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Abstract. The 0-1 knapsack problem (KP01) is a well-known NP-hard optimization
problem. Recently a new metaheuristic algorithm, called social spider algorithm, was
proposed, which has been successfully applied to solving various continuous optimization
problems. This paper proposes a binary social spider algorithm to solve KP01 efficiently.
This algorithm is composed of discrete process and constraint handling process. In dis-
crete process, a popular sigmoid function is used to achieve good discrete process result.
Two constraint handling techniques are utilized. The repair operator with ADD phase
and DROP phase is executed to treat infeasibility and improve the efficiency. The ex-
perimental results have proven the superior performance of BSSA compared to genetic
algorithm and particle swarm optimization.
Keywords: Combinatorial optimization, Greedy strategy, 0-1 knapsack problem, SSA

1. Introduction. The 0-1 knapsack problem (KP01) is known to be a combinatorial op-
timization problem. The knapsack problem has a variety of practical applications such as
cutting stock problems, portfolio optimization, scheduling problems [1] and cryptography
[2, 3]. The knapsack appears as a sub-problem in many complex mathematical models of
real-world problems. In a given set of n items, each of them has an integer weight wi and
an integer profit pi. The problem is to select a subset from the set of n items such that the
overall profit is maximized without exceeding a given weight capacity C. It is an NP-hard
problem and hence it does not have a polynomial time algorithm unless P = NP . The
problem may be mathematically modelled as follows:

Maximize
n∑

i=1

xipi; (1)

Subject to
n∑

i=1

xiwi ≤ C, xi ∈ {0, 1},
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∀i ∈ {1, 2, . . . , n}, where xi takes values either 1 or 0 which represents the selection or
rejection of the ith item.
In early literature, the exact algorithms are often used, for example, an exact algorithm

for solving the bi-level KP01. The linear relaxation approach is used to calculate feasible
solutions [4]. Moreover, a dynamic programming procedure is used to find integer optimal
solution. The proposed approach shows superiority when compared with other state-of-
the-art approaches. Furthermore, utilizing dynamic programming and device discounted
KP01 into sub problems conducted potential results [5].
In recent years, many new nature-inspired metaheuristic algorithms have been proposed

to solve KP01. The main advantage of metaheuristics is that approximate solutions can
usually be found within reasonable time. The genetic algorithm (GA) has been one
of the most popular approaches for this problem, for instance, dual population GA by
introducing greedy approach and sub-group competition to solve the KP01. Nonetheless,
the tests are not extensive enough to conclude the efficacy of the proposed methodology.
The other metaheuristics used for the KP01 include, but not limited to the ant colony

optimization [6], quantum-inspired evolutionary algorithm [7], schema-guiding evolution-
ary algorithm [8], global harmony search algorithm [9], artificial chemical reaction opti-
mization [10], complex-valued encoding bat algorithm [11], monarch butterfly optimiza-
tion [12], amoeboid organism algorithm [13], Cohort intelligence algorithm [14], monkey
algorithm [15], and complex-valued encoding wind driven optimization [16].
Although variety of methods have been proposed to solve KP01, it is still meaningful

in theoretical research and practical application. Due to the difficulty of an NP-hard
problem, the proposed methods can work well for small dimensional KP01 problems. For
large-scale KP01 problems, there still exists the gap between the found solutions and the
optimal solutions of the problems. Development novel algorithm to solve KP01 efficiently
is necessary.
Social spider algorithm (SSA) is a new algorithm proposed by Yu and Li for glob-

al optimization [17]. SSA inspired the foraging behaviour of the social spider that can
be described as the cooperative movement of the spiders towards the food source posi-
tion. SSA has outperformed other state-of-the-art metaheuristics on many benchmark
functions.
In this paper, a novel binary social spider algorithm is proposed to solve KP01. The

main contribution of this study is that the first binary social spider algorithm combining
with two constraint handling techniques for KP01 is proposed. The proposed algorithm
integrated the exploration of SSA and the exploitation of a repair operator to solve KP01.
The simulation results on five state-of-the-art benchmark instances and strongly correlated
data sets demonstrate that the proposed algorithm has superior performance compared
with previous algorithms.
The rest of this paper is organized in sections. Section 2 briefly gives the original

framework of social spider algorithm. Section 3 presents the binary social spider algorithm.
We survey the behavior of binary social spider algorithm and compare the simulated
results of the BSSA in Section 4. We conclude this paper and suggest potential future
work in Section 5.

