
International Journal of Innovative
Computing, Information and Control ICIC International c⃝2017 ISSN 1349-4198
Volume 13, Number 6, December 2017 pp. 2051–2065

RISK-REWARD STRATEGIES FOR THE NON-ADDITIVE
TWO-OPTION ONLINE LEASING PROBLEM

Xiaoli Chen and Weijun Xu∗

School of Business Administration
South China University of Technology

No. 381, Wushan Road, Tianhe District, Guangzhou 510641, P. R. China
chenxiaoli871122@163.com; ∗Corresponding author: xuweijun75@163.com

Received March 2017; revised July 2017

Abstract. We consider the non-additive two-option leasing problem, which is common
in the leasing market. In this problem there are two payment options to lease a piece of
equipment, where each Option i (for i = 1, 2) has two kinds of costs: the one-time cost
bi to start using Option i and the corresponding rental price ai of Option i. Without loss
of generality, we assume that a1 > a2 ≥ 0, b2 > b1 ≥ 0. And if we switch from Option 1
to Option 2, we should pay a transition cost c, where c ≥ b2 − b1. As the decision-maker
must make decisions at once without knowing the exact length of using the equipment,
this problem is online. In this paper we give the optimal deterministic strategy and its
competitive ratio by the method of competitive analysis. We also obtain the risk-reward
algorithms and strategies by taking the risk tolerance and probabilistic forecasts of the
decision-maker into consideration. In addition, we use numerical analysis to show the
influence of the parameters on the risk-reward strategies and the sensitivity of the tradi-
tional strategy to the parameters, which may help make decisions.
Keywords: Non-additive two-option online leasing, Competitive analysis, Risk toler-
ance, Probabilistic forecasts, Risk-reward strategies

1. Introduction. The leasing industry as a sunrise industry has demonstrated its re-
silience since the global economic crisis and the outlook are cautiously optimistic [1]. A
company or an individual without enough money to buy certain equipment can own the
right to use the equipment by leasing. To decide whether leasing is a beneficial way to
use the equipment or not, we should determine the length of using the equipment. How-
ever, in practice, it is hard to know the exact duration. This shows the online feature
of leasing. Fortunately, researchers explored the competitive analysis [2, 3] to study the
online problems and evaluate their strategies. We would find the appropriate strategy
through competitive ratio, which is the ratio of the cost paid by our online strategy to
the cost paid by the optimal offline strategy (which is obtained when everything is known
in advance).

The classical instance for online leasing problem is the “ski rental” problem [4, 5]: a
person plans to go skiing, but he has no idea of the exact ski duration. So he has to
decide whether to rent or buy a pair of skis. To rent the skis, he must pay 1 per day;
to buy the skis, he has to pay s (s > 1) and does not need to pay the rental fee any
longer. Then which is the optimal strategy, to rent, to buy, or to rent at first then
to buy? By means of competitive analysis, the optimal deterministic strategy can be
obtained. That is to rent the skis for the first s − 1 days, and then to buy the skis if he
continues to ski in the s-th day. The competitive ratio of this strategy is 2 − 1/s, which
means the online strategy never pays more than 2 − 1/s times the optimal offline cost
[5]. Considering randomization can sometimes improve the performance ratio, Karlin et
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al. [6] gave an e/(e − 1)-competitive online randomized algorithm. Since then, many
researchers extended the “ski rental” problem and considered into the extended online
rental problems practical economic factors, such as interest rate [7, 8], tax rate [9], and
price fluctuation [10, 11].

In the financial market, not all the decision-makers are risk averse. They are sometimes
willing to undertake the risk moderately to obtain higher reward. So the risk preference
of the decision-makers cannot be ignored. Al-Binali [12] introduced the decision-makers’
risk tolerance and forecast for the future into the “ski rental” problem. He defined the
risk and reward of a competitive algorithm and built the famous risk-reward model. In
this model, if the input σ is an instance of the problem Σ and the cost ratio of an online
algorithm A and the optimal algorithm OPT is denoted by RA(σ), then the competitive
ratio of A on the problem Σ is RA = sup

σ∈Σ
(RA(σ)) and the optimal competitive ratio for the

problem Σ is R∗ = inf
A

RA. The risk of A is defined as RA/R∗. If the decision-maker’s risk

tolerance is λ (λ ≥ 1), then the set of risk tolerable strategies is Iλ = {A|RA ≤ λR∗}. And
if the decision-maker has a forecast F ⊂ Σ, the restricted ratio of A is R̄A = sup

σ∈F
(RA(σ))

and the reward of A is R∗/R̄A when the forecast is correct. The risk-reward model is
to maximize R∗/R̄A subject to A ∈ Iλ. Then a lot of researchers studied the rental
problem based on this risk-reward framework. For example, Zhang et al. [13] analyzed
the risk-reward strategy for the online leasing of depreciable equipment with the interest
rate. Wang et al. [14] considered the online financial leasing problem and presented its
risk-reward model. Considered that the decision-maker can have more than one forecast,
Dong et al. [15] put forward a more flexible risk-reward model where each forecast has a
probability. This model contains Al-Binali’s risk-reward model, so in this paper we call
Al-Binali’s model the traditional risk-reward model and call the model of Dong et al.
[15] the general risk-reward model. Based on these two risk-reward frameworks, Zhang
et al. [16] gave the traditional and general risk-reward model for the online leasing of
depreciable equipment.

