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Abstract. Measuring energy of processor core which is consumed by a program is a
prerequisite when we want to optimize source code of a program in order to gain effi-
ciency of energy. However, it is difficult to find tools to measure energy of processor
core especially on low-end processor. In this paper we offer a simple energy estima-
tion as an alternative tool by leveraging an object in ACPI (Advanced Configuration and
Power Interface) specification called PSS (Performance Supported States) which con-
tains information about power of each processor core in each state of its performance
states (P-States). To estimate the energy of processor core, we integrate power of each
processor core during run time of a program. A program was run repetitively in different
conditions on minicomputer Intel DN2820FYK which consists of low-end processor Intel
Pentium Celeron N2830. We collected frequency of cores while running the program. We
then mapped the frequency into power based on PSS information to construct graph of
power vs. time as a base to estimate the energy by using trapezoid method of integration.
Since the processor behavior is also determined by a driver, we compared the effect of dri-
vers between driver ACPI-cpufreq and driver Intel P-State toward energy consumed. We
also made some experiments by implementing combinations of policy, frequency, feature
of boosts and load. In this paper, we find out that by leveraging PSS data, we can easily
estimate energy of processor core. We also find out that by using driver Intel P-State, it
will be better and easier to estimate energy rather than using ACPI-cpufreq.
Keywords: Energy, Simple, Core, PSS, Low-end N2830

1. Introduction. Efficiency of energy consumed in a computer system can be gained by
optimizing source code of a program running in the computer. In many cases, proces-
sor core consumes most of a computer’s energy. However, measuring how much energy
consumed by a processor core in order to compare the energy before and after source
code optimization is still difficult especially on low-end processor. Here, we offer a simple
method of estimating energy of processor core by leveraging an object of ACPI (Advanced
Configuration and Power Interface), called PSS (Processor Performance States), which
can be found on low-end processor. ACPI is an interface developed by many computer
manufacturers which enable system configuration and power management directed from
Operating System. One of its object is PSS which contains information of frequency and
power of a processor core in each state within processor performance states (P-State).
PSS object had been included in ACPI specification Revision 2 [1]. Hence, any low-end
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processor which is compatible with ACPI specification Revision 2 can utilize the PSS
object. The information given by the PSS is provided by a computer manufacturer such
Intel through its firmware. By obtaining this information on a P-State supported de-
vice then it is possible to construct a graph of power vs. time as a base for estimating
energy of processor core. This method is an alternative to method which is costly and
complex that uses additional external power meter [2,3] or software which is only com-
patible to high-end processor like software called Intel Power Gadget [4] and Intel PCM
[5]. The behavior of processor’s P-State is controlled by a driver. A well-known driver is
ACPI-cpufreq. Intel also releases a new driver called Intel P-State driver as a successor
to ACPI-cpufreq. Here, we also compare the differences between the ACPI-cpufreq and
Intel P-State when estimating energy of a processor core.

In this paper we start the sections by discussing the motivations and goals in Section
1 and then compare any previous works related to the method of measurement of energy
of computer and our contributions in Section 2. We then explain our simple method,
i.e., how the PSS data can be leveraged to estimate energy in Section 3 and show and
discuss the results with many combinations in Section 4. We then make our conclusions
in Section 5.

