∆θ2 tracking error weight λ∆2 900

after a series of tests, with the objective of obtaining fast responses for θ1 and θ2 without
overshooting.

Simulation results for θ1 and θ2 using the nominal FCC-NMPC controller with and
without the fault occurrence, are shown in Figure 5. Such results are presented in order
to demonstrate the effect of the fault on the control system performance, and also to
show the expected performance without faults. The fault was applied at t = 8 s in
the simulation. In such figures, it can be observed that both angles presented initial
oscillations at the instant of fault occurrence and slower responses after, when compared
to the case without the fault. Still, they did not reach the reference during the interval
between 10 s and 20 s and presented considerable oscillations before the convergence to the
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Figure 5. θ1 and θ2 responses with nominal FCC-NMPC with and without
the fault

last reference step. In Section 5, the results obtained with the fault-tolerant techniques
are presented along the results using the nominal FCC-NMPC controller for qualitative
comparisons.

4. Strategies for Reducing the Fault Effect. Two strategies were applied seeking
to minimize the fault effect in the control loop response. Firstly, a robustness-based
approach using a worst case optimization is presented, followed by an adaptive approach.
With the results presented in this section, it is possible to perform a qualitative comparison
between an adaptive and a robust approach, while observing that both methods improved
the system performance with simple implementation.

4.1. Robust control approach. The utilized robust control strategy is based on the
min-max approach presented in [19] and presents a single controller, without online pa-
rameter adjustment. However, multiple cost functions are used, considering the extreme
cases in variables subject to uncertainties. In this case study, a gain uncertainty on τ1

actuator between 0.5 and 1 was considered. Thus, two models were utilized, each with
the mentioned gain boundaries. At each sampling period, the optimization algorithm is
executed twice, one for each case. Control increments obtained in the case which present
the worst optimized cost are applied to the process. In this approach, online fault identi-
fication is not performed, and the controller is expected to handle the control task using
offline information through the different cost functions on the effects of the considered
fault. The contribution of this work regarding the robust approach is to present a robust
control method for a generic nonlinear model by using instances of the NMPC nomi-
nal cost function while using the same optimization algorithm of the employed nominal
NMPC.

4.2. Adaptive control approach. Adaptive control has the characteristic of varying
the controller parameters using online identification of changes in the process behavior.
One of the main identification methods is the least mean squares (LMS) algorithm [20].
LMS seeks a set of parameters which minimize the sum of the squared errors. Such idea
was utilized to implement the adaptive approach.

As the model used within FCC-NMPC is based on a nonlinear ANN structure, param-
eter adaptation could be performed through online network training. However, online
training has practical issues which make its implementation difficult. Thus, a heuris-
tic search for the gain value applied to the model control actions which minimizes the
summed squared errors between the model and the last samples from the real process is
proposed. The contribution of presenting this approach is to provide a simple and efficient
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least squares adaptive algorithm for an ANN model, which can also be used for generic
nonlinear models, in the case of an actuator fault. The effectiveness of the method can
be observed in Section 5.

Such strategy utilizes three parameters: ns, nc and ∆g, and their application is ex-
plained as follows:

• Three gain variables are initialized with values g0 = 1, g1 = 1−∆g and g2 = 1+∆g,
with ∆g a search step size;
• At each sampling period, the last ns control action applied to the process is applied

to three FCC-ANN models, configured with the gains mentioned above;
• If the model with gain g0 presents the smaller modeling error regarding the last ns

samples by nc consecutive sampling instants (nc > 1 is used to avoid noise issues),
∆g is divided by 2 to refine the search;
• If the model with gain g1 presents the smaller quadratic error, in the same condi-

tions as mentioned in the earlier case, ∆g is reinitialized to its original value, g1 is
attributed to g0 (g0 = g1), g1 = g0 −∆g and g2 = g0 + ∆g.
• If the model with gain g2 presents the smaller quadratic error, in the same condi-

tions as mentioned in the earlier case, ∆g is reinitialized to its original value, g2 is
attributed to g0 (g0 = g2), g1 = g0 −∆g and g2 = g0 + ∆g.
• Gain g0 is updated to the prediction model.

The greater ns is set, the more precise the model evaluation will be. However, the
computational burden grows and decision on varying the target variable becomes slower.
The parameter nc also regulates gain variation speed, and is set in a manner to avoid
numerical noise issues due to modeling errors and, in real processes, sensor noise. ∆g
regulates the search variation step. The smaller the step is, the greater the precision of
the model is and the slower the convergence is. In the performed simulation tests, the
parameters were set as ns = 20, nc = 5 and ∆g = 0.02. Such values were obtained
empirically. A statistical analysis for the setting of such parameters is necessary as future
work.

5. Simulation Results. In this section, simulation results obtained with both strategies,
robust and adaptive, are presented. The following graphs show the responses resulting
from the application of the implemented controllers, which were designed to minimize
the fault effect, along with the responses from the nominal controller, for qualitative
comparison.