The aforementioned studies just analyzed the case that there were two options: pure
rental and pure buying options. However, more options can be chosen in the leasing
market. Considering the case with no pure buying option, Lotker et al. [17] studied the
ski rental problem with two general options: one is pure rental option and the other is
to pay a one-time cost and then to rent with a lower price. They gave a randomized
algorithm and proved its optimality. Further, Chen and Xu [18] continued the analysis
of the problem in [17] and presented the risk-reward strategy with compound interest
rate. Moreover, Fujiwara et al. [19] considered the ski rental problem with more than two
options and termed it the multislope ski rental problem. By mathematical programming
they obtained the infimum and supremum of the competitive ratio for the best possible
deterministic strategy. And Augustine et al. [20] regarded the “rent” and “buy” options
as the energy-consumption modes of a system and studied the power-down strategies with
more than one low-power state, where each state has its own power-consumption rate and
one-time cost. They discussed two variants of this problem: one is the additive case,
where the transition cost from one state to another is the difference of the corresponding
one-time cost; the other is the non-additive case, where the transition cost is arbitrary.
Further, Lotker et al. [21] took randomization into the multislope ski rental problem and
studied the randomized algorithms for this problem. They put forward the best possible
online randomized algorithm for the additive instance and an e-competitive randomized
algorithm for any instance. However, few papers study the non-additive online leasing
problem and give the analytical form of the competitive ratio even for the two-option case.
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Motivated by [20, 21], Levi and Patt-Shamir [22] studied a non-additive two-option online
leasing problem, and we call it NTOLP for short. They gave the optimal deterministic
and randomized algorithms for this problem. In this problem the two rental options are
such that each Option i (for i = 1, 2) is characterized by the one-time cost bi to start
using Option i and the corresponding rental cost ai per unit of time for using Option i.
And it is assumed that b2 > b1 ≥ 0, a1 > a2 ≥ 0. However, transition from Option 1 to
Option 2 costs c, which means if we start with Option 1 at time 0 and switch to Option
2 at time t > 0, then the total cost at time T ≥ t is b1 + a1t + c + a2(T − t). Besides,
c ≥ b2− b1, otherwise the leasing problem is simplified to the additive version [22]. In this
paper we mark this problem as (a1, b1; a2, b2; c)-NTOLP. There is a simplified variant in the
study of [22], where the parameters satisfy 0 ≤ b1 < b2 ≤ 1, c ≥ b2 − b1 and ai = 1 − bi

for i = 1, 2. We mark this simplified variant as (b1, b2, c)-NTOLP.
Considering that Levi and Patt-Shamir [22] did not take decision-maker’s risk pref-

erence and estimation of market demand into account, and the studies based on the
risk-reward frameworks just analyzed the additive leasing problems, in this paper we in-
troduce decision-maker’s risk tolerance and forecasts for the duration into the NTOLP
and give the risk-reward strategies based on [12, 15]. We first present the optimal de-
terministic competitive ratio of (a1, b1; a2, b2; c)-NTOLP and the optimal competitive ratio

is min
{

1 + c(a1−a2)
a1b2−a2b1

, b2
b1

, a1

a2

}
. Then we obtain the optimal traditional and general risk-

reward strategies and algorithms for (a1, b1; a2, b2; c)-NTOLP. And for (b1, b2, c)-NTOLP, we
also get more simplified risk-reward strategies. Through these strategies the decision-
maker can know when to switch to the other option based on his own risk tolerance and
forecasts for the future.

The remainder of this paper is organized as follows. In Section 2, we provide the
optimal deterministic strategy for (a1, b1; a2, b2; c)-NTOLP without any forecast by means
of competitive analysis. In Section 3, we obtain the traditional and general risk-reward
strategies for (a1, b1; a2, b2; c)-NTOLP and (b1, b2, c)-NTOLP based on the risk-reward frame-
work of [12, 15]. In Section 4, we give numerical analysis. Finally, a summary of this
paper is presented in Section 5.

2. Deterministic Online Leasing Strategy. A company needs a piece of equipment,
but there is not enough cash to buy it. Then the decision-maker decides to rent it. When
facing the NTOLP, what is the optimal leasing method? In this section, we provide an
optimal deterministic online leasing strategy and its competitive ratio for the NTOLP.

Assume the length of using the equipment is T , which is known to the offline adversary
and unknown to the online decision-maker. Let T ∗ = b2−b1

a1−a2
, and then for the offline

adversary, the cost of the optimal offline algorithm, OPT, is

CostOPT (T ) =

{
b1 + a1T, T < T ∗;
b2 + a2T, T ≥ T ∗.

For the online decision-maker the cost is related to the switching time and unknown
duration. We define an online strategy St, which starts to use Option 2 at time t (0 ≤
t ≤ ∞).

Firstly, when t = 0, the online strategy S0 uses Option 2 at the beginning and till the
end. Then the cost of S0 is CostS(T ) = b2 + a2T . S0 is optimal when T ≥ T ∗. When
0 ≤ T < T ∗, the competitive ratio of S0 is R(0) = sup

T<T ∗

b2+a2T
b1+a1T

= b2
b1

.

Next, when t > 0, the cost of the online strategy St is

CostS(t; T ) =

{
b1 + a1T, T < t;
b1 + a1t + c + a2(T − t), T ≥ t.

(1)
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Let R(t; T ) = CostS(t;T )
CostOPT (T )

and R(t) = sup
T

R(t; T ). Then R(t) is the competitive ratio of

the online strategy St according to the definition of competitive ratio. Now we discuss
the optimal strategy in two cases.

Case 1: If 0 < t < T ∗, then

R(t; T ) =


1, 0 < T < t;
b1 + a1t + c + a2(T − t)

b1 + a1T
, t ≤ T < T ∗;

b1 + a1t + c + a2(T − t)

b2 + a2T
, T ≥ T ∗.

Through derivation we can find that R(t; T ) decreases with respect to T in both the
second and third intervals. Then the maxima are obtained in the left endpoint of these
two intervals. So the competitive ratio of St is

R(t) = max

{
b1 + a1t + c

b1 + a1t
,
b1 + a1t + c + a2(T

∗ − t)

b2 + a2T ∗

}
=

b1 + a1t + c

b1 + a1t
.

To obtain a competitive ratio as small as possible, the online decision-maker will choose
t → T ∗ as R(t) decreases with respect to t. Then the optimal competitive ratio in this

case is lim
t→T ∗

R(t) = 1 + c(a1−a2)
a1b2−a2b1

.

Case 2: If t ≥ T ∗, then

R(t; T ) =


1, 0 < T < T ∗;
b1 + a1T

b2 + a2T
, T ∗ ≤ T < t;

b1 + a1t + c + a2(T − t)

b2 + a2T
, T ≥ t.

According to the monotonicity of this piecewise function in each interval, we know
that R(t; T ) approaches its greatest value at T = t and the competitive ratio of St is
R(t) = b1+a1t+c

b2+a2t
. By differentiating R(t) with respect to t we obtain

dR(t)

dt
=

a1(b2 + a2t) − a2(b1 + a1t + c)

(b2 + a2t)2
=

a1b2 − a2b1 − a2c

(b2 + a2t)2
.