2. Related Works and Contributions.

2.1. Hardware power meter and power of entire system. Some works had been
shown to estimate energy by using additional hardware tools. In our opinion, the tools
might be too complex and expensive for a software developer when he wanted to know
how much energy was consumed by a program. Some works also estimated energy which
was consumed by the entire system. In many cases knowing energy consumed by a specific
component inside a computer, i.e., processor, is more valuable rather than energy of entire
system. In [18], energy was predicted based on system call of a program. The relation
between energy and system call was obtained by training the energy and system call which
used additional tool called Green-Miner. They claimed that additional hardware was not
used. However, the Green-Miner itself required additional hardware, i.e., power supply,
Arduino and Ada-fruit. They also estimated energy not on specific component but energy
of entire system. They also needed to train the data which add the complexity of the
method. In [27], Green Miner was also used to learn the effect of system call data and
CPU utilizations towards power consumed by many android applications by comparing
4 machine learning methods. In our opinion, Green Miner itself is complex then the ma-
chine learning will add the complexity when implemented in different computer or system
because we need to retrain huge android applications in the beginning. In [19], energy
of a program was also measured. However, they also used additional expensive tool, i.e.,
power meter. They also measured entire energy of system not on specific component. In
[20], energy of a program was profiled using Power Scope. This tool also used additional
hardware, i.e., digital multi-meter to measure DC current. They also did a modification
to the kernel which adds the complexity. This tool also measured the entire power which
was monitored from the system power supply. In [21], P-State of a processor was also
observed to determine what to do in P-State in order to obtain efficiency by proposing
some algorithms. However, they also used additional hardware, i.e., ISO-TECH 3005
power meter which was used to measure the entire energy. In [23], a hard work was
shown to measure energy of each component of computer, i.e., CPU, disk, and NIC which
was consumed by a program. However, to follow their method we need to disassemble a
computer system and use additional measurement tool, i.e., National Instrument Data-
Acquisition Card. Another complexity when additional hardware measurement tool was
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used is synchronizing between power data and runtime of a program. In [24], a com-
prehensive work had been started to evaluate power on small computer. They directly
measured each component in Itsy Pocket Computer. In our opinion, they still needed
a very good instrument to measure which equals high cost. In [3,10], AC power and a
combined DC power of CPU package and DRAM were measured. In this work external
power meter was still used. Also in [13], an external hardware power meter was used to
evaluate the power on high-end processors. In [26], energy of a software was estimated
more granular by defining point of phases within the software by utilizing state diagram
of UML. A better graphical power usage showing phases of a software can be shown.
However, Agilent Ammeter and Hewlett Packard power supply as additional hardware
were still needed. All those works mentioned in [3,10,18-24,26,27] might be suitable for
specific groups who can provide additional hardware tools but might not be for common
software developers who want to know how much processor energy is consumed by their
programs by a simple method. Furthermore, additional hardware power meter in some
works was used to measure entire energy of system but not able to measure energy of spe-
cific component, i.e., processor core only. Therefore, a simple method, without additional
hardware power meter, is needed to estimate energy of processor core only.

2.2. Energy based on architecture. Another work showed a different approach. In
[22], energy was estimated by calculating number of capacitances inside a computer and
simulated by combining the capacitances calculation and the binary source of the pro-
gram to obtain energy consumed. In our opinion, this concept was not easy because
whenever the architecture of the computer was changed then they must re-calculate the
capacitances. This concept may apply for computer manufacturer but not for a common
programmer.

2.3. Intel software and embedded feature in high-end processor. Some works
also showed non-additional hardware approach which was implemented by utilizing ei-
ther embedded features or software even though additional power meter still used. Those
features and software worked only on high-end processor system but could not work on
low-end processor. An effort was shown in [11] where a new metric was proposed to
measure efficiency of energy consumed. The energy consumed was measured by using a
software called Intel Power Governor which measured power of CPU and DRAM without
additional hardware. However, Intel Power Governor could only be used on high-end
processor, i.e., Intel Xeon E5 series, not on low-end processor, which was located on their
Marcher System. In [10], a concept called eDVFS was proposed which P-State was mon-
itored and then optimized to gain efficiency in software. Here, power meter of Yokogawa
WT-210 was used for measuring power of entire system while utilizing software called Intel
Performance Counter Monitor (PCM) for measuring power on each component. However,
PCM itself could only be used on specific processor. For example, when we tested it on
Intel NUC DN2820FYKH, it could not be used. In [3,7], power was measured by using
Intel’s feature called RAPL (Running Average Power Limit) [6]. However, this feature
was only found on specific processor which was categorized as high-end. In [8], power was
measured by using framework called PAPI (Performance Application Programming In-
terface). However, this PAPI was also based on RAPL which cannot be found on low-end
processor. On ACPI specification version 4, there is an object called PMM (Power Meter
Measurement), which a feature used to measure power [9]. However, this object cannot be
found on low-end processor. Besides that, this feature is not used to measure DC power
but AC power. All those works in [3,6-11] utilized non-hardware tools, i.e., Intel based
Software, RAPL or ACPI’s PMM to measure power and energy found only on high-end
processors and not on low-end processors. On the other hand, P-State information which
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could be found on both high-end and low-end processor was not yet purposely used to
estimate power and energy in those works. Therefore, it is an opportunity to leverage the
P-State information to estimate energy of processor core categorized as low-end.

