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Abstract. This thesis investigates the tracking control problem of hypersonic vehicles
subject to mismatched uncertainties and input saturation. Firstly, the feedback lineariza-
tion for longitudinal model of hypersonic vehicles is reasonably decomposed into two
subsystems that include velocity and altitude subsystem. Secondly, for these two sub-
systems, an anti-saturation robust dynamic surface controller is designed using the aux-
iliary system and dynamic surface control (DSC) technique with compensating signals,
respectively. The controllers can not only avoid the “explosion of complexity” in the back-
stepping design, but also remove the effect of the error caused by the first-order filter.
Finally, Lyapunov theory is used to prove the stability of the designed controller strictly,
and the numerical simulations of the longitudinal model of the hypersonic vehicles are
carried out, which further demonstrate the robustness of the designed control scheme.
Keywords: Hypersonic vehicles, Dynamic surface control, Tracking control, Input sat-
uration, Mismatched uncertainty

1. Introduction. Hypersonic vehicles refer to the aircraft whose flight speed is greater
than 5 Mach, which has fast speed, strong penetration ability, and therefore, it is of
great military and economic value [1,2]. In comparison with traditional vehicles, the
unique integrated design of hypersonic vehicles results in the high nonlinearity and strong
coupling among its airframe, propulsion system and structural dynamics [3,4]. From the
above, we can see that the hypersonic vehicles have large flight envelop and complicated
flight environment. Its aerodynamic characteristics can change violently, and its model
uncertainty is strong. Therefore, the robust controller is designed for the hypersonic
vehicles in presence of unknown factors, which is one of the key technologies to ensure
the safe and effective flight of the hypersonic vehicles [5].

In recent years, domestic and foreign experts and scholars majoring in the field of con-
trol have embarked on extensive researches and explorations. Foreign scholars have made
extensive researches based on linear and nonlinear methods. The linear design methods
are shown in [6,7]. It is well known that due to the complex nonlinear characteristics of
hypersonic vehicles, the controller design method based on linear mode cannot meet the
control performance requirements of the system. In [6,7], the designed controllers within
a small scope around a certain equilibrium limits do not have good robustness. In order to
obtain better control performance, the nonlinear control method was applied to the design
of the hypersonic vehicles controller [8-12]. In [8], the hypersonic vehicles with parametric
uncertainties were chosen as control object. A nonlinear controller was designed based
on the dynamic inverse method and stochastic robust control method, which can obtain
good tracking performance. Based on the feedback linearization method, a sliding mode
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controller for hypersonic vehicles was designed in [9,10]. In [11], focused on hypersonic
vehicle with TS disturbance modeling and disturbances, a robust tracking controller was
designed using nonlinear disturbance observer. In [12], an anti-windup controller was
proposed for air-breathing hypersonic vehicles, based on disturbance observer. However,
it is more universal that mismatched disturbances (the disturbances are not in the input
channel) occur in hypersonic vehicles. The mismatched disturbances that resulted from
the dramatic changes in flight environments may influence the states directly, for example,
which may be some mismatched uncertainties between the feedback linearization model
and the nonlinear system model in [13,14]. For nonlinear systems with mismatched uncer-
tainties, the back-stepping method is widely used in aerospace field. In [15], an adaptive
back-stepping controller was designed for hypersonic vehicles, which can solve parame-
ter uncertainty and fault of actuator. In [16], hypersonic flight vehicles with mismatched
disturbances were analyzed using disturbance observer. An exponential sliding mode con-
troller was designed for hypersonic vehicle subject to the mismatched uncertainties based
on back-stepping method in [17]. In [18,19], an adaptive neural network back-stepping
controller was designed for hypersonic vehicles subject to unmodeled dynamics and input
saturation. For the back-stepping method, when the order of the control system is high,
the explosion of complexity is easy to appear. In order to solve this problem, focusing
on nonlinear systems, an adaptive dynamic surface controller back-stepping controller
was designed using dynamic surface control technique and fuzzy control theory, which
guarantees the closed-loop system signal bounded in [20]. In [21], focusing on nonlinear
systems, a robust back-stepping controller was designed, which compensates the error of
the virtual derivative by using the compensation signal of the command filter. In [22],
concentrating on uncertain nonlinear systems, an adaptive dynamic surface controller was
designed using command filter. Not only the “explosion of complexity” is avoided in the
back-stepping, but also the effect of the errors is removed caused by command filter. In
[23], based on the DSC and radial basis function neural network, an adaptive dynamic
surface controller was designed for a class of nonlinear systems with unknown upper bound
and all signals of the closed-loop system are bounded.

During the process of actual design of control system, if the input constraint is not
considered, the problem of actuator saturation may emerge in the practical actuation,
which will lead to the weakening of the system control performance, or even the system
instability. In [24], based on the command filter technology, an adaptive anti-saturation
tracking controller was designed for uncertain MIMO nonlinear systems with input con-
straints. In [25], focusing on a class of nonlinear systems with input constraints, the input
saturation function was processed by mean value theorem and a neural network dynamic
surface controller was proposed combining DSC and neural network control theory. For
hypersonic vehicle with actuator dynamics and disturbances, a robust attitude controller
with use of predictive sliding mode control and nonlinear disturbance observer, was pro-
posed. For a hypersonic reentry vehicle subject to actuator saturation, a linear controller
was designed based on a nonlinear extended state observer. In [27], a dynamic surface
tracking controller was proposed to deal with hypersonic vehicle with aerodynamic pa-
rameter uncertainty and input constraint, by combining nonlinear disturbance observer
and dynamic surface control in [28]. In [29,30], focusing on the hypersonic vehicles with
input constraint and uncertain aerodynamic parameters, an adaptive dynamic surface
robust controller was designed, which can achieve the stable tracking control of velocity
and altitude. However, the introduction of neural network in some way augmented the
complexity of the controller design, making it difficult to be applied in the engineering. In
[31], for the hypersonic vehicles subject to input saturation problem, based on high-order
differentiator, an adaptive neural network controller was designed, which can guarantee
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that the closed-loop system is uniformly bounded. In [32], an adaptive robust controller
was designed for the hypersonic vehicles with input saturation.