Then R(t), as a function of t, is increasing if c ≤ a1b2−a2b1
a2

and decreasing if c >
a1b2−a2b1

a2
. If c ≤ a1b2−a2b1

a2
, the competitive ratio can reach its lower bound when t = T ∗.

Then the optimal competitive ratio in this case is R(T ∗) = b1+a1T ∗+c
b2+a2T ∗ = 1 + c(a1−a2)

a1b2−a2b1
. If

c > a1b2−a2b1
a2

, the competitive ratio is lower bounded by the limit as t → ∞. Then the

optimal competitive ratio in this case is lim
t→∞

R(t) = a1

a2
.

In conclusion, we can obtain a theorem as follows:

Theorem 2.1. The deterministic optimal competitive ratio of the NTOLP is

R∗ = min

{
1 +

c(a1 − a2)

a1b2 − a2b1

,
b2

b1

,
a1

a2

}
.
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The optimal switching time t∗ is

t∗ =



0,
b2

b1

≤ min

{
1 +

c(a1 − a2)

a1b2 − a2b1

,
a1

a2

}
;

T ∗, 1 +
c(a1 − a2)

a1b2 − a2b1

≤ min

{
b2

b1

,
a1

a2

}
;

∞,
a1

a2

≤ min

{
1 +

c(a1 − a2)

a1b2 − a2b1

,
b2

b1

}
.

If we substitute ai = 1 − bi for i = 1, 2 into Theorem 2.1, then we can get the optimal
deterministic competitive ratio for (b1, b2, c)-NTOLP, which is the same as that in the study
of [22]. This shows our deterministic strategy generalizes the strategy in [22].

3. Risk-Reward Strategies. In Section 2, we discussed the deterministic strategy using
competitive analysis. However, it is well known that competitive analysis is a kind of
worst-case analyses and it is considered to be too pessimistic. And sometimes the decision-
maker would take advantage of the risk rather than avoid it completely. Fortunately, Al-
Binali [12] put forward a risk-reward framework, by which the decision-maker can benefit
from a correct forecast and control the risk within his tolerance when the forecast falls.
So in this section we introduce the risk tolerance of the decision-maker and search for the
traditional risk-reward strategy for the NTOLP. Besides, we consider the probabilistic
forecasts and give a general risk-reward strategy for the NTOLP based on the framework
of [15]. Then the decision-maker can take his risk preference and forecasts into account
and obtain the optimal strategy according to these two risk-reward strategies when facing
the NTOLP.

We assume that the decision-maker’s risk tolerance is λ (λ ≥ 1). Then the set of

risk tolerant strategies is Iλ = {St|R(t) ≤ λR∗}. In addition, we assume 1 + c(a1−a2)
a1b2−a2b1

≤
min

{
b2
b1

, a1

a2

}
for the moment. The results can be similarly obtained using the same method

when b2
b1

≤ min
{

a1

a2
, 1 + c(a1−a2)

a1b2−a2b1

}
and a1

a2
≤ min

{
b2
b1

, 1 + c(a1−a2)
a1b2−a2b1

}
. In the calculating

process, we just need to remember the corresponding optimal deterministic switching time

and competitive ratio. Through simplifying inequality 1+ c(a1−a2)
a1b2−a2b1

≤ min
{

b2
b1

, a1

a2

}
, we can

get c ≤ min
{

a1b2−a2b1
a2

, (b2−b1)(a1b2−a2b1)
a1b1−a2b1

}
. In this case the optimal deterministic strategy

for (a1, b1; a2, b2; c)-NTOLP is ST ∗ , and its optimal competitive ratio is R∗ = 1 + c(a1−a2)
a1b2−a2b1

.

For (b1, b2, c)-NTOLP, the assumption turns to c ≤ min
{

b2−b1
b1

, b2−b1
1−b2

}
. And the optimal

deterministic strategy is ST ∗′ , where T ∗′ = 1, and its optimal competitive ratio is R∗′ =
1 + c. In addition, we assume that all the strategies of the decision-maker always use
Option 1 first, then switch to Option 2, which indicates 0 < t < ∞. Then the cost of the
online strategy St for (a1, b1; a2, b2; c)-NTOLP is exactly Equation (1). The cost of St for
(b1, b2, c)-NTOLP can be obtained similarly by substituting 1 − bi for ai (i = 1, 2).

3.1. Traditional risk-reward strategy for (a1, b1;a2, b2; c)-NTOLP. In this subsec-
tion, we determine the optimal risk-reward strategy with a definite forecast by applying
Al-Binali’s framework to (a1, b1; a2, b2; c)-NTOLP.

Suppose there are two forecasts, one is F1 = {T : T < T ∗}, and the other is F2 = {T :
T ≥ T ∗}. If the forecast F1 is correct, then in the set Iλ the strategies that switch to
Option 2 after time T ∗ can be used by the online decision-maker. In this case the offline
adversary always uses Option 1, so the optimal restricted ratio is R̄∗

F = 1. For the forecast
F2, we have the following theorem.
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Theorem 3.1. If the forecast F2 is correct, then the optimal risk-reward strategy for the
online decision-maker is to switch to Option 2 at time t∗F when the decision-maker’s risk
tolerance is λ (1 ≤ λ < ∆) and the parameters in (a1, b1; a2, b2; c)-NTOLP are given, where

∆ =
(b1 + c)(a1b2 − a2b1)

b1(a1b2 − a2b1) + cb1(a1 − a2)
,

t∗F =
c(a1b2 − a2b1)

(λ − 1)a1(a1b2 − a2b1) + λa1c(a1 − a2)
− b1

a1

.

And the optimal restricted ratio is

R̄∗
F =

b1 + a1t
∗
F + c + a2 (T ∗ − t∗F )

b2 + a2T ∗ .

Proof: Firstly, we compute the set of risk tolerant strategies.

1) When t < T ∗, through R(t) = 1 + c
b1+a1t

≤ λR∗ = λ
(
1 + c(a1−a2)

a1b2−a2b1

)
we can obtain

t ≥ c(a1b2 − a2b1)

(λ − 1)a1(a1b2 − a2b1) + λa1c(a1 − a2)
− b1

a1

∆
= t1.