2.4. P-state driver on Linux. A tool for measuring power is important in green com-
puting especially on Linux system as explained in [12]. On the other hand, P-State
behavior is controlled by driver. Different drivers will show different P-state behaviors.
On Linux, such Ubuntu, ACPI-cpufreq driver is used to control the P-State behavior
of processor core. Some works like in [7,10,13] discussed about P-State driver. How-
ever, they all only discussed about ACPI-cpufreq driver and compared it with their other
solutions. In [10], it proposed and claimed eDVFS as a better alternative to policy of
on-demand based on driver of ACPI-cpufreq. In [7], it was preferred to read CPU cycles
rather than frequency based on driver of ACPI-cpufreq to examine the P-State latency
because ACPI-cpufreq was not a good indicator for an actual frequency. In [13], it was
compared between ACPI-cpufreq driver with policy of on-demand and their algorithm,
i.e., both fuzzy logic and immune inspired algorithm. They concluded that ACPI-cpufreq
with policy of on-demand was the worst CPU energy management algorithm while the
immune inspired algorithm was the optimal one. Overall, in [7,10,13], they compare
ACPI-cpufreq driver with their offered solutions, i.e., eDVFS, CPU cycles based, and
immune inspired algorithm. They did not compare with Intel P-State Driver yet. In
[28], higher energy consumed was explained as effect of power state of each component
hardware. Energy used was compared on different operating systems, i.e., Windows and
Linux. However, they did not discuss what driver was used to control the power state
especially for processor.

We noticed a website comparing between ACPIcpufreq driver and Intel P-State driver
in [14] by using Phoronix benchmark software with kernel Linux 3.15. However, they
evaluated it on high-end processor Intel Core i7 4960X Ivy Bridge Extreme Edition and
not on low-end processor. Also additional power meter of WATTSUP was used to measure
the AC power consumption and performance per watt. Also in [15], both driver ACPI-
cpufreq and Intel P-State were compared with Linux kernel 4.7 on high-end processor
Intel Xeon E5-2687W v3 Haswell system. However, they did not measure and compare
the power. They also did not compare energy consumed between driver ACPI-cpufreq
and driver Intel P-State. As far as our efforts, we found no yet works which compared
energy of processor core consumed between Intel P-State driver and ACPI-cpufreq on
low-end processor without using additional hardware power meter.

2.5. Contributions. We emphasize our contributions in this paper, i.e.,
- We estimate energy of core processor, not entire system, by simple method, i.e.,

leveraging ACPI PSS data without additional power meter which is costly and complex;
- We estimate energy of core on low-end processor which other tools and other software

cannot work on this low-end processor;
- We compare the different behavior and power consumed between driver ACPI-cpufreq

and driver Intel P-State on low-end processor.

3. Energy Estimation of Software Programs.

3.1. Low-end processor supporting P-States. PSS namespace, which describes P-
States, is found on ACPI specification version 2. Hence, processor that is used as device
under test must be compatible with ACPI specification version 2 and above. We used Intel
DN2820FYK with Pentium Celeron N2830 Processor as device under test because it is
compatible with ACPI version 3 and P-States. N2830 Processor is embedded on board and
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it has 2 cores. This processor is also categorized as low-end processor. This low-end N2830
Processor is not compatible with any software and feature for power measurement which
is found on high-end processor, i.e., Intel PCM, Intel Power Gadget, RAPL (Running
Average Power Limit), and ACPI PMM. Thus, we cannot use those features in this
low-end N2830 processor to measure power and energy.