In order to further solve the anti-saturation tracking control problem of hypersonic
vehicles, this paper designs an anti-saturation robust dynamic surface controller on the
basis of the command filtering and the dynamic surface control, which can eliminate the
impact of unmatched uncertainties, and can be able to control the input constraint at the
same time. Compared with the literature listed above, this paper has innovative aspects
as the following.

(1) Compared with [30], anti-saturation robust dynamic surface controller is designed
using back-stepping method and command filter in the thesis, which adopts the robust
compensation signals to eliminate the influence of mismatch.

(2) Compared with [29,32], the dynamic surface control technique is proposed with two
kinds of first-order filters, which can remove the bounds of the derivative of the virtual
control functions in this paper.

(3) Compared with [8-10], this paper takes input constraint into consideration, which
makes the designed controllers have practical significance.

This paper is organized as follows. Firstly, the longitudinal input-output linearization
model of hypersonic vehicles is established. Secondly, two anti-saturation robust dynamic
surface back-stepping controllers are designed for velocity and altitude subsystem, re-
spectively. Then, the corresponding stability of designed controller is analyzed by using
the Lyapunov theory. Numerical simulations are given to verify the effectiveness of the
designed tracking controllers in Section 4. In the end, the conclusion of the paper is
presented.

Nomenclature

m – Mass, (kg) Cα
L – First-order coefficient of α contribution to

CL

S – Reference area, (m2) CD – Drag coefficient

c̄ – Mean aerodynamic chord, (m) Cαi

D − ith-order coefficient of α contribution to
CD

RE – Earth radius, (m) C0
D – Constant term in CD

µ – Gravitational constant, (N m/kg2) CT – Thrust coefficient

h – Altitude, (m) β0 and β′
0 – Fuel-to-air ratio contribution to C0

T

hd – Reference command for altitude, (m) β1 – Constant term in C0
T

V – Velocity, (m/s) CM,α – Contribution to moment due to angle of
attack

Vd – Reference command for velocity,
(m/s)

Cαi

M,α − ith-order coefficient of α contribution to
CM,α

ρ – Atmospheric density, (kg/m3) C0
M,α – Constant term in CM,α

Iyy – Moment of inertia, (kg m2) CM,δe – Contribution to moment due to elevator
deflection

L – Lift, (N) ce – Elevator coefficient in CM,δe

D – Drag, (N) CM,q – Contribution to moment due to pitch rate

T – Thrust, (N) Cαi

M,q − ith-order coefficient of α contribution to
CM,q

M – Pitching, (N m) C0
M,q – Constant term in CM,q

CL – Lift, coefficient
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2. Preliminaries.

2.1. Hypersonic vehicles non-linear mode. The rigid hypersonic vehicles model pro-
posed by NASA Langley Research Center is below [10]

V̇ =
T cosα−D

m
− µ

r2
sin (θ − α)

ḣ = V sin (θ − α)

α̇ = −L+ T sinα

mV
+ q +

(
g

V
− V

r

)
cos (θ − α)

θ̇ = q

q̇ =
M

Iyy

(1)

where

L = 0.5ρV 2SCL

D = 0.5ρV 2SCD

T = 0.5ρV 2SCT

M = 0.5ρV 2Sc̄CM

r = h+RE

CL = Cα
Lα

CD = Cα2

D α2 + Cα
Dα+ C0

D

CT = C0
T (ϕ) =

{
β0ϕ if ϕ < 1
β1 + β′

0ϕ if ϕ > 1

CM = CM (α) + CM (δe) + CM (q)

CM,α (α) = Cα2

M,αα
2 + Cα

M,αα+ C0
M,α

CM,δe (δe) = ce (δe − α)

CM,q (q) = (c/2V ) q
(
Cα2

M,qα
2 + Cα

M,qα+ C0
M,q

)
V , h, and q are velocity, altitude, angle of attack, pitch angle, pitch rate of the hypersonic
aircrafts, T , D, L, M , δe and ϕ mean thrust, drag, lift, pitching moment, the elevator
deflection angle, the throttle setting, respectively. m, ρ, Iyy, S, and RE denote mass of
hypersonic vehicles, density of air, moment of inertia, gravitational constant, radius of
the earth, c̄ and ce are constants. Other related variables and parameters in this model
are listed in the nomenclature.

The second-order dynamical model of the engine can be described as

ϕ̈ = −2ζωnϕ̇− ω2
nϕ+ ω2

nϕc (2)

where ϕ is the throttle setting, ϕc is the demand of the control input, ωn is the undamped
natural frequency of the engine dynamics, and ζ is the damping ratio.

2.2. Input-output linearization model. In order to facilitate the design of hypersonic
vehicles control system and controller, the linearization system model is as follows [10].

V (3) = fV + b11ϕc + b12δe + ∆fV + ∆b11ϕc + ∆b12δe

h(4) = fh + b21ϕc + b22δe + ∆fh + ∆b21ϕc + ∆b22δe
(3)
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where ϕc and δe are control inputs, ∆fV , ∆fh, ∆b11, ∆b12, ∆b21, ∆b22 are bounded items
created by parameter uncertainly and external disturbance, and the definitions of fV , fh,
b11, b12, b21 and b22 can be seen in [10].

Let 

∆xV 3 = ∆fV + ∆b11δe + ∆b12ϕc

∆xh4 = ∆fh + ∆b21δe + ∆b22ϕc

uV = b11ϕc + b12δz

uh = b21ϕc + b22δz

xV =
[
xV 1 xV 2 xV 3

]T
=

[
V V̇ V̈

]T
xh =

[
xh1 xh2 xh3 xh4

]T
=

[
h ḣ ḧ

...
h

]T
(4)

By applying (4), the system model (3) can be transformed into velocity and altitude
subsystem which have triangular form with mismatched uncertainties ẋV 1 = xV 2 + ∆xV 1

ẋV 2 = xV 3 + ∆xV 2

ẋV 3 = fV + uV + ∆xV 3

(5)


ẋh1 = xh2 + ∆xh1
ẋh2 = xh3 + ∆xh2
ẋh3 = xh4 + ∆xh3
ẋV 3 = fh + uh + ∆xh4

(6)

where ∆xV 1, ∆xV 2, ∆xV 3, ∆xh1, ∆xh2, ∆xh3 and ∆xh4 are lumped mismatched uncer-
tainties.