Because 1 ≤ λ < ∆, we know that t1 > 0.

2) When t ≥ T ∗, through R(t) = b1+a1t+c
b2+a2t

≤ λR∗ = λ
(
1 + c(a1−a2)

a1b2−a2b1

)
we can obtain

[(a1−λa2)(a1b2−a2b1)−λa2c(a1−a2)]t ≤ (λb2− b1− c)(a1b2−a2b1)+λb2c(a1−a2). (2)

Because R(t) increases with respect to t and R(T ∗) = R∗ ≤ λR∗ holds, it is only to discuss
the relationship of lim

t→∞
R(t) = a1

a2
and λR∗ to solve Inequality (2). We assume

W1 = (a1 − λa2)(a1b2 − a2b1) − λa2c(a1 − a2),

W2 = (λb2 − b1 − c)(a1b2 − a2b1) + λb2c(a1 − a2).

Then Inequality (2) can be simplified to W1t ≤ W2. Next, we solve this inequality in two
cases.

(I) When a1

a2
≤ λ

(
1 + c(a1−a2)

a1b2−a2b1

)
, we have W1 ≤ 0, but

W2 = λb2[a1b2 − a2b1 + c(a1 − a2)] − (b1 + c)(a1b2 − a2b1)

≥ a1b2(a1b2 − a2b1)

a2

− (b1 + c)(a1b2 − a2b1)

=
(a1b2 − a2b1 − ca2)(a1b2 − a2b1)

a2

≥ 0.

In this case, the solution to Inequality (2) is {t|t ≥ T ∗}.
(II) When a1

a2
> λ

(
1 + c(a1−a2)

a1b2−a2b1

)
, we have W1 > 0. Through simple computation we

get that

W2(a1 − a2) − W1(b2 − b1) = (λ − 1)(a1b2 − a2b1)[a1b2 − a2b1 + c(a1 − a2)] ≥ 0,

and then we have W2 ≥ W1(b2−b1)
a1−a2

> 0. If we define t2 = W2/W1, we obtain the solution

to Inequality (2) is {t|T ∗ ≤ t ≤ t2}.
Through (I) and (II), we obtain the solution to Inequality (2) is {t|t ≥ T ∗} when W1 ≤ 0

and {t|T ∗ ≤ t ≤ t2} when W1 > 0.
Hence, considering 1) and 2) we can know that the set of risk tolerant strategies is

Iλ = {St|t ≥ t1} when W1 ≤ 0 and Iλ = {St|t1 ≤ t ≤ t2} when W1 > 0.
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Secondly, we compute the restricted ratio through R̄F (t) = sup
T∈F2

CostS(t;T )
CostOPT (T )

. After cal-

culation, we obtain

R̄F (t) =


b1 + a1t + c + a2(T

∗ − t)

b2 + a2T ∗ , t < T ∗;

b1 + a1t + c

b2 + a2t
, t ≥ T ∗.

Obviously, R̄F (t) increases with respect to t not only when t < T ∗ but also when t ≥ T ∗.
According to Al-Binali’s risk-reward framework, we just need to find a strategy from

the set of risk tolerant strategies Iλ such that the restricted ratio reaches its infimum. On
the basis of the monotonicity of R̄F (t), the minimum of R̄F (t) is R̄F (t1) when t < T ∗ and
R̄F (T ∗) when t ≥ T ∗. Then we can get that the switching time of the optimal risk-reward
strategy can be chosen between t1 and T ∗. By contrast, we obtain R̄F (t1) < R̄F (T ∗).
So the optimal switching time is t∗F = t1, the optimal risk-tolerant online strategy is to
switch to Option 2 at time t∗F , and the optimal restricted ratio is R̄∗

F = R̄F (t∗F ). Then
the theorem is proved.

According to Theorem 3.1 we can find that t∗F and R̄∗
F decrease with the risk tolerance

λ. That is to say, when the forecast F2 is correct, the bigger the decision-maker’s risk
tolerance λ, the earlier the optimal switching time t∗F and the smaller the restricted ratio
R̄∗

F . Moreover, if we assume a = a1 − a2 and b = b2 − b1, we can obtain the expressions of
t∗F and R̄∗

F about a and b. Through simple derivations we can find that t∗F decreases with
a and increases with b, on the contrary, R̄∗

F increases with a and decreases with b.

3.2. General risk-reward strategy for (a1, b1;a2, b2; c)-NTOLP. For online prob-
lems, the decision-maker does not know the exact duration of using the equipment. How-
ever, he can get or presume the probabilities that the duration belongs to some intervals
on the basis of his experiences and the past and current market information. Specially, the
decision-maker divides the duration into two intervals and has two corresponding forecasts
F1 = {T : T < T ∗} and F2 = {T : T ≥ T ∗}. According to his experiences and the market
information, he can estimate the probabilities Pi that forecast Fi occurs for i = 1, 2, where
P1 + P2 = 1. In this subsection, we introduce the risk-reward framework of Dong et al.
[15] into the NTOLP. Here, we assume that the decision-maker’s risk tolerance is still λ
(1 ≤ λ < ∆). Then we have the following theorem.

Theorem 3.2. If the decision-maker’s risk tolerance is λ (1 ≤ λ < ∆) and probabilis-
tic forecasts are {(F1, P1), (F2, P2)}, the optimal risk-reward strategy for (a1, b1; a2, b2; c)-
NTOLP is St∗PF

, where the optimal switching time is

t∗PF =


t1, 0 ≤ P1 <

a1b2 − a2b1

ca1 + a1b2 − a2b1

& τ < t1 & R̄PF (t1) < R̄PF (T ∗);

τ, 0 ≤ P1 <
a1b2 − a2b1

ca1 + a1b2 − a2b1

& t1 ≤ τ & R̄PF (τ) < R̄PF (T ∗);

T ∗, otherwise.

(3)

The expressions of τ and function R̄PF (·) refer to the following proof.

Proof: For the same risk tolerance λ and online leasing problem, the set of risk-tolerant
strategies is the same as that in the proof of Theorem 3.1. That is to say, the risk tolerable
set is Iλ = {St|t1 ≤ t ≤ t2} when W1 > 0 and Iλ = {St|t ≥ t1} when W1 ≤ 0.