Frequency TDP (Thermal Design Power) of the processor is 2.159 GHz, and by enabling
the boost feature, the frequency of the processor can reach 2.4 GHz. To make sure all of
this processor feature was usable, we updated Intel DN2820FYK to its latest firmware.
The system is run on Operating System Linux Ubuntu 15.04 with kernel 3.19.0-42-generic.
‘Cpupower’ command was used to show information about range of frequency of processor,
power management policy, and which driver was used.

On ACPI Specification, PSS contains number of possible states in P-States which
provides information about frequency of core, power of core, transition latency, and value
of register PERF CTRL and value of register PERF STATE for each state. We obtained
these value by using tools provided by ACPI on its website [16], i.e., ACPI-dump, ACPI-
xtract and ACPI-exec. ACPI-dump was used to gather APCI raw data provided by
computer manufacturer. ACPI-xtract was used to convert the raw data into ACPI tables.
ACPI-exec was used to look into the PSS, i.e., P-States information on each core.

3.2. Collecting and monitor frequency of processor core. We did collect and moni-
tor frequency of processor core while running a program. The program was strassen.gcc.o-
mp-task, a matrix N ×N multiplication program, which belongs to Barcelona Open MP
Tasks Suite [17], a benchmark of task parallelism. We used PERF to collect event data,
i.e., frequency and time during execution of the program. This PERF was also run in
the Intel DN2820FYKH. We did control and monitor the collection of the data on HP
Elitebook 840 connected via Wi-Fi using HP voice tab 7 like on Figure 1.

Figure 1. Collecting and monitoring data

The same program, i.e., strassen.gcc.omp-task was run respectively on different settings
and drivers to see its effect towards power consumed. By default the system was run on
Intel P-State driver. We switched the driver into ACPI-cpufreq, by disabling the kernel
Intel P-State driver in the grub file. When collecting event data by PERF, we used event
of ‘power:cpu frequency’ for driver ACPI-cpufreq and event of ‘power:pstate sample’ for
driver Intel P-State. Before the events were captured, policy on both drivers was set.
First, the boost feature was disabled on both drivers. Hence, the frequency of processor
would not reach its maximum value, i.e., 2.4 GHz. Second, power management was
set to ‘powersave’ on Intel P-State, while on ACPI-cpufreq it was set to ‘ondemand’.
It was set because both drivers had different number of power management. However,
‘powersave’ on Intel P-State and ‘ondemand’ on ACPI-cpufreq had a similar concept of
power management. Third, the minimum frequency and the maximum frequency on both
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Figure 2. Comparison of collecting data between Intel P-State and ACPI-cpufreq

drivers were set to 498 MHz and 2159 MHz respectively. The process of this collecting
data was illustrated on Figure 2.

3.3. Mapping frequency information into power. Having got the frequency of cores
when running a program then we transformed the frequency into power. The relation
between Power and Frequency was already explained such in [22], i.e., P = CV 2af, where
P is power, C is capacitance, V is voltage, and f is clock frequency. In our methodology,
the power information of cores on ACPI-cpureq driver was obtained easily by mapping
the frequency value of cores with power value based on PSS information provided by
the computer manufacturer. On the other hand, power information of cores (Pt) on Intel
P-State was obtained by transforming the frequency value of cores (Ft) using comparison
formula below.

Pt =
(Ft − F min)

(F max−F min)
∗ (P max−P min) + P min (1)

where F min, F max, P min, and P max are respectively minimum frequency, maximum
frequency, minimum power and maximum power of P-States listed on PSS data.