2. Social Spider Algorithm. SSA [17] is a metaheristic inspired by the behavior of
social spider. In SSA, the solution of an optimization problem is a simulation by a position
of an artificial spider on the hyper-dimension spider web. The spiders move on the web
while they share the position information via vibration of it. Depending on the received
vibration from other ones, guide the spider forward to the optimal position. Details of
SSA will be described in the following subsections.
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2.1. Spider. The artificial spiders are the basic operating agents of SSA. Each spider
possesses a position on the hyper-dimension spider web, and the fitness value of this
position is assigned to the spider. Each spider hold a memory is storing its status as well
as optimization parameters, namely, its current position, a current fitness value, following
vibration at previous iteration, inactive degree, previous movements, and dimension mask.
All these characters guide the spider to search for the optimal solution.

2.2. Vibration. Vibration is a very important concept in SSA. It is one of the main
characteristics that distinguish SSA from other metaheuristics. In SSA, we use two prop-
erties to define a vibration, namely, the source position and the source intensity of the
vibration.

The source vibration intensity is calculated by the following equation:

I(s) = log

(
1

f(s)− C
+ 1

)
(2)

where f(s) is the fitness value of spider s, and C is a given constant such that minimum
fitness values are larger than C.

Vibration attenuation when transmitting from spider s to spider s′ is calculated as the
following equation:

I(s, s′) = I(s)× exp

(
D(s, s′)

σ × ra

)
(3)

where ra ∈ (0;∞) is a user-controlled parameter. This parameter controls the attenuation
rate of the vibration intensity over distance. σ is the standard deviation of all spider
positions along each dimension.

2.3. Search pattern. SSA manipulates a population of artificial spiders via a series of
optimization step. Specifically, each iteration of SSA can be divided into the following
steps.

1) Fitness Evaluation: At the beginning of each iteration, the fitness values of the
positions possessed of all spiders in the population are reevaluated. These fitness values
are later utilized in the vibration generation and propagation process.

2) Vibration Generation: In the beginning, new vibration is generated for each spider.
Vibration is then propagated to all the other spiders in the population with attenuation.
Depend on the receipt vibrations; the largest attenuated vibration intensity is selected,
and compare it with the previous one. The larger intensity vibration is stored. If the
spider changes its stored vibration, the inactive degree is increased by one. Otherwise,
the inactive degree is assigned to zero. This degree helps the algorithm get of local optima.

3) Mask Changing: After following vibration of all spiders is calculated, the position
of spiders is updated. In this step, a dimension mask is used. Each spider holding mask
which is a binary vector with length is the solution dimension of the optimization problem.
In each iteration, each spider has a probability 1 − pNin

c to change its mask. The Nin is
the inactive number of the spider. When a mask is considered to change, each bit has
probability pm to get a one, and a probability 1− pm to get a zero.

4) Random Walk: After following vibration and dimension mask are calculated, each
spider performs a random walk to update their positions. A more detailed formulation
can be found in [17].

3. Proposed Social Spider Algorithm (BSSA) for KP01. SSA is designed for the
real domain. For 0/1 knapsack problem, the solution is presented in a binary vector. So
SSA is modified to work for discrete binary space.
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3.1. Transfer function. In this algorithm, the sigmoid function is used to convert real
values to binary values, after the random walk performing the position in the real vector
is converted to binary vector by Equation (4).

Xs,i(t+ 1) =

{
0 if rand() ≥ S(Ps,i(t+ 1))

1 if rand() < S(Ps,i(t+ 1))
(4)

where S(.) is the sigmoid function for transforming the velocity to the probability as the
following expression:

S(Ps,i(t+ 1)) =
1

1 + e(Ps,i(t+1))
(5)

Figure 1 shows the sigmoid function using in BSSA.
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Figure 1. Sigmoid function used in BSSA

3.2. Fitness function and handling constraints. The KP01 is maximization prob-
lem. However, SSA is designed for a minimization problem. To convert KP01 problem to
minimization problem a large position constant number Ω is used, and the fitness is set
as follows:

Fitness = Ω−
n∑

i=1

xipi (6)

The present by binary string sometimes makes the solution violate the constraint. There
are two common techniques that are penalty and repair function which are used to handle
it. In the first method, a penalty coefficient ratio with violated value is used to add to the
fitness value. Through the iterations, the solutions with larger fitness have more change
to reproduce and otherwise [9]. Although this method can help the algorithm find the
sufficient solution, it does not help improve the quality of the solution. Following, two
techniques are presented in detail.
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3.2.1. Penalty function. The value of the position is equal to
∑n

i=1 xipi when the solution
is not violated. Otherwise, a penalty factor γ is used to decrease the fitness of the violate
position. The penalty factor γ is selected by experience. When we choose a large γ, the
violate solution receives large probability of eliminating. In this research, we use γ = 100.
The fitness function is described in Algorithm 1.