Next, we compute the restricted ratio R̄PF (t) = P1R̄1(t) + P2R̄2(t), where R̄i(t) =

sup
T∈Fi

CostS(t;T )
CostOPT (T )

for i = 1 or 2.
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When t < T ∗, we can obtain R̄1(t) = b1+a1t+c
b1+a1t

and R̄2(t) = sup
T∈F2

b1+a1t+c+a2(T−t)
b2+a2T

=

b1+a1t+c+a2(T ∗−t)
b2+a2T ∗ . When t ≥ T ∗, we have R̄1(t) = 1 and R̄2(t) = b1+a1t+c

b2+a2t
. Then, applying

the definition of the restricted ratio we have

R̄PF (t) =


P1

b1 + a1t + c

b1 + a1t
+ P2

b1 + a1t + c + a2(T
∗ − t)

b2 + a2T ∗ , t < T ∗;

P1 + P2
b1 + a1t + c

b2 + a2t
, t ≥ T ∗.

(4)

By differentiating Equation (4) with respect to t we obtain

dR̄PF (t)

dt
=


−P1

ca1

(b1 + a1t)2
+ P2

(a1 − a2)
2

a1b2 − a2b1

, t < T ∗;

P2
a1b2 − a2b1 − ca2

(b2 + a2t)2
, t ≥ T ∗.

As c ≤ a1b2−a2b1
a2

, then R̄PF (t) increases with t when t ≥ T ∗ and R̄PF (t) reaches its

minimum 1 + P2
c(a1−a2)
a1b2−a2b1

at t = T ∗. For t < T ∗, we assume that h(t) = −P1
ca1

(b1+a1t)2
+

P2
(a1−a2)2

a1b2−a2b1
. It is easy to find that h(t) increases with respect to t. If we order h(t) = 0,

we get t = − b1
a1

+ 1
a1(a1−a2)

√
ca1P1(a1b2−a2b1)

1−P1
, τ . By comparing τ and T ∗, we can obtain

the following results. (I) If τ ≥ T ∗, that is a1b2−a2b1
ca1+a1b2−a2b1

≤ P1 ≤ 1, then h(t) ≤ 0 when

t < T ∗. In this case, R̄PF (t) is decreasing and the infimum is lim
t→T ∗−

R̄PF (t) = 1+ c(a1−a2)
a1b2−a2b1

.

(II) If τ < T ∗, that is 0 ≤ P1 < a1b2−a2b1
ca1+a1b2−a2b1

, then h(t) < 0 when t < τ and h(t) ≥ 0

when τ ≤ t < T ∗. In this case, R̄PF (t) is decreasing when t < τ and increasing when
τ ≤ t < T ∗. So the minimum for R̄PF (t) is R̄PF (τ) when τ < T ∗. As we must choose a
strategy from the risk tolerable set Iλ, the minimum for R̄PF (t) where t < T ∗ turns to
R̄PF (t1) when τ < t1 < T ∗ and R̄PF (τ) when t1 ≤ τ < T ∗. Above all, through contrasting
the local minima we can obtain the optimal switching time as Equation (3). The theorem
is thus proved.

According to Theorem 3.2 and Al-Binali’s definition of the reward, we find that the
optimal switching time is T ∗ when P1 = 1 and the reward of risk compensation is
R∗/R̄(T ∗) = R∗; the optimal switching time is t1 when P2 = 1 and the reward of risk
compensation is R∗/R̄PF (t1).

Based on the proof of Theorem 3.2, we obtain the optimal risk-reward algorithm as
Algorithm 3.1.

For different input parameters, we can get the corresponding optimal risk-reward strate-
gies by Algorithm 3.1. Besides, when the forecast F2 is true, that is P1 = 0, Algorithm
3.1 is simplified as the algorithm to obtain the optimal traditional risk-reward strategy.

3.3. Risk-reward strategies for (b1, b2, c)-NTOLP. In this subsection, we discuss (b1,
b2, c)-NTOLP in [22] with the assumptions 0 ≤ b1 < b2 ≤ 1 and ai = 1 − bi for i = 1, 2,
and then we can obtain new optimal switching time and new restricted competitive ratio
with less parameters for the traditional and general strategies. In (b1, b2, c)-NTOLP, the
forecasts for the duration are F ′

1 = {T : T < T ∗′} and F ′
2 = {T : T ≥ T ∗′}, where T ∗′ = 1.
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Algorithm 3.1. The optimal risk-reward algorithm for (a1, b1; a2, b2; c)-NTOLP

Input (a1, b1; a2, b2; c) in the NTOLP, the forecast probability P1 and the risk
tolerance λ.

Compute T ∗ = b2−b1
a1−a2

and t1 = c(a1b2−a2b1)
(λ−1)a1(a1b2−a2b1)+λa1c(a1−a2)

− b1
a1

, simplify the function

R̄PF (t) in Equation (4).
1. If 0 ≤ P1 < a1b2−a2b1

ca1+a1b2−a2b1
, then

τ := − b1
a1

+ 1
a1(a1−a2)

√
ca1P1(a1b2−a2b1)

1−P1
.

(1) If τ < t1 and R̄PF (t1) < R̄PF (T ∗),
then t∗PF := t1, R̄PF (t∗PF ) := R̄PF (t1).

(2) Else if t1 ≤ τ and R̄PF (τ) < R̄PF (T ∗),
then t∗PF := τ , R̄PF (t∗PF ) := R̄PF (τ).

(3) Else t∗PF := T ∗, R̄PF (t∗PF ) := R̄PF (T ∗).
2. Else t∗PF := T ∗, R̄PF (t∗PF ) := R̄PF (T ∗).
Output the optimal switching time t∗PF and the restricted ratio R̄PF (t∗PF ) of the

risk-reward strategy St∗PF
.

Theorem 3.3. For the decision-maker with risk tolerance λ (1 ≤ λ < ∆′), if the forecast
F ′

2 is true, then the optimal switching time t∗F ′ and competitive ratio R̄∗
F ′ for (b1, b2, c)-

NTOLP are

t∗F ′ =
c

(1 − b1)(λc + λ − 1)
− b1

1 − b1

,

R̄∗
F ′ =

λc(1 − b1) + (λ − 1)(1 − b2)

(1 − b1)(λc + λ − 1)
(1 + c),

where ∆′ = b1+c
b1(1+c)

.