3.4. Integrating power into energy using trapezoid method. By using data of
power which was obtained on previous subsection, we proceeded energy calculation. We
estimated the energy by using integral of power during execution time. The integral was
calculated by summing trapeziums formed between two power samples on each core which
was also called as trapezoid method of integration [25] which is shown on the following
formula. For the sake of simplicity we ignored P-State latencies

W ≈ {(P1 + P2) ∗ (t2 − t1)/2} + {(P2 + P3) ∗ (t3 − t2)/2}
+ · · · + {(Pn + Pn+1) ∗ (tn+1 − tn)/2}

(2)

W ≈
n∑
0

(Pn + Pn+1) ∗ (tn+1 − tn)/2 (3)
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3.5. Estimating energy on several conditions. We also estimated energy of the same
software in several conditions. First, we estimated the energy in different power manage-
ment policy. On ACPI-cpufreq there are five power management policies, i.e., ondemand,
performance, user space, conservative and power-save. On the other hand, Intel P-State
has two power management policies, i.e., power-save and performance. Second, we esti-
mated the energy by enabling feature of boost and by setting different minimum-maximum
frequency. We also estimated the energy when the load of the matrix program (size of
matrix N × N) was increased from N = 1024, 2048, 4096, and 8192.

4. Results.

4.1. Power and frequency information. By running the ACPI tools, i.e., acpidump,
acpixtract, and acpiexec, we obtained the mapping between the frequency and power as
listed on Table 1. The P-State sequence was determined by choosing P0 as the state with
the highest frequency. From the table, frequency range between states is 166 MHz and
power range between states is 140mW. However, between P0 and P1, frequency range is
only 1MHz while power of P0 and P1 is the same.

Table 1. Power and frequency information of P-States

Freq (MHz) Power (mW) P-State
2159 2000 P0
2158 2000 P1
1992 1860 P2
1826 1720 P3
1660 1580 P4
1494 1440 P5
1328 1300 P6
1162 1160 P7
996 1020 P8
830 880 P9
664 740 P10
498 600 P11

4.2. Power profile before executing strassen.gcc.omp-task. We built power profile
before a program under test was run. We collected the processor’s core frequency during
a range of time by running PERF only without running the program under test, i.e.,
strassen.gcc.omp-task. We called this as base frequency. Then, this base frequency was
mapped into power based on Table 1. The results are shown in Figure 3 and Figure 4.
Figure 3 shows graph of power of processor core on ACPI-cpufreq during 100.236 Seconds
while Figure 4 shows graph of power of processor core on Intel P-State during 79.576703
S. Figure 3 is constructed from 132 samples while Figure 4 is from 581 samples. In Figure
3, Core 0 is stable at 600 mW as the minimum power while Core 1 is fluctuated from 600
mW to 2000 mW. In Figure 4, both cores tend to be stable at around 601.4683133 mW
which is mapped from frequency 499.741 MHz. There is a spike at very beginning which
indicates that there is a process running at the first time.
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Figure 3. Graph of power before executing strassen.gcc.omp-task on
ACPI-cpufreq

Figure 4. Graph of power before executing strassen.gcc.omp-task on Intel
P-State

4.3. Power profile while executing strassen.gcc.omp-task. We then built power
profile while executing program under test. We collected the core’s frequency by using
PERF while executing program strassen.gcc.omp-task with load N = 4096. By mapping
the frequency into power, we then built power profile for ACPI-cpufreq in Figure 5 and
power profile for Intel P-State in Figure 6. The program strassen.gcc.omp-task solved the
matrix problem within 30.264416 Seconds when using ACPI-cpufreq driver. Whereas the
matrix problem was solved within 35.26126 Seconds when using Intel P-State driver. In
Figure 5, power profile is constructed from 23 samples while in Figure 6 power profile is
constructed from much more samples, i.e., 5306 samples. Both in Figure 5 and Figure 6,
there is axis for each core. In Figure 5, core 1 is stable at its maximum power 2000 mW
except a few milliseconds at the beginning and about 2 seconds at the end which reaches
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Figure 5. Graph of Power while executing strassen.gcc.omp-task on
ACPI-cpufreq

Figure 6. Graph of power while executing strassen.gcc.omp-task on Intel
P-State

minimum 600 mW. Core 0 is also stable at its maximum except about 2 seconds between
on 26.669 S and on 28.778 S which touches its minimum 600 mW. In Figure 6 both cores
are stable at about 1795.80747 mW mapped from 1.915886 GHz from the beginning until
the end of execution time.