Consider the following forms of input saturation

ui =

 uimax, uic ≥ uimax

uic, uimin < uic < uimax

uimin, uic ≤ uimin

(i = V, h) (7)

where ui is desired control input, uimin is the minimum values of ui, uimax is the maximum
values of ui.

Control object: In the thesis, two anti-saturation robust dynamic surface controllers
are designed for the system mode (5)-(7), so that the velocity V and the altitude h could
track the reference signals Vd and hd in finite-time subject to mismatched uncertainties
and input saturation, respectively. Meanwhile, angle of attack α, pitch angle θ and pitch
rate q are kept within a certain range.

2.3. Related lemmas and assumptions. To facilitate the control system design in this
subsection, the following assumption is introduced firstly.

Lemma 2.1. [21]: The compensating signals ξi for i = 2, . . . , n are defined as

ξ̇1 = −c1ξ1 − ξ1 + ξ2 + (x2,c − a1)

ξ̇i = −ciξi − ξi−1 + ξi+1 + (xi+1,c − ai)

ξ̇n = −cnξn − ξn−1

(8)

where ai and xi+1,c are first-order filter input and output. We can get that ∥ξi∥ is bounded.

Assumption 2.1. The disturbance ∆xV i (i = 1, 2, 3) is the unknown bounded uncertainty
that has bounded derivative. That is to say, there is a positive constant σ̃V i (i = 1, 2, 3)
satisfying the inequality as the following

∆xV i ≤ σ̃V i (i = 1, 2, 3) (9)
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Assumption 2.2. The disturbance ∆xhj (j = 1, 2, 3, 4) is the unknown bounded un-
certainty that has bounded derivative. That is to say, there is a positive constant σ̃hj
(j = 1, 2, 3, 4) satisfying the inequality as the following

∆xhj ≤ σ̃hj (j = 1, 2, 3, 4) (10)

3. Main Results. A robust DSC back-stepping control scheme is design to cope with
mismatched uncertainties and input saturation of the system, which uses dynamic surface
control with signal compensation and auxiliary system. The proposed approach not only
avoids the “explosion of complexity” in the back-stepping method, but also removes the
effect of the error caused by the first-order filter, which guarantees the fast convergence
of tracking error and the system robustness for uncertainties.

3.1. Robust DSC back-stepping controller design for velocity subsystem. For
system (5), an anti-saturation robust dynamic surface controller is designed. The specific
process is as follows.

Step 1: Define the tracking error variable zV 1 as

zV 1 = xV 1 − xV d (11)

where xV d is reference velocity.
Computing the first order derivative of (11), we obtain

żV 1 = ẋV 1 − ẋV d = xV 2 − ẋV d + ∆xV 1 (12)

Define the virtual control functions xV 2 as

x̄V 2 = −kV 1zV 1 + ẋV d + ωV 1 (13)

where kV 1 > 0 is a positive constant. The virtual controller (13) consists of two parts.
(1) The nominal intermediate input −kV 1xV 1 + ẋV d. (2) ωV 1 is the robust compensation
input, which can eliminate the effect of uncertainties.

Substituting (13) into (12) yields

żV 1 = −kV 1zV 1 + ωV 1 + ∆xV 1 (14)

The compensation signal ωV 1 is constructed by a low-pass filter

ωV 1 = −FV 1(s)∆xV 1 (15)

where FV 1(s) = λV 1/s+ λV 1 is a low-pass filter.
When the bandwidth λV 1 of the filter is chosen large enough, the signal ωV 1 approxi-

mately equals ∆xV 1, which can eliminate the effects of mismatched uncertainties.
We define xV 2d satisfying as

τV 2ẋV 2d + xV 2d = x̄V 2, xV 2d(0) = x̄V 2(0) (16)

where xV 2d and x̄V 2 are first-order filter input and output respectively, τV 2 is a positive
constant.

To eliminate the effect of the error xV 2d − x̄V 2, the compensating signal is defined as

ξ̇V 1 = −kV 1ξV 1 + ξV 2 + (xV 2d − x̄V 2) (17)

The compensated tracking error signal νV 1 = zV 1 − ξV 1 and the compensation error
signal ρV 1 = ωV 1 + ∆xV 1.

Consider Lyapunov function as

VV 1 =
1

2
ν2
V 1 +

1

2
ρ2

V 1
(18)
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The time derivative of VV 1 is given as

V̇1 = νV 1ν̇V 1 + ρV 1ρ̇V 1

= νV 1 (−kV 1zV 1 + ωV 1 + ∆xV 1 + zV 2 + xV 2d − x̄V 2 + kV 1ξV 1

−ξV 2 − xV 2d + x̄V 2) + ρV 1ρ̇V 1

= νV 1 (−kV 1zV 1 + ρV 1 + zV 2 + kV 1ξV 1 − ξV 2) + ρV 1

(
−λV 1ρV 1 + ∆̇xV 1

)
= − kV 1ν

2
V 1 + νV 1 (zV 2 − ξV 2) + νV 1ρV 1 − λV 1ρ

2
V 1 + ∆̇xV 1ρV 1

(19)

By using Young’s inequality

νV 1ρV 1 ≤
1

2
v2
V 1 +

1

2
ρ2
V 1, ∆̇xV 1ρV 1 ≤

1

2
∆̇2
V 1 +

1

2
ρ2
V 1 (20)

Substituting (20) into (19) yields

V̇1 = − kV 1ν
2
V 1 + νV 1 (zV 2 − ξV 2) +

1

2
v2
V 1 +

1

2
ρ2
V 1 − λV 1ρ

2
V 1 +

1

2
∆̇2
V 1 +

1

2
ρ2
V 1

= −
(
kV 1 −

1

2

)
ν2
V 1 + νV 1 (zV 2 − ξV 2) − (λV 1 − 1) ρ2

V 1 +
1

2
δ̃2
V 1

(21)