Algorithm 1: Fitness function

Input: Solution x
Output: Fitness

1 Fitness =
∑n

i=1 xipi − γ ∗max (0,
∑n

i=1 xiwi − C)
2 return Fitness

3.2.2. Repair operator. The repair operator includes two phases: DROP phase and ADD
phase. When the total weight exceeds the knapsack, the DROP is used. The ADD phase
works to improve the quality of the solution when the knapsack is not full. The details
of this function can be found in Algorithm 2.

Algorithm 2: Repair operator

Input: Solution x
Output: Solution x

1 % ADD phase
2 gap← C −

∑n
i=1 xiwi

3 while (gap > 0) do
4 Select the feasible items to add to knapsack.

5 % DROP phase
6 outweigh←

∑n
i=1 xiwi − C

7 while (outweigh > 0) do
8 Randomly select items in the knapsack to drop.

The advance of repair operator when compared to penalty function is that the repair
function not only repairs the violate solutions, but also helps improve the quality of
potential solutions.

4. Simulation Results. In our experiments, we test effectiveness of two handle tech-
niques (penalty function and repair function) when combined with PSO, GA and BSSA.
The GA is coded as describing in [18]. We named GA1, and GA2 for genetic algo-
rithm with penalty function, and repair function, respectively. The population size is
popsize = 10, the crossover probability is set as Pc = 0.8, and the mutation probability
is set as Pm = 0.1.

For the particle swarm optimization, BPSO1, and BPSO2 are PSO combined with
penalty function, and repair function, respectively. The parameters for BPSO1 and BP-
SO2 are set as: inertia weight w = 2, local weight c1 = 2, global weight c2 = 2.

We named BSSA1 and BSSA2 for binary social spider algorithm with penalty function,
and repair function, respectively. For the BSSA1 and BSSA2, the parameters are turning
by trial and error. The parameters are set as: ra = 1, pc = 0.7, pm = 0.1, and popsize =
10.
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Table 1. The dimension and parameters of five test problems

Instance Dimension Parameters (q, C, p)

f1 4 q = (6, 5, 9, 7), C = 20, p = (9, 11, 13,15)

f2 10 q = (30, 25, 20, 18, 17, 11, 5, 2, 1, 1), C = 60, p
= (20, 18, 17, 15, 15, 10, 5, 3, 1, 1)

f3 7 q = (31, 10, 20, 19, 4, 3, 6), C = 50, p = (70, 20,
39, 37, 7, 5, 10)

f4 5 q = (15, 20, 17, 8, 31), C = 80, p = (33, 24, 36,
37, 12)

f5 20 q = (84, 83, 43, 4, 44, 6, 82, 92, 25, 83, 56, 18, 58,
14, 48, 70, 96, 32, 68, 92), C = 879, p = (91, 72,
90, 46, 55, 8, 35, 75, 61, 15, 77, 40, 63, 75, 29, 75,
17, 78, 40, 44)

Table 2. The detailed information of the optimal solutions

Instance Opt. solution x∗ Opt. value
f(x∗)

The gap
of knap-
sack

f1 (1, 1, 0, 1) 35 2

f2 (0, 0, 1, 0, 1, 1, 1, 1, 1, 1) 52 3

f3 (1, 0, 0, 1, 0, 0, 0) 107 0

f4 (1, 1, 1, 1, 0) 130 20

f5 (1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1) 1025 8

The performances of the BSSA1 and BSSA2 algorithms are extensively investigated by
a large number of experimental studies. Nine 0-1 knapsack instances are considered to
testify the validity of the BSSA.
All the algorithms are implemented in Matlab 2014a. The test environment is set up

on a Desktop with Core i5 3340 CPU at 3.1 GHz, 4G RAM, running on Windows 10 (64
bit).

4.1. The performance of three algorithms on solving 0-1 knapsack problems
with small dimension sizes. In this section, five test functions collected from [9] are
used. In Table 1, five test functions with dimension are 4, 10, 7, 5, and 20, respectively.
Table 2 describes the optimal solutions of each function.
The experiment for these five test functions is run 30 independent times. For a fare

comparison, we adopt the same termination criterion, and the function evaluation limit
is set to 100000. Table 3 shows the experience results of six algorithms. In this test, the
algorithms BSSA2, BPSO1, and BPSO2 outperform the other algorithms.
To extensively study the performance of BSSA2, four strong correlated instances with

large dimension are also used.