By comparing between Figure 3 and Figure 5 also between Figure 4 and Figure 6, our re-
sults show that there is a change on the power profile between before the strassen.gcc.omp-
task was executed and while executing strassen.gcc.omp-task. Also, there is change
of the cores from its minimum state to its maximum state on ACPI-cpufreq and from
601.4683133 mW to 1795.80747 mW on Intel P-State.

Sample of data which were captured showed that on ACPI-cpufreq, the event ‘power:cpu
frequency’ would provide data only if there was a change on the core frequency, while on
Intel P-State, the event ‘pstate:power sample’ provided data on every single interval time
even though the core frequency was not changed. Besides that, event ‘pstate:power sample’
provided sample of data much more than event ‘power:cpu frequency’. Hence, we can say
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that event ‘pstate:power sample’ which is event of Intel P-State driver gives better data
than event ‘power:cpu frequency’ which belongs to ACPI-cpufreq.

4.4. Energy estimation. By using trapezoid method of integration, we estimated en-
ergy based on power profile in Figure 5 and Figure 6. On ACPI-cpufreq, energy was
52.616333 J on core 0; 56.958585 J on core 1, and 109.574918 J on both cores. Whereas,
on Intel P-State, energy was 63.29287J on core 0, 63.32235244 J on core 1, and 126.6152 J
on both cores. However, this energy was energy consumed by operating system including
all program run in the computer and not the program strassen.gcc.omp-task itself. Hence,
we need to subtract it with energy before the strassen.gcc.omp-task was executed by cal-
culating average power in Figure 3 and Figure 4, then multiplying the average power with
execution time of strassen.gcc.omp-task. We obtained average power on ACPI-cpufreq,
i.e., 0.744907 J/s on core 0; 1.291010 J/s on core 1; and 2.035917 J/s on both cores. We
also obtained average power on Intel P-State, i.e., 0.608217769 J/s on core 0; 0.608467064
J/S on core 1; and 1.216684833 J/S on both cores. After multiplying the average power
with the execution time of strassen.gcc.omp-task, we obtained energy before the program
was run, i.e., 61.61584 J on both cores for ACPI-cpufreq and 42.90184 J on both cores for
Intel P-State. Finally by subtracting the energy when the program executed and energy
before the program executed, then we estimated energy of processor core consumed by
strassen.gcc.omp-task itself, i.e., 47.95907897 J for ACPI-cpufreq and 83.71335977 J for
Intel P-State. We can see that the program strassen.gcc.omp-task itself consumed more
energy on Intel P-State than on ACPI-cpufreq.

4.5. Policy, boost, and frequency combinations. In this subsection we implemented
some combinations by changing some items, i.e., policy of power government on both dri-
vers, the boost feature, and minimum-maximum frequencies. We obtained execution time
on Table 2 for ACPI-cpufreq. In Table 2 it is shown the effect toward the execution time
when ACPI-cpufreq driver was used. When the boost feature was enabled and frequency
was set to 2159 MHz for both minimum and maximum, the execution time of the program
tended to be the same even though the policy of power government was either ondemand,
conservative, userspace, powersave, or performance. When the minimum frequency was
changed to 498 MHz, the powersave policy showed the longest execution time while others
still had similar execution time. When boost feature was disabled, the longest execution
time was achieved when the policy was set to userspace; Powersave was the second longest
while performance, ondemand, and conservative had similar execution time. We can see
that the boost feature had significant effect toward the execution time.