Step 2: Define the tracking error variable

zV 2 = xV 2 − xV 2d (22)

The time derivative of (22) can be written as

żV 2 = ẋV 2 − ẋV 2d = xV 3 + ∆xV 2 − ẋV 2d (23)

Define the virtual control functions x̄V 3 as

x̄V 3 = −kV 2zV 2 − zV 1 + ẋV 2d + ωV 2 (24)

where kV 2 > 0 is a positive constant.
The compensation signal ωV 2 is constructed by a low-pass filter

ωV 2 = −FV 2(s)∆xV 2 (25)

where FV 2(s) = λV 2/s+ λV 2 is a low-pass filter.
When the bandwidth λV 2 of filter is chosen large enough, the signal ωV 2 approximately

equals ∆xV 2, which can eliminate the effects of mismatched uncertainties.
xV 3d is defined as

τV 3ẋV 3d + xV 3d = x̄V 3, xV 3d(0) = x̄V 3(0) (26)

where xV 3d and x̄V 3 are the input and output of the first-order filter, respectively, τV 3 is
a positive constant.

To eliminate the effect of the error xV 3d− x̄V 3, the compensating signals are defined as

ξ̇V 2 = −kV 2ξV 2 − ξV 1 + ξV 3 + (xV 3d − x̄V 3) (27)

We define the compensated tracking error signal νV 2 = zV 2−ξV 2 and the compensation
error signal ρV 2 = ωV 2 + ∆xV 2.

Choose the Lyapunov function as

VV 2 = VV 1 +
1

2
ν2
V 2 +

1

2
ρ2

V 2
(28)
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Computing the first order derivative of VV 2 yields

V̇2 = V̇1 + νV 2ν̇V 2 + ρV 2ρ̇V 2

= V̇1 + νV 2 (zV 3 − kV 2zV 2 − zV 1 + kV 2ξV 2 + ξV 1 − ξV 3 + ρV 2) + ρV 2ρ̇V 2

= −
(
kV 1 −

1

2

)
ν2
V 1 − (λV 1 − 1) ρ2

V 1 + νV 1νV 2

+ νV 2 (−kV 2νV 2 + zV 3 − ξV 3 + ρV 2 − νV 1) − λV 2ρ
2
V 2 + ∆̇V 2ρV 2 +

1

2
δ̃2
V 1

= −
(
kV 1 −

1

2

)
ν2
V 1 − (λV 1 − 1) ρ2

V 1 + νV 2 (−kV 2νV 2 + zV 3 − ξV 3) − λV 2ρ
2
V 2

+ νV 2ρV 2 + ∆̇V 2ρV 2 +
1

2
δ̃2
V 1

(29)

By using Young’s inequality

νV 2ρV 2 ≤
1

2
v2
V 2 +

1

2
ρ2
V 2, ∆̇V 2ρV 2 ≤

1

2
∆̇2
V 2 +

1

2
ρ2
V 2 (30)

Substituting (30) into (29), we have

V̇V 2 ≤ −
(
kV 1 −

1

2

)
ν2
V 1 − (λV 1 − 1) ρ2

V 1 −
(
kV 2 −

1

2

)
ν2
V 2 − (λV 2 − 1) ρ2

V 2

+ νV 2 (zV 3 − ξV 3) +
1

2
δ̃2
V 1 +

1

2
δ̃2
V 2

≤ −
2∑
i=1

(
kV i −

1

2

)
kV iν

2
V i −

2∑
i=1

(λV i − 1) ρ2
V i

+ νV 2 (zV 3 − ξV 3) +
1

2
δ̃2
V 1 +

1

2
δ̃2
V 2

(31)

Step 3: Define the tracking error variable

zV 3 = xV 3 − xV 3d (32)

Computing the first order derivative of zV 3, we obtain

żV 3 = fV + uV + ∆xV 3 − ẋV 3d (33)

To handle input saturation, the auxiliary system (34) is introduced

η̇V =

 −kV ηηV − 1

∥ηV ∥2 (|νV 3∆uV | + 0.5∆u2
V ) ηV − ∆uV − kV γsig

γ (νV 3) , ∥ηV ∥ ≥ σV

0 ∥ηV ∥ < σV
(34)

where sigγ (νV 3) = |νV 3|γ sign (νV 3). kV η, kV γ and γ are positive parameters and ηV is the
state variable of the auxiliary system. σV is positive constant, ∆uV = uV − uV c.

Remark 3.1. From the hypersonic vehicles background, it can be seen that the input
saturation may be symmetrical or asymmetric. The auxiliary system (34) can handle
symmetrical and asymmetric input saturation.

The compensated tracking error signal νV 3 = zV 3 − ξV 3, and compensation error signal
ρV 3 = ωV 3 + ∆xV 3.

The compensating signal ξV 3 is defined as

ξ̇V 3 = −kV 3ξV 3 − ξV 2 (35)

where kV 3 is a positive constant.
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The control law uV c is defined as

uV c = −kV 3zV 3 − fV − zV 2 + ẋV 3d + ωV 3 + kV 4ηV − vV 3µV (vV 3)

ψ2
V + ∥vV 3∥2 (36)

ψ̇V =

 −kV ψψV − µV (vV 3)ψV

ψ2
V + ∥vV 3∥2 , ∥vV 3∥ ≥ ψν

0, ∥vV 3∥ < ψν

(37)

where µV (vV 3) = 0.5k2
V 4v

2
V 3. kV 3, kV 4, kV ψ and ψν are positive constants.

The compensation signal ωV 3 is constructed by a low-pass filter

ωV 3 = −FV 3(s)∆xV 3 (38)

where FV 3(s) = λV 3/s+ λV 3 is a low-pass filter.

Theorem 3.1. Considering system (5) with Assumption 2.1, the state of closed-loop
system is regulated under the anti-saturation robust dynamic surface controllers (34)-(37).
The following conclusions can be obtained.

(i) The variable vV i (i = 1, 2, 3), ρV i (i = 1, 2, 3), ηV and ψV are uniformly ultimately
bounded respectively;

(ii) The velocity tracking error converges to any small neighborhood.