5.1. Simulation with robust approach. Figure 6 shows θ1 and θ2 responses obtained
with the robust control approach presented earlier. It can be observed in θ1 that at start,
when the fault had not occurred yet, nominal control resulted in a response with smaller
settling time, when compared to the robust control, and no overshoot. However, with the
fault applied at t = 8 s, robust control resulted in a faster response in the two following
reference steps and reduction in the oscillation at the last step. In θ2 response, it can also
be observed a performance loss at start and, from the occurrence of the fault, a superior
performance, with faster responses and reduced oscillations, than with nominal control.
This effect is due to the use of a perfectly matched model in the nominal controller when
there are no faults, while the robust controller considers the possibility of a fault. When
the fault occurs, the robust controller presents a better performance, since the nominal
controller model does not consider the change in the plant behavior.

5.2. Simulation with adaptive control. In θ1 and θ2 responses, shown in Figure 7, it
can be verified that the adaptive strategy resulted in practically the same responses ob-
tained with nominal control before the fault. At the fault instant, at t = 8 s, the adaptive



1990 G. H. NEGRI, M. S. M. CAVALCA AND L. A. CELIBERTO JR.

-1

-0.5

 0

 0.5

 1

 0  5  10  15  20  25  30  35  40

�
1
 (

º)

time(s)

nominal
robust

reference

-1

-0.5

 0

 0.5

 1

 0  5  10  15  20  25  30  35  40

�
2
 (

º)

time(s)

nominal
robust

reference

Figure 6. θ1 and θ2 responses with robust approach
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Figure 7. θ1 and θ2 responses with adaptive approach
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controller was able to react, taking θ2 close to the reference before the application of the
second reference step. From the second step, in both angles θ1 and θ2, performance was
improved through adaptation of gain, enabling faster and less oscillatory responses than
with the nominal controller. Such improvement is due to the gain online identification,
which attenuates the influence of the fault. It can be observed that the responses from
10 s to 40 s of simulation are similar to the initial transient, which means that the adap-
tive controller was able to maintain its performance in different operating regions while
adjusting the gain parameter.

The gain identified through simulation time is shown in Figure 8. It is possible to
observe that the identified gain remains around 1 at start, after an initial oscillation,
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and converges to a value of approximately 0.5, except during reference changes, in which
the FCC-ANN model mismatch had influence. The identification of a considerable gain
variation (from 1 to 0.5) could be used to trigger a fault detection event, in case the
variation exceeded a threshold by a determined number of consecutive samples. If a
slower convergence is interesting to avoid abrupt variations, the parameters mentioned at
Subsection 4.2 can be reconfigured.

5.3. Performance comparison. The tracking performance of the tested controllers for
θ1 and θ2 is presented in Table 3, by means of the sum of the squared error of all samples
in four intervals, denoted by χ[θ1,2(a,b,c,d)]. Each interval corresponds to a change in the
reference. Interval (a) is taken from 0 to 10 s – Nts, interval (b) from 10 s – (N − 1)ts to
20 s – Nts, interval (c) from 20 s – (N − 1)ts to 30 s – Nts and interval (d) from 30 s –
(N − 1)ts to 40 s, so that the transient responses including the NMPC anticipative effect
were considered.

Table 3. Performance comparison between nominal, robust and adaptive
NMPC for θ1 and θ2 reference tracking

Controller χ[θ1(a)] χ[θ2(a)] χ[θ1(b)] χ[θ2(b)] χ[θ1(c)] χ[θ2(c)] χ[θ1(d)] χ[θ2(d)]
Nominal 24.8 7.3 99.3 11.3 65.1 36.8 64.7 21.0
Robust 20.2 9.1 74.0 1.1 45.8 29.0 47.5 2.3

Adaptive 18.8 4.9 52.8 2.3 36.5 27.8 30.3 0.4

In interval (a), the robust controller presented a smaller θ1 error than the nominal
controller and a higher error in θ2. Thus, it is not possible to state which of the two
controllers presented a better performance, since the fault occured during this interval.
In the intervals (b), (c) and (d), with the effect of the fault, the robust controller presented
smaller tracking errors than the nominal controllers. The more significant error reductions
can be observed in χ[θ1(b)] and χ[θ1(d)].

As for the adaptive controller, it can be noticed that it presented smaller errors for θ1

and θ2 than the nominal controller in all four intervals. Compared to the robust controller,
the adaptive strategy resulted in a greater error only in χ[θ2(b)]. However, it presented
a smaller χ[θ1(b)]. These results indicate that both strategies were effective for reducing
the fault influence on trajectory tracking.

6. Concluding Remarks. This report is the result of the study of fault handling tech-
niques for the development of fault-tolerant NMPC controllers. With both evaluated
strategies, it was verified that there are performance improvements in comparison to the
use of a nominal model in both cases, under the influence of a fault.

The robust strategy, although having a simpler implementation, has a higher computa-
tional cost than the adaptive strategy, for executing the optimization algorithm twice per
sampling period. It was observed that, while the process was at nominal operation, such
strategy resulted in a performance loss in relation to the nominal controller, but enabled
faster and more stable responses after the occurrence of the fault.

In the tests performed with the adaptive strategy, a greater performance improvement
was verified, compared to the robust controller, with the disadvantage of having more
parameters to tune, which need to be adjusted according to the process characteristics
and requirements of dynamics.

As future works, the implementation of the presented techniques in cases with possi-
bilities of multiple simultaneous faults is suggested. Additionally, practical tests can be
performed for evaluating noise influence and modeling difficulties. Another suggestion
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for future works is the study of critical faults, which may require abrupt changes in the
behavior of the control loop, such as joint lock in redundant robots.
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