Table 2. Combinations of policy, frequency, and boost feature on ACPI-cpufreq

No Boost Freq.
Min (MHz)

Freq.
Max (MHz)

Execution Time (S)
Ondemand Conservative Userspace Powersave Performance

1 yes 2159 2159 27.915281 27.686746 27.74516 27.676823 27.691734
2 yes 498 2159 27.831756 28.102168 27.80213 114.46815 27.722005
3 no 498 2159 30.188098 30.14639 114.7714 106.87286 30.159552

Table 3 contains combination of policy, boost, and frequency on Intel P-State driver.
We also estimated total core’s energy. We found that the only thing that affected energy
on performance policy was the boost feature. On performance policy, when the boost
feature was enabled, the frequency reached its maximum at 2415628 Hz. However, when
the boost feature was disabled, the frequency reached its maximum only at 2165800 Hz
even though the minimum was set to either 498 MHz, 2159 MHz, or 2.42 GHz. Different
thing was shown when the power policy was set to powersave policy. The frequency on
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powersave policy was changed if either the maximum frequency was set to change or the
boost feature was changed. On powersave policy, the least energy happened when boost
was disabled and maximum frequency was set to 2159 MHz. On performance policy, the
least consumed energy was shown only when the boost feature was disabled. From Table
2 and Table 3, we can see that the boost feature, maximum frequency, and policy of power
management on both drivers affected the execution time and the energy consumed.

Table 3. Combinations of policy, frequency, and boost feature on Intel P-State

No Boost Set Freq.
min (GHz)

Set Freq.
max (GHz)

Powersave Performance

Time (S)
Output Freq.

max (Hz) Energy (J) Time (S)
Output Freq.

min (Hz) Energy (J)

1 yes 2.159 2.159 31.0558 2082467 127.2467 27.7365 2415628 129.9644
2 yes 0.498 2.159 31.0519 2082467 127.2251 27.7347 2415628 129.9472
3 yes 2.42 2.42 27.7295 2415628 129.9249 27.7793 2415628 130.2035
4 yes 0.498 2.42 27.7516 2415628 130.0370 27.7392 2415628 130.0112
5 No 2.159 2.159 33.3234 1915886 126.6492 30.1574 2165800 127.9626
6 No 0.498 2.159 33.2758 1915886 126.3624 30.1573 2165800 127.9268
7 No 2.42 2.42 30.1591 2165800 128.0456 30.1654 2165800 127.7584
8 No 0.498 2.42 30.0694 2165800 127.6710 30.2087 2165800 128.1714

4.6. Workload change of N × N matrix. We changed the load of the matrix N ×N
by increasing the number N from 1024, 2048, until 8192 while other settings were the
same as Subsection 4.3. We obtained Figure 7 until Figure 9 for ACPI-cpufreq and Figure
10 until Figure 12 for Intel P-State. Load N = 4096 is already shown in Figure 5 for
ACPI-cpufreq and Figure 6 for Intel P-State. The difference is, in Figure 5 and Figure 6,
the scale of the axis time was set irregularly while in Figure 7 until Figure 12, the scaling
of the axis time was set regularly. Based on Figure 7 until Figure 9, it was shown that by
increasing the load, the execution time becomes longer while power consumed by cores
stayed on the maximum P-State. However, there was an exception, i.e., few seconds in
the beginning and in the end of execution time where the power went down to a lower
P-State which was shown on core 1. Based on Figure 10 until Figure 12, it was shown
that the execution time was also increased by increasing the load on which all of the time
the power was likely to be stayed on one P-State with fewer declination. We summarized
the effect of the load in Figure 13 for ACPI-cpufreq and Figure 14 for Intel P-State. More
load caused more execution time and more energy consumed. Based on Figure 13, the

Figure 7. ACPI-cpufreq N = 8192
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Figure 8. ACPI-cpufreq N = 2048

Figure 9. ACPI-cpufreq N = 1024

Figure 10. Intel P-State N = 8192

average power on ACPI-cpufreq showed a declination when the load was increased while
based on Figure 14, on Intel P-State the average power remained constant.