Proof: Choose Lyapunov function as

VV 3 = VV 2 +
1

2
ν2
V 3 +

1

2
ρ2
V 3 +

1

2
η2
V +

1

2
ψ2
V (39)

Computing the derivative of VV 3, we have

V̇V 3 = V̇V 2 + νV 3ν̇V 3 + ρV 3ρ̇V 3 + ηV η̇V + ψV ψ̇V (40)

According to (34)-(37), we can obtain

V̇V 3 = V̇V 2 + νV 3

(
ωV 3 + ∆xV 3 − kV 3zV 3 − zV 2 − ξ̇V 3

)
+ kV 4νV 3ηV

+ νV 3∆uV + ρV 3ρ̇V 3 + ηV η̇V + ψV ψ̇V − v2
V 3µV (vV 3)

ψ2
V + ∥vV 3∥2

= −
2∑
i=1

(
kV i −

1

2

)
ν2
V i −

2∑
i=1

(λV i − 1) ρ2
V i +

1

2
δ̃2
V 1 +

1

2
δ̃2
V 2

+ νV 3 (−kV 3zV 3 + kV 3ξV 3 + ρV 3) + ρV 3ρ̇V 3 + kV 4νV 3ηV

+ νV 3∆uV + ηV η̇V + ψV ψ̇V − v2
V 3µV (vV 3)

ψ2
V + ∥vV 3∥2

= −
2∑
i=1

(
kV i −

1

2

)
ν2
V i −

2∑
i=1

(λV i − 1) ρ2
V i +

1

2
δ̃2
V 1 +

1

2
δ̃2
V 2

− kV 3ν
2
V 3 + νV 3ρV 3 − λV 3ρ

2
V 3 + ρV 3∆̇xV 3 + kV 4νV 3ηV + νV 3∆uV

+ ηV η̇V + ψV ψ̇V − v2
V 3µV (vV 3)

ψ2
V + ∥vV 3∥2

(41)

By using Young’s inequality

νV 3ρV 3 ≤
1

2
v2
V 3 +

1

2
ρ2
V 3, ∆̇V 3ρV 3 ≤

1

2
∆̇2
V 3 +

1

2
ρ2
V 3 (42)
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Substituting (42) into (41), we have

V̇V 3 ≤ −
2∑
i=1

(
kV i −

1

2

)
ν2
V i −

2∑
i=1

(λV i − 1) ρ2
V i −

(
kV 3 −

1

2

)
ν2
V 3

− (λV 3 − 1) ρ2
V 3 + kV 4νV 3ηV + νV 3∆uV + ηV η̇V + ψV ψ̇V

+
1

2
δ̃2
V 1 +

1

2
δ̃2
V 2 +

1

2
δ̃2
V 3 −

v2
V 3µV (vV 3)

ψ2
V + ∥vV 3∥2

= −
3∑
i=1

(
kV i −

1

2

)
ν2
V i −

3∑
i=1

(λV i − 1) ρ2
V i + kV 4νV 3ηV + νV 3∆uV

+ ηV η̇V + ψV ψ̇V +
1

2
δ̃2
V 1 +

1

2
δ̃2
V 2 +

1

2
δ̃2
V 3 −

v2
V 3µV (vV 3)

ψ2
V + ∥vV 3∥2

(43)

Applying (34) and (37) into (43) can be written as

V̇V 3 = −
3∑
i=1

(
kV i −

1

2

)
ν2
V i −

3∑
i=1

(λV i − 1) ρ2
V i − kV ηη

2
V − kV ψψ

2
V + νV 3∆uV

+ kV 4νV 3ηV − |νV 3∆uV | −
1

2
∆u2

V − ηV ∆uV − v2
V 3µV (vV 3)

ψ2
V + ∥vV 3∥2 − µV (v3)ψ

2
V

ψ2
V + ∥vV 3∥2

+
1

2
δ̃2
V 1 +

1

2
δ̃2
V 2 +

1

2
δ̃2
V 3 − kV γνV 3sig

γ (νV 3)

(44)

As 
− v2

V 3µV (vV 3)

ψ2
V + ∥vV 3∥2 = −µV (vV 3) +

µV (vV 3)ψ
2
V

ψ2
V + ∥vV 3∥2

µV (vV 3) = 0.5k2
V 4v

2
V 3, νV 3∆uV − |νV 3∆uV | ≤ 0

kV 4νV 3ηV − ηV ∆uV ≤ 1

2
k2
V 4ν

2
V 3 + η2

V +
1

2
∆u2

V

(45)

According to (45), then (43) can be further simplified as

V̇V 3 ≤ −
3∑
i=1

(
kV i −

1

2

)
ν2
V i −

3∑
i=1

(λV i − 1) ρ2
V i − (kV η − 1) η2

V − kV ψψ
2
V

+
3∑
i=1

1

2
δ̃2
V i − kV γνV 3sig

γ (νV 3)

≤ −
3∑
i=1

(
kV i −

1

2

)
ν2
V i −

3∑
i=1

(λV i − 1) ρ2
V i − (kV η − 1) η2

V

− kV ψψ
2
V +

3∑
i=1

1

2
δ̃2
V i

≤ − 2ε1V3 + C1

(46)

where ε1 = min1≤i≤3

{(
kV i − 1

2

)
, (λV i − 1) , (kV η − 1) , kV ψ

}
, C1 =

3∑
i=1

1
2
δ̃2
V i, kV η > 1.

If VV 3 = P1, then V̇V 3 ≤ −εP1+C1. If ε1 >
C1

2P1
, then VV 3 = P1 and V̇V 3 ≤ 0. Therefore,

VV 3 ≤ P1 is an invariant set. In other words, if VV 3 (0) ≤ P1, then VV 3 ≤ P1.
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Integrate (46) and we can obtain

0 ≤ VV 3(t) ≤
C1

2ε1

+

(
VV 3(0) − C1

2ε1

)
exp (−2ε1t) , ∀t ≥ 0 (47)

Based on the above (47), the bound of V3(t) is C1/ (2ε1). For any t ≥ 0, 0 ≤ VV 3 (t) ≤
C1/ (2ε1). Therefore, vV i (i = 1, 2, 3), ρV i (i = 1, 2, 3), ηV and ψV are uniformly ultimately
bounded.