Proof: By substituting ai = 1 − bi (for i = 1, 2) into the expressions of t∗F and R̄∗
F in

Theorem 3.1, we would get t∗F ′ and R̄∗
F ′ .

In this case we can find that t∗F ′ is independent of b2. And through simple derivations
we can obtain that t∗F ′ decreases with respect to b1 and λ, but it increases with respect to
c. This shows that bigger b1 or higher risk tolerance λ can make the optimal risk-reward
strategy switch to Option 2 ahead of time; on the contrary, bigger switching cost c can
put the optimal switching time off. Similarly, we can get that R̄∗

F ′ decreases with respect
to λ and b2, but increases with c and b1.

When we consider the decision-maker’s probabilistic forecasts {(F ′
1, P1), (F

′
2, P2)}, we

can obtain the following theorem.

Theorem 3.4. For (b1, b2, c)-NTOLP, when the decision-maker’s risk tolerance is λ (1 ≤
λ < ∆′) and the probabilistic forecasts are {(F ′

1, P1), (F
′
2, P2)}, the optimal general risk-

reward online strategy is St∗
PF ′ , where

t∗PF ′ =


t′1, {0 ≤ P1 < ϕ3 & (λ − 1)(1 + c) ≤ c}

or {0 ≤ P1 < ϕ2 & (λ − 1)(1 + c) > c};
τ ′, ϕ2 ≤ P1 < ϕ4 & (λ − 1)(1 + c) > c;
T ∗′, otherwise,

(5)

in which the expressions of t′1, τ ′, ϕ2, ϕ3, ϕ4 can be found in the following proof.

Proof: We substitute ai = 1−bi into the expressions of t1, τ , T ∗ and function R̄PF (·) in
Theorem 3.2, and then we can obtain new optimal switching time t∗PF ′ with less parameters
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for the optimal general risk-reward strategy, where

t∗PF ′ =


t′1, 0 ≤ P1 <

b2 − b1

c(1 − b1) + b2 − b1

& τ ′ < t′1 & R̄PF ′(t′1) < R̄PF ′(T ∗′);

τ ′, 0 ≤ P1 <
b2 − b1

c(1 − b1) + b2 − b1

& t′1 ≤ τ ′ & R̄PF ′(τ ′) < R̄PF ′(T ∗′);

T ∗′, otherwise,

(6)

in which t′1 = t∗F ′ , T ∗′ = 1, τ ′ = − b1
1−b1

+
√

cP1

(1−b1)(b2−b1)(1−P1)
, and the function R̄PF ′(·) is

R̄PF ′(t) =


P1

c

b1 + (1 − b1)t
+ (1 − P1)[(b2 − b1)t + c + b1 − b2] + 1, t < 1;

P1 + (1 − P1)
b1 + (1 − b1)t + c

b2 + (1 − b2)t
, t ≥ 1.

(7)

Next, we simplify Equation (6) further.
Define ϕ1 = b2−b1

c(1−b1)+b2−b1
. As

τ ′ < t′1 ⇔ − b1

1 − b1

+

√
cP1

(1 − b1)(b2 − b1)(1 − P1)
<

c

(1 − b1)(λc + λ − 1)
− b1

1 − b1

⇔ P1 <
c(b2 − b1)

c(b2 − b1) + (1 − b1)(λc + λ − 1)2
, ϕ2,

and ϕ1 ≥ ϕ2 because of λc + λ − 1 ≥ c, we can simplify Equation (6) as

t∗PF ′ =

 t′1, 0 ≤ P1 < ϕ2 & R̄PF ′(t′1) < R̄PF ′(T ∗′);
τ ′, ϕ2 ≤ P1 < ϕ1 & R̄PF ′(τ ′) < R̄PF ′(T ∗′);
T ∗′, otherwise.

(8)

On the basis of Equation (7) we can find that R̄PF ′(t′1) < R̄PF ′(T ∗′) is equivalent to

P1(λc+λ−1)+(1−P1)

[
c +

c(b2 − b1) − (b2 − b1)(λc + λ − 1)

(1 − b1)(λc + λ − 1)

]
+1 < P1+(1−P1)(1+c).

By solving this inequality we can get that

P1 <
(λ − 1)(b2 − b1)(1 + c)

(λ − 1)(b2 − b1)(1 + c) + (1 − b1)(λc + λ − 1)2
, ϕ3.

Then we contrast ϕ2 and ϕ3. Since ϕ3 − ϕ2 = β[(λ − 1)(1 + c) − c], where β is a function
of b1, b2, c and λ, and we can prove that β > 0, then ϕ3 ≤ ϕ2 when (λ− 1)(1+ c) ≤ c and
ϕ3 > ϕ2 when (λ − 1)(1 + c) > c. So Equation (8) can be simplified further more as

t∗PF ′ =


t′1, {0 ≤ P1 < ϕ3 & (λ − 1)(1 + c) ≤ c}

or {0 ≤ P1 < ϕ2 & (λ − 1)(1 + c) > c};
τ ′, ϕ2 ≤ P1 < ϕ1 & R̄PF ′(τ ′) < R̄PF ′(T ∗′);
T ∗′, otherwise.

(9)

Likewise, through R̄PF ′(τ ′) < R̄PF ′(T ∗′) we can obtain

P1 <
b2 − b1

b2 − b1 + 4c(1 − b1)
, ϕ4.

It is easy to find that ϕ4 ≤ ϕ1. Now we compare ϕ2 and ϕ4. By simple calculation, we
have

ϕ4 − ϕ2 =
(1 − b1)(b2 − b1)(λc + λ − 1 + 2c)[(λ − 1)(1 + c) − c]

[b2 − b1 + 4c(1 − b1)][c(b2 − b1) + (1 − b1)(λc + λ − 1)2]
.
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Then we can know that ϕ4 > ϕ2 when (λ−1)(1+c) > c and ϕ4 ≤ ϕ2 when (λ−1)(1+c) ≤ c.
However, it is impossible for P1 to satisfy ϕ2 ≤ P1 < ϕ1 and P1 < ϕ4 at the same time
when ϕ4 ≤ ϕ2. Therefore, Equation (9) can be simplified down to Equation (5). Thus,
Theorem 3.4 is proved.