4.7. Discussion. In this paper, we show that energy of cores on a low-end processor can
be easily estimated. The estimation depends on PSS information which is provided by a
computer manufacturer. Collecting frequency of core, mapping the frequency into power
based on PSS, and integrating the power are the important steps. Energy estimation
itself is influenced by environment, i.e., the driver chosen, power management policy, the
boost feature, and setting of minimum-maximum frequency. Hence, we cannot depend
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Figure 11. Intel P-State N = 2048

Figure 12. Intel P-State N = 1024

Figure 13. Workload effect on ACPI-cpufreq

only on how we modified a source code of a program to achieve an efficient program but
we need also be aware of how the environment is set. We show that the same program
with different environment settings can yield different energy results.

Intel P-State, with its event ‘power:pstate sample’, gives more sampled data than ACPI-
cpufreq, with its event ‘power:cpu frequency’. Hence, Intel P-State gives better resolution
power graph than ACPI-cpufreq. The difference is that Intel P-State always shows out-
put of event, even though the state is not changed. On the other hand, ACPI-cpufreq
shows output of event only when there is a processor core movement from one state
into another state. However, it does not mean to be a more exact estimation unless we
can prove that there are states which are not sampled when using ACPI-cpufreq with
event ‘power:cpu frequency’. Another thing when using ACPI-cpufreq is this driver may
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Figure 14. Workload effect on Intel P-State

not always give sampled data. In our experiment, many times we captured event data of
ACPU-cpufreq but yielded no output especially when the execution time of a program was
just few seconds. This might be caused by a reason that there was no P-state movement
when a program ran causing no event ACPI-cpurfeq data captured.

When comparing policy of power management, ACPI-cpufreq offers more options than
Intel P-State. ACPI-cpufreq provides 5 policies where some policies can show very differ-
ent execution time. On the other hand, Intel P-State with its 2 policies does not show a
significant different execution time and energy consumed between those 2 policies. Most
of the time, our results show that the more execution time needed, then the less energy
consumed.

Intel P-State and ACPI-cpufreq give similar frequency for all cores in most of the time.
Therefore, the energy will depend only on its maximum frequency and execution time.
However, ACPI-cpufreq has more frequent movement into any lower states rather than
Intel P-State. When boost feature is disabled, frequency of processor core will reach up
to only 89.9% of the maximum frequency which will extend execution time of a program
and reduce energy consumed.

At least we have 2 threats to validity. First, our methodology depends only on PSS.
Based on ACPI specification, PSS provides information about power on each state with
its maximum value. However, the actual power may be different than its maximum value.
So when a core enters into a state, the core may not reach its maximum power in that
state. Second, we also ignore the latencies when a core moves from one state into another
state. The more frequent of a core moves from one state into another state, the more
frequent latency will be shown. Even though, based on the power graphs, movement of
the cores is rare compared to the entire execution time. Cores also tend to be stable into
one state.

5. Conclusions. We have shown that PSS information can be leveraged to estimate
energy of processor’s cores easily. This method has 3 important steps, i.e., collecting
frequency, mapping frequency into power, integrating the power to calculate the energy.
This method is suited used especially on low-end processor where features such as RPAL
and PMM are not available. It is also suited on a condition where measurement tool
such as Intel Power Gadget or Intel PCM cannot run on it. By using this method, a
programmer who develops a program may estimate easily how much energy consumed by
his program. Especially when he runs the program on a low-end processor and considers
a green computing. This method also requires no additional hardware measurement tool.
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When estimating the energy, things to be aware are the environment setting of the
processor, i.e., boost feature, minimum-maximum frequency, power management policy,
and driver chosen. Related to the drivers, Intel P-State can provide better information
when used to estimate energy rather than ACPI-cpufreq. Intel P-State provides data with
more samples, more stable on a certain state and more consistent by always providing
data with non-zero output.

A future work needs to be tested on a processor which supports P-State and RAPL.
Our estimation methodology based on PSS approach needs to be compared with other
tools like Intel PCM or Intel Power Gadget. Based on our experiences, the comparison
should be tested on a high-end processor which supports RAPL.
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