Therefore, conclusion (i) is proved
According to (47), one can conclude that the νV i = zV i − ξV i (i = 1, 2, 3) is satisfied

following

|νV i| ≤

√
C1

ε1

(
2VV 3 (0) − C1

ε1

)
exp (−2ε1t) (48)

Then

lim
t→∞

|νV i| ≤
√
C1/ε1 (49)

From (49), we can conclude that νV i converges to compact set Rvi
=

{
νV i

∣∣∣ |νV i| ≤√
C1/ε1

}
. That is to say, when ε1 is chosen large enough, νV i converges to any small

neighborhood.
From Lemma 2.1, we can get that ξV i is bounded. According to νV i = zV i−ξV i, further

analysis, the velocity tracking error zV i also converges to any small neighborhood.
Therefore, conclusion (ii) is proved. Theorem 3.1 is proved.

Remark 3.2. In controller (36), we introduce kV 4ηV to handle the input saturation of
velocity subsystem, mainly for the following two conditions.

When ∥ηV ∥ ≥ σV > 0, there is an input saturation in control system.
(a) When uV c ≥ uV max, kV 4ηV can guarantee that uV c can reduce to uV c = uV max.
(b) When uV c ≤ uV min, kV 4ηV can guarantee that uV c can increase to uV c = uV min.
Thus, uV c = uV max or uV c = uV min.
When ∥ηV ∥ < σV , η̇V = 0, there is no input saturation in control system, that is to

say ∆uV = 0, the kV 4ηV can guarantee that uV c satisfies uV min < uV c < uV max. Thus,
uV = uV c.

3.2. Adaptive integral terminal sliding mode controller design. For System (6),
refer to the method of velocity subsystem design. Specific process is as follows.

Define the tracking error of the altitude as the following

z1h = xh1 − xhd
z2h = xh2 − xh2d
z3h = xh3 − xh3d
z4h = xh4 − xh4d

(50)

where xhd is altitude reference signal, xhjd (j = 2, 3, 4) the output of the first-order filter
with virtual control functions x̄hj (j = 2, 3, 4) as the input.

Define the virtual control functions as x̄h2 = −kh1zh1 + ẋhd + ωh1
x̄h3 = −kh2zh2 − zh1 + ẋh2d + ωh2
x̄h4 = −kh3zh3 − zh2 + ẋh3d + ωh3

(51)

where kh1, kh2 and kh3 are positive constants.
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Define the first-order filter as τ2ẋh2d + xh2d = x̄h2, xh2d(0) = x̄h2(0)
τ3ẋh3d + xh3d = x̄h3, xh3d(0) = x̄h3(0)
τ4ẋh4d + xh4d = x̄h4, xh4d(0) = x̄h4(0)

(52)

The compensation signal ωhj (j = 1, 2, 3, 4) is constructed by a low-pass filter as

ωhj = −Fhj(s)∆xhj (j = 1, 2, 3, 4) (53)

where Fhj(s) = λhj/ (s+ λhj) is a low-pass filter.
To eliminate the effect of the errors xhjd − x̄hj (j = 2, 3, 4) caused by the first-order

filter, we will design the compensating signals. The compensating signals are defined as
ξ̇h1 = −kh1ξh1 + ξh2 + (xh2d − x̄h2)

ξ̇h2 = −kh2ξh2 − ξh1 + ξh3 + (xh3d − x̄h3)

ξ̇h3 = −kh3ξh3 − ξh2 + ξh4 + (xh4d − x̄h4)

ξ̇4 = −kh4ξh4 − ξh3

(54)

where kh4 is a positive constant.
To deal with input saturation problem, the auxiliary system (55) is built up as the

following

η̇h =

 −khηηh −
1

∥ηh∥2 (|νh4∆uh| + 0.5∆u2
h) ηh − ∆uh − khrsig

r (νh4) , ∥ηh∥ ≥ σh

0, ∥ηh∥ < σh
(55)

where sigr (νh4) = |νh4|r sign (νh4). khη, khr and r are positive parameters and ηh is the
state variable of the auxiliary system. σh is a positive constant, ∆uh = uh − uhc.

Then, the controller uhc is designed as

uhc = −kh4zh4 − fh − zh3 + ẋh4d + ω4 + kh5ηh −
vh4µh (vh4)

ψ2
h + ∥vh4∥2 (56)

ψ̇h =

 −khψψh −
µh (vh4)ψh

ψ2
h + ∥vh4∥2 , ∥vh4∥ ≥ ψhν

0, ∥vh4∥ < ψhν

(57)

where µh (vh4) = 0.5k2
h5v

2
h4, kh4, kh5, khψ and ψhν are positive constants.

Theorem 3.2. Considering system (6) with Assumption 2.2, the state of closed-loop
system is regulated under the anti-saturation robust dynamic surface controllers (55)-(57).
We can draw the following conclusions.

(i) The variable vhj (j = 1, 2, 3, 4), ηh, ψh are uniformly ultimately bounded;
(ii) The altitude tracking error converges to any small neighborhood.

Proof: The compensated tracking error signal νhj = zhj − ξhj (j = 1, 2, 3, 4) and the
compensation error signal ρhj = ωhj + ∆xhj (j = 1, 2, 3, 4).