According to Theorem 3.4 we can get the optimal restricted ratio R̄∗
PF ′ = R̄PF ′(t∗PF ′)

by substituting t∗PF ′ into Equation (7). We can also obtain the following more simplified
conclusion. With regard to the parameters given in Theorem 3.4, if (λ−1)(1+c) ≤ c, then
the optimal switching time t∗PF ′ of the optimal general risk-reward strategy for (b1, b2, c)-
NTOLP is

t∗PF ′ =

{
t′1, 0 ≤ P1 < ϕ3;

T ∗′, otherwise,

and if (λ − 1)(1 + c) > c, then it is

t∗PF ′ =


t′1, 0 ≤ P1 < ϕ2;

τ ′, ϕ2 ≤ P1 < ϕ4;

T ∗′, otherwise.

Then the decision-maker can switch to Option 2 at the matching time t∗PF ′ according
to the above conclusion.

Besides, we can find that the conclusion in Theorem 3.4 coincides with that in Theorem
3.3 when P1 = 0. This means that our general risk-reward strategy extends Al-Binali’s
risk-reward strategy.

Remark 3.1. To make 1 ≤ λ < ∆ (or 1 ≤ λ < ∆′) is to have t1 > 0 (or t′1 > 0). Since
the decision-makers always have limited risk tolerance, the restriction on λ is reasonable.
When λ ≥ ∆ (or ∆′), we can obtain the corresponding optimal switching time for the
risk-reward strategies in the same way. And the optimal switching time is similar to ours.
The only difference is that t∗F , t∗F ′, t1 and t′1 are replaced by an arbitrarily small number
ε > 0. In this paper we do not make a specific analysis of this case for the moment.

4. Numerical Analysis. In this section, we analyze the influence of the decision-maker’s
risk tolerance, parameters in the NTOLP, and forecast probabilities on the optimal tradi-
tional and general risk-reward strategies. For simplicity, we only discuss the NTOLP with
the assumptions in [22], that is (b1, b2, c)-NTOLP. For (a1, b1; a2, b2; c)-NTOLP, the influence
can be analyzed similarly. In addition, we use b1 = 0.2, b2 = 0.7, c = 1 and λ = 1.4
as the benchmarks. In the following examples we will analyze the risk-reward strategies
based on these benchmarks. Additionally, we take P1 = 0.1 when we discuss the general
risk-reward strategy. The problem with other benchmarks and forecast probabilities can
be studied in the same way.

Firstly, we discuss the influence of the parameters on the optimal switching time. By
functions t∗F ′ and t∗PF ′ , we obtain Figure 1.

According to Figure 1 we can find that for fixed b2 and λ, the optimal switching time
t∗F ′ and t∗PF ′ is non-increasing with respect to b1 and increasing with respect to c. For
fixed b1 and c, t∗PF ′ is non-increasing with respect to b2. However, t∗F ′ does not change
along with b2, which agrees with the theoretical results. Moreover, larger risk tolerance
can bring earlier optimal switching time. Generally, both t∗F ′ and t∗PF ′ are not larger than
T ∗′ = 1, which means that the risk-reward strategies usually switch to Option 2 before
the deterministic optimal strategy.

Next, we discuss the influence of the parameters on the optimal restricted ratios. Ac-
cording to the functions of R̄∗

F ′ and R̄∗
PF ′ , we can obtain Figure 2.
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Figure 1. Variation of optimal switching time with different parameters
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Figure 2. Variation of optimal restricted ratio with different parameters

According to Figure 2 we discover that the monotonicity of R̄∗
PF ′ with respect to b1,

b2, c and λ is similar to that of R̄∗
F ′ . When b2 = 0.7 and λ = 1.4, R̄∗

F ′ and R̄∗
PF ′ increase
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with respect to b1 for fixed c, and they also increase with respect to c for fixed b1. In
addition, when b1 = 0.2 and c = 1, the larger the decision-maker’s risk tolerance is, the
smaller the restricted ratios are. And they decrease with respect ro b2 when λ is fixed.
Because R̄∗′ = 1 + c, from Figure 2 we can find that the restricted ratios are smaller than
R̄∗′, which means that both of the risk-reward strategies are superior to the deterministic
optimal strategy.

Because the largest improvement is R∗′ − 1, we refer to the studies of [13, 16] and

take imp =
R∗′−R̄∗

F ′
R∗′−1

as the improvement measurement of the risk-reward strategy over
the deterministic competitive ratio R∗′. Here we only take the traditional risk-reward
strategy for example. The analysis of the improvement is similar for the general one.
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Figure 3. Variation of the improvement with different parameters

From Figure 3 we can find that no matter how the parameters change, the risk-reward
strategy can improve the online strategy to different degrees. Especially, larger risk tol-
erance can bring higher improvement when other parameters are given.

Finally, we analyze the sensitivities of the optimal switching time and restricted ratio to
the parameters for the traditional risk-reward strategy. The analysis for the general risk-
reward strategy is similar. The decision-maker’s risk tolerance does not usually change
a lot in the short term, so we assume λ = 1.4 for the moment. Then according to the
functions t∗F ′ and R̄∗

F ′ we can compute the corresponding values when b1, b2 and c vary.
We mark the values of t∗F ′ and R̄∗

F ′ as the reference values when b1 = 0.2, b2 = 0.7 and

c = 1, which are the benchmarks. Then the relative deviations of t∗F ′ and R̄∗
F ′ are

∆t∗
F ′

t∗
F ′

and

∆R̄∗
F ′

R̄∗
F ′

, respectively. And we give the relative deviations in percentage when the sensitivity

parameters range between −20% and 20% of the values of the benchmarks in Figure 4.
From Figure 4 it is easy to find that both t∗F ′ and R̄∗

F ′ are very sensitive to c. And t∗F ′

is also very sensitive to b1. However, it is not sensitive to b2, which fits the fact that t∗F ′

is independent of b2. In contrast, R̄∗
F ′ is sensitive to b2, but it is less sensitive to b1. In

general, b1 and c have a great influence on the optimal risk-reward strategy. However, in
comparison to b1 and b2, the transition cost c influences the performance of the optimal
risk-reward strategy to a greater extent.