4.2. The performance of three algorithms for solving 0-1 knapsack problems
with large dimension sizes. To test the performance of BSSA on KP01 with large
dimension, it is compared with both BPSO and GA on the 0-1 knapsack problem. In
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Table 3. Experimental results: the test functions f1-f5, the maximum
number evaluation 100000, the number of runs 30

Instance Algorithm Best Worst Mean Std
f1 BSSA1 35 35 35.00 0.00

BSSA2 35 35 35.00 0.00
BPSO1 35 35 35.00 0.00
BPSO2 35 35 35.00 0.00
GA1 35 33 34.60 0.81
GA2 35 35 35.00 0.00

f2 BSSA1 52 52 52.00 0.00
BSSA2 52 52 52.00 0.00
BPSO1 52 52 52.00 0.00
BPSO2 52 52 52.00 0.00
GA1 52 45 51.13 1.63
GA2 52 50 51.93 0.37

f3 BSSA1 107 105 106.87 0.51
BSSA2 107 107 107.00 0.00
BPSO1 107 107 107.00 0.00
BPSO2 107 107 107.00 0.00
GA1 107 81 102.43 5.64
GA2 107 96 105.67 2.20

f4 BSSA1 130 130 130.00 0.00
BSSA2 130 130 130.00 0.00
BPSO1 130 130 130.00 0.00
BPSO2 130 130 130.00 0.00
GA1 130 109 127.30 5.70
GA2 130 130 130.00 0.00

f5 BSSA1 1025 1019 1024.80 1.10
BSSA2 1025 1025 1025.00 0.00
BPSO1 1025 1025 1025.00 0.00
BPSO2 1025 1025 1025.00 0.00
GA1 1025 821 978.67 41.61
GA2 1025 996 1019.17 7.47

these test cases, strongly correlated sets of data are considered. The test instances are
generated as described by Truong et al. in [19].

We do experiment on four test instances with 50, 100, 500 and 1000 items. Figures 2,
3, 4 and 5 show the convergence curves of the best profits of BSSA1, BSSA2, BPSO1,
BPSO2, GA1, and GA2 in the four instances. The BSSA2 shows better diversification and
intensification when it is fast convergence and finds out the better profit value compared
with other ones.

It indicates the global search ability and the convergence ability of BSSA2. BSSA2
outperformed other algorithms in terms of convergence rate and profit amount.

As shown in Figures 2, 3, 4 and 5, the BSSA2 displays no premature convergence
in average profits throughout the iterations. The GA1 shows premature convergence
compared with BSSA2 in three test instances. The BSSA2 shows better diversification and
intensification when it is fast convergence and finds out the better profit value compared
with other algorithms.
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Figure 2. The convergence curve test function f6
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Figure 3. The convergence curve test function f7
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Table 4. Experimental results: the test functions f6-f9, the maximum
number evaluation 100000, the number of runs 30

Instance Algorithm Best Worst Mean Std
f6 BSSA1 1536 1536 1536.00 0.00

BSSA2 1536 1536 1536.00 0.00
BPSO1 1536 1486 1531.47 9.45
BPSO2 1536 1536 1536.00 0.00
GA1 1435 1230 1320.73 42.09
GA2 1486 1364 1432.20 38.62

f7 BSSA1 2978 2928 2975.30 10.57
BSSA2 2978 2977 2977.97 0.18
BPSO1 2886 2852 2874.10 6.55
BPSO2 2978 2978 2978.00 0.00
GA1 2728 2428 2576.33 66.28
GA2 2828 2628 2744.67 53.07

f8 BSSA1 15781 15190 15742.47 107.85
BSSA2 15781 15631 15758.10 37.54
BPSO1 14341 14109 14199.67 54.81
BPSO2 15531 15369 15432.43 33.66
GA1 15131 14631 14863.63 112.15
GA2 15129 14631 14791.30 124.35

f9 BSSA1 31419 29527 31239.27 358.36
BSSA2 31419 30926 31310.63 130.61
BPSO1 27660 27335 27453.03 81.29
BPSO2 30304 29954 30137.27 69.33
GA1 29245 28569 28919.00 177.83
GA2 29162 28567 28875.13 162.86

Table 4 shows the experimental results of the instances. We adopt the same termination
criterion, and the function evaluation limit is set to 100000, for all the tests. For all
the instances, the BSSA2 yields superior results compared with the other ones. The
series of experimental results demonstrate the superiority and effectiveness of BSSA2.
The experimental results show that BSSA2 outperforms the other algorithms in solution
quality. The reason for this superior performance of BSSA2 is that our proposed algorithm
has a good search ability and a greedy repair operator.

5. Conclusion. In this paper, a new algorithm has been proposed based on the binary
social spider algorithm with a greedy to solve 0-1 knapsack problem efficiently. Two
constraint techniques based on penalty factor and greedy strategy are proposed to improve
the efficiency of the proposed algorithm. The simulation results on five state-of-the-
art benchmark instances and strong correlated data sets demonstrate that the proposed
algorithm has superior performance compared with previous algorithms.
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