Consider the Lyapunov function as

Vh4 =
4∑
j=1

1

2
ν2
hj +

4∑
j=1

1

2
ρ2
hj +

1

2
η2
h +

1

2
ψ2
h (58)
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Computing the first order derivative of (58), we obtain

V̇h4 = νh1ν̇h1 + νh2ν̇h2 + νh3ν̇h3 + νh4ν̇h4 +
4∑
j=1

ρhj ρ̇hj + ηhη̇h + ψhψ̇h

= −
3∑
j=1

(
khj −

1

2

)
ν2
hj −

3∑
j=1

(λhj − 1) ρ2
hj +

3∑
j=1

σ2
hj

+ νh4

(
νh3 − kh4zh4 + kh5ηh − zh3 − ξ̇3

)
+ νh4∆uh − λh4ρ

2
h4 + νh4ρh4 + ∆̇xh4ρh4 + ηhη̇h + ψhψ̇h −

v2
h4µh (vh4)

ψ2
h + ∥vh4∥2

(59)

By using Young’s inequality

νh4ρh4 ≤
1

2
v2
h4 +

1

2
ρ2
h4, ∆̇h4ρh4 ≤

1

2
∆̇2
h4 +

1

2
ρ2
h4 (60)

Substituting (60) into (59), we have

V̇h4 ≤ −
3∑
j=1

(
khj −

1

2

)
ν2
hj −

3∑
j=1

(λhj − 1) ρ2
hj +

3∑
j=1

σ2
hj −

(
kh4 −

1

2

)
ν2
h4

− (λh4 − 1) ρ2
h4 + kh5νh4ηh + νh4∆uh + ηhη̇h + ψhψ̇h +

1

2
σ2
h4 −

v2
h4µh (νh4)

ψ2
h + ∥νh4∥2

= −
4∑
j=1

(
khj −

1

2

)
ν2
hj −

4∑
j=1

(λhj − 1) ρ2
hj +

4∑
j=1

σ2
hj + kh5νh4ηh

+ νh4∆uh + ηhη̇h + ψhψ̇h −
v2
h4µh (νh4)

ψ2
h + ∥νh4∥2

(61)

Substituting (55) and (57) into (61), we obtain

V̇h4 = −
4∑
j=1

(
khj −

1

2

)
ν2
hj −

4∑
j=1

(λhj − 1) ρ2
hj − khηη

2
h − khψψ

2
h + kh5νh4ηh

+ νh4∆uh − |νh4∆uh| −
1

2
∆u2

h − ηh∆uh −
v2
h4µh (νh4)

ψ2
h + ∥νh4∥2 − µh (νh4)ψ

2
h

ψ2
h + ∥νh4∥2

+
4∑
j=1

σ2
hj − khrνh4sig

r (νh4)

(62)

As 
− v2

h4µh (νh4)

ψ2
h + ∥νh4∥2 = −µh (vh4) +

µh (νh4)ψ
2
h

ψ2
h + ∥νh4∥2

µh (vh4) = 0.5k2
h5v

2
h4, νh4∆uh − |νh4∆uh| ≤ 0

kh5νh4ηh − ηh∆uh ≤
1

2
k2
h5v

2
h4 + η2

h +
1

2
∆u2

h

(63)
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according to (63), then (62) can be further simplified as

V̇h4 ≤ −
4∑
j=1

(
khj −

1

2

)
ν2
hj −

4∑
j=1

(λhj − 1) ρ2
hj − (khη − 1) η2

h − khψψ
2
h

+
4∑
j=1

σ2
hj − khrνh4sig

r (νh4)

≤ −
4∑
j=1

(
khj −

1

2

)
ν2
hj −

4∑
j=1

(λhj − 1) ρ2
hj − (khη − 1) η2

h − khψψ
2
h +

4∑
j=1

σ2
hj

≤ − 2ε2Vh4 + C2

(64)

where ε2 = min1≤j≤4

{(
khj − 1

2

)
, (λV j − 1) , (kV η − 1) , kV ψ

}
, C2 =

4∑
i=1

σ2
hi, khη > 1.

Similar to Theorem 3.1, one can conclude that the νhj = zhj − ξhj (j = 1, 2, 3, 4) is
satisfied following

|νhj| ≤

√
C2

ε2

(
2Vh4(0) − C2

ε2

)
exp (−2ε2t) (65)

Then

lim
t→∞

|νhj| ≤
√
C2/ε2 (66)

From (66), we can conclude that νhj converges to compact set Rhj
=

{
νhj

∣∣∣ |νhj| ≤√
C2/ε2

}
, that is to say, when ε2 is chosen large enough, νhj converges to any small

neighborhood.
From Lemma 2.1, we can get that the ξhj is bounded. According to νhj = zhj − ξhj,

further analysis, the velocity tracking error zhj also converges to any small neighborhood.
Therefore, conclusion (ii) is proved
Therefore, Theorem 3.2 is proved.

Remark 3.3. In controller (56), we introduce kh5ηh to handle the input saturation of
velocity subsystem, mainly for the following two conditions.

When ∥ηh∥ ≥ σh > 0, there is input saturation in control system.
(a) When uhc ≥ uhmax, kh5ηh can guarantee that uhc can reduce to uhc = uhmax.
(b) When uhc < uhmax, kh5ηh can guarantee that uhc can increase to uhc = uhmin.
Thus, uhc = uhmax or uhc = uhmin.
When ∥ηh∥ < σh, η̇h = 0, there is no input saturation in control system, that is to say

∆uh = 0. kh5ηh can guarantee that uhc satisfies uhmin < uhc < uhmax. Thus uh = uhc.

4. Numerical Examples. In order to verify the effectiveness of the two robust back-
stepping controllers, we take the nonlinear longitudinal motion (1) of the hypersonic
vehicles in this chapter as the simulation object. The parameters of the hypersonic vehicles
and flight environment of [10] are shown in Table 1 and the values of the aerodynamic
coefficients are shown in Table 2.

Based on the basic parameters of the above hypersonic vehicles, we can figure out a
group of equilibrium points as the initial condition, and the initial value of simulation is
set as x(0) = [4590.3 33528 0.0334 0.0334 0 0.1802 0]T . In the simulation process,
the external disturbances d1(t) = 0.0024 sin(0.2t), d2(t) = 0.012 sin(0.2t). The parameter
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Table 1. The parameters of hypersonic aircrafts and flight environment