5. Conclusion. In this paper, we give the optimal deterministic competitive strategy for
the NTOLP. As the traditional competitive analysis does not take any information about



2064 X. CHEN AND W. XU

(a)
amplitude of fluctuation

re
la

tiv
e 

de
vi

at
io

n 
of

 t
F

’*

−20 % −10 % 0 % 10 % 20 %−
10

 %
−

5 
%

0 
%

5 
%

10
 %

b1

b2

c

(b)
amplitude of fluctuation

re
la

tiv
e 

de
vi

at
io

n 
of

 R
F

’*

−20 % −10 % 0 % 10 % 20 %−
15

 %
−

5 
%

5 
%

15
 %

b1

b2

c

Figure 4. Relative deviation of t∗F ′ and R̄∗
F ′ for sensitivity parameters b1,

b2 and c with λ = 1.4

the market and decision-maker’s risk preference into account, we consider the decision-
maker’s risk tolerance and forecasts, and obtain the optimal traditional and general risk-
reward strategies for (a1, b1; a2, b2; c)-NTOLP and (b1, b2, c)-NTOLP. Thus, we can know the
optimal strategy and its performance according to the parameters in the market. We
also analyze the influence of the parameters on the optimal risk-reward strategies by
numerical analysis. And we obtain the sensitivity of the traditional risk-reward strategy
to the sensitivity parameters.

We hope that our results will help the decision-maker who faces the NTOLP to make a
good decision and the researchers to do further research on the NTOLP as references. In
the risk-reward models, we give two special forecasts where the critical value of duration
is just the critical time of the OPT algorithm. An interesting direction for future research
is to consider different forecasts, for example, the decision-maker can have the forecasts
with different critical time points or they can have more than two forecasts.

Acknowledgment. This work is partially supported by the National Natural Science
Foundation of China under Grant No. 71471065. The authors also gratefully acknowl-
edge the helpful comments and suggestions of the reviewers, which have improved the
presentation.

REFERENCES

[1] E. White, White Clarke Global Leasing Report, White Clarke Group, Buckinghamshire, 2016.
[2] S. Albers, Online algorithms: A survey, Mathematical Programming, vol.97, no.1, pp.3-26, 2003.
[3] A. Borodin and R. El-Yaniv, Online Algorithms and Competitive Analysis, Cambridge University

Press, Cambridge, 1998.
[4] A. R. Karlin, M. S. Manasse, L. Rudolph and D. D. Sleator, Competitive snoopy caching, Algorith-

mica, vol.3, no.1, pp.79-119, 1988.
[5] R. Karp, Online algorithms versus offline algorithms: How much is it worth to know the future?,

Proc. of the IFIP the 12th World Computer Congress, Netherlands, pp.416-429, 1992.
[6] A. R. Karlin, M. S. Manasse, L. A. McGeoch and S. Owicki, Competitive randomized algorithms

for nonuniform problems, Algorithmica, vol.11, no.6, pp.542-571, 1994.
[7] R. El-Yaniv, R. Kaniel and N. Linial, Competitive optimal online leasing, Algorithmica, vol.25, no.1,

pp.116-140, 1999.
[8] X. Y. Yang, W. G. Zhang, W. J. Xu and Y. Zhang, Competitive analysis for online leasing problem

with compound interest rate, Abstract and Applied Analysis, vol.2011, pp.1-12, 2011.



RISK-REWARD STRATEGIES FOR AN ONLINE LEASING PROBLEM 2065

[9] Y. F. Xu, W. J. Xu and H. Y. Li, On the on-line rent-or-buy problem in probabilistic environments,
Journal of Global Optimization, vol.38, no.1, pp.1-20, 2007.

[10] L. Epstein and H. Zebedat-Haider, Rent or buy problems with a fixed time horizon, Theory of
Computing Systems, vol.56, no.2, pp.309-329, 2015.

[11] M. L. Hu and W. J. Xu, Strategy design on online leasing problem with decreasing purchasing price,
Operations Research and Management Science, vol.24, no.5, pp.281-287, 2015.

[12] S. Al-Binali, A risk-reward framework for the competitive analysis of financial games, Algorithmica,
vol.25, no.1, pp.99-115, 1999.

[13] Y. Zhang, W. G. Zhang, W. J. Xu and H. L. Li, A risk-reward model for the on-line leasing of
depreciable equipment, Information Processing Letters, vol.111, no.6, pp.256-261, 2011.

[14] Y. Wang, W. J. Xu and Y. F. Xu, Competitive strategy and risk-reward model for online financial
leasing problem, Chinese Journal of Management, vol.8, no.12, pp.1866-1871, 2011.

[15] Y. C. Dong, Y. F. Xu and W. J. Xu, The online rental problem with risk and probabilistic forecast,
Proc. of the 1st Annual International Workshop (FAW 2007), Lanzhou, China, pp.117-123, 2007.

[16] Y. Zhang, W. G. Zhang, W. J. Xu and X. Y. Yang, Risk-reward models for on-line leasing of
depreciable equipment, Computers & Mathematics with Applications, vol.63, no.1, pp.167-174, 2012.

[17] Z. Lotker, B. Patt-Shamir and D. Rawitz, Ski rental with two general options, Information Processing
Letters, vol.108, no.6, pp.365-368, 2008.

[18] X. L. Chen and W. J. Xu, Competitive strategy and risk-reward model with compound rate for online
fashion A-B leasing problem, Systems Engineering – Theory & Practice, vol.36, no.9, pp.2284-2292,
2016.

[19] H. Fujiwara, T. Kitano and T. Fujito, On the best possible competitive ratio for the multislope
ski-rental problem, Journal of Combinatorial Optimization, vol.31, no.2, pp.463-490, 2016.

[20] J. Augustine, S. Irani and C. Swamy, Optimal power-down strategies, SIAM Journal on Computing,
vol.37, no.5, pp.1499-1516, 2008.

[21] Z. Lotker, B. Patt-Shamir and D. Rawitz, Rent, lease, or buy: Randomized algorithms for multislope
ski rental, SIAM Journal on Discrete Mathematics, vol.26, no.2, pp.718-736, 2012.

[22] A. Levi and B. Patt-Shamir, Non-additive two-option ski rental, Theoretical Computer Science,
vol.584, pp.42-52, 2015.