Physical quantity Symbol Value

Mass (kg) m 1.378 × 105

Moment of inertia (kg m2) Iyy 9.5 × 106

Reference area (m2) S 335.2

Mean aerodynamic chord (m) c̄ 24.384

Earth radius (m) RE 6.371004 × 106

Gravitational constant (N m/kg2) µ 3.9802 × 1014

Altitude (m) h 33528

Velocity (m/s) V 4590.288

Atmospheric density (kg/m3) ρ 0.0125368

Table 2. The values of the aerodynamic coefficients

Coefficient Value Coefficient Value Coefficient Value
Cα
L 0.6203 Cα

M,α 0.036617 β′
0 0.00336

Cα2

D 0.6450 C0
M,α 5.3261 × 10−6 β1 0.0224

Cα
D 0.0043378 C0

M 0.0292 Cα2

M,α −0.035

C0
D 0.003772 Cα2

M,q −6.796 C0
M,q −0.2289

β0 0.02576 Cα
M,q 0.3015 ce −12897

uncertainties of the model are selected

m = m0 (1 + ∆m) , Iyy = I0 (1 + ∆Iyy)

S = S0 (1 + ∆S) , c = c0 (1 + ∆c)
ce = ce0 (1 + ∆ce0) , ρ = ρ0 (1 + ∆ρ)

|∆m| ≤ 0.05, |∆Iyy| ≤ 0.05, |∆S| ≤ 0.05

|∆c| ≤ 0.05, |∆ρ| ≤ 0.05, |∆ce| ≤ 0.05

(67)

where m0, I0, S0, c0, ce0, ρ0 are normal values respectively, the parameter uncertainties
of the model are set as ∆m = −0.05, ∆Iyy = −0.05, ∆c = 0.05, ∆ce = 0.05, ∆ρ = 0.05,
∆S = 0.05.

4.1. Simulation analysis of the robust dynamic surface controller considering
the control saturation. To verify the validity of the control strategy of the hypersonic
vehicles designed in this paper, we have added a comparison with second-order terminal
sliding mode control (2TSMTC) [33]. The simulations select two kinds of reference signals
as tracking signals. The control gains and parameters are shown in Table 3.

Situation 1: The reference velocity of the hypersonic vehicles is Vd = 4690.3 m/s, that
is, ∆V = 100 m/s, and the reference altitude is hd = 35028 m, that is, ∆h = 1500 m.

Situation 2: The reference velocity of the hypersonic vehicles is Vd = 4670.3 m/s,
that is, ∆V = (100 + t) m/s, and the reference altitude is hd = 35028 m, that is,
∆h = (1500 + t2) m.

(1) For the situation 1, the simulation results are shown in Figures 1-4.
Figure 1 and Figure 2 show the tracking curves of velocity and altitude of hypersonic

vehicles, respectively. From Figures 1 and 2, it can be seen that even if there are mis-
matched uncertainties and input saturation, the velocity error and altitude error can
converge rapidly, satisfying the requirement of control accuracy. Figure 3 illustrates the
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Table 3. The set of the parameters of controllers

Parameter Value Parameter Value Parameter Value Parameter Value
kV 1 15 ψV 0.01 kV η 3.5 λV 2 0.1
kV 2 25 τV 2 0.01 kV γ 1.5 γ 0.75
kV 3 12 τV 3 0.01 kV ψ 0.8 λV 3 0.1
kV 4 0.3 λV 1 0.1 σV 0.01 τV 3 0.01
kh1 15 τh2 0.01 khη 2.5 λh3 0.1
kh2 8 τh3 0.01 khψ 0.65 λh4 0.1
kh3 3.2 τh4 0.01 σh 0.01 khr 3.5
kh4 16 λh1 0.1 ψh 0.01 r 0.8
kh5 0.6 λh2 0.1

Figure 1. The tracking curves of velocity

curves of control input, suggesting that the amplitude of the control force accords with
the control constraint. As the simulation results show, the control input signals ϕc and δe
are continuous and smooth which make the proposed control laws possible for the actual
flight implementation. The curves of the attack angle, the pitch angle and the pitch rate
depicted in Figure 4, are quite smooth and within their rational bounds.

(2) For the situation 2, its control parameters and gains and reference signal are the
same as those of the situation 1 and the simulation results are shown in Figures 5-8.

From Figures 5-8, when the reference signals are time-varying signals, for the longi-
tudinal model of the hypersonic vehicle, both the velocity and altitude can track their
reference signals under proposed control strategy. So this part will focus on the analysis
of the differences between the two situations. From Figures 5 and 6, it can be obtained
that the proposed method and 2TSMTC can achieve the stable tracking of the velocity
V and altitude h of the reference command. The curves of control inputs under the pro-
posed method and 2TSMTC are shown in Figure 7. It can be obtained that the curve of
the control input ϕc and δe under the proposed method are smooth and can converge to
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Figure 2. The tracking curves of altitude

Figure 3. The curves of the control inputs ϕc, δe

a small neighbourhood of zero in tracking process with a smaller control gain compared
with 2TSMTC. From Figure 8, it can be known that the curves of the angle of attack α,
the pitch angle θ, and the pitch rate q approach their steady-state values in short time. In
summary, simulation results show that the robust DSC control scheme possesses a good
adjustment capacity and a strong robustness for the longitudinal model of the hypersonic
vehicle with mismatched uncertainties and input saturation, which can guarantee the
stability of the system tracking performance.
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Figure 4. The curves of the α, θ and q

Figure 5. The tracking curves of velocity

5. Conclusions. This paper studies the saturated tracking performance of hypersonic
vehicles on the basis of the DSC with signal compensation and auxiliary system. The
conclusions are as the following.

(1) The non linear control system model of hypersonic vehicles is simplified by the
input and output linearization, and reasonably decomposed into subsystems that include
velocity subsystem and altitude subsystem.

(2) A robust back-stepping control scheme is designed using the DSC with signal com-
pensation method and the auxiliary system, which can eliminate the effect of mismatched
uncertainties equivalents thoroughly and handle the impact of input saturation.
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Figure 6. The tracking curves of altitude

Figure 7. The curves of the control inputs ϕc, δe

(3) The simulation results demonstrate the robustness of controllers for mismatched
uncertainties and good tracking performance of the desired reference signals.

(4) In the future, the problem of elasticity and non-minimum phase should be considered
in the design hypersonic control system. Based on the existing control algorithm, the
different advanced control methods should be combined with each other to improve the
performance of the control algorithm and solve the control problem.



2086 J. SUN, S. SONG AND G. WU

Figure 8. The curves of the α, θ and q
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