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Abstract. In real applications of data mining, test costs often occur, and numerical
data exists widely. In recent years, based on neighborhood rough set, some algorithms
have been proposed to deal with the minimal-test-cost reduct problem of numerical data.
Nevertheless, they do not perform very well on the computational efficiency. To overcome
this disadvantage, we present a novel test-cost-sensitive attribute reduction approach in
this paper. First, the properties of inconsistent neighborhoods are discussed for numerical
decision systems. Then, a fast forward test-cost-sensitive attribute reduction algorithm
is designed by using the obtained properties. The performance of the algorithm is tested
with six UCI (University of California – Irvine) datasets. Experimental results show
that the proposed algorithm is significantly more efficient than the existing algorithms.
Moreover, the algorithm can achieve good results on minimizing the total test cost of data
processing.
Keywords: Test cost, Attribute reduction, Fast forward algorithm, Inconsistent neigh-
borhood, Neighborhood rough set

1. Introduction. Cost-sensitive learning is one of key issues in data mining and machine
learning communities [1, 2]. There are multiple types of cost in real applications [3], among
which test cost is the time, money, or other resources paid for obtaining a data item of an
object. In real world, data are usually not free to be acquired. For example, in a clinic
system, a patient often needs to undertake a number of medical tests. With the test
results, the doctor can diagnose whether the patient has a particular illness or disease. In
this case, money and time consumed in performing these tests are the test costs.

Rough set theory, which was proposed by Pawlak [4], is a powerful mechanism to handle
the uncertainty and the granulation of data. As an important task in rough sets, attribute
reduction is a popular technique because it can select a suitable attribute subset, also
called a reduct, to reduce the data dimensionality and meanwhile to keep the ability of
original decision system [5, 6]. In last several years, by introducing cost-sensitive learning
into the rough set theory, cost-sensitive attribute reduction has been studied [7, 8, 9],
among which test-cost-sensitive attribute reduction is a branch of importance. In fact,
when tests must be undertaken, attribute reduction is mandatory to decrease the total
test cost. Based on the hierarchical models constructed in [10], minimal-test-cost reduct
problems, which aim at finding a reduct to minimize the total test cost, have been explored
to some extent [7, 11].
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As is well known, numerical data exists widely in real applications, but numerical
attributes are more complex than nominal ones and require more computational resources.
Classical rough set and most of its extended models mainly address nominal data [12, 13].
To address this situation, neighborhood rough set was presented in [14, 15], which has
been verified to be powerful in dealing with the attribute reduction of numerical data
and hybrid data. Based on neighborhood rough set, a backtracking algorithm and a
heuristic algorithm have been proposed to address the minimal-test-cost reduct problem
of numerical data [16, 17]. However, both of them are not efficient enough [16]. Since
the problem of finding a minimal-test-cost reduct is at least NP-hard [7], more efficient
heuristic algorithms are needed.

To address the above-mentioned issue, in this paper we propose a new test-cost-sensitive
attribute reduction approach by using the properties of inconsistent neighborhoods. Tra-
ditional neighborhood rough set models use neighborhoods to construct the theoretical
and algorithmic framework. In [18, 19], a new concept called inconsistent neighborhood
was defined for hybrid data, and relevant properties were explored. In this paper, in-
consistent neighborhood is redefined for numerical data and its properties are discussed.
A typical computational example is also given. It is known from the theoretical anal-
ysis that using inconsistent neighborhoods is often more efficient than using traditional
neighborhoods for computing the quantities in neighborhood rough set. Based on the
properties of inconsistent neighborhoods, a fast forward test-cost-sensitive attribute re-
duction algorithm is designed. To test the performance of the algorithm, experiments
are carried out on six datasets from the UCI library [20]. Experimental results validate
the effectiveness of the algorithm. In general the algorithm runs much faster than the
existing neighborhood-rough-set-based test-cost-sensitive attribute reduction algorithms
for numerical data. Moreover, it performs well on minimizing the total test cost con-
sumed in data processing. In particular, the rational value of neighborhood radius δ is
also discussed according to the experimental results.

The rest of the paper is organized as follows. Section 2 mainly discusses some key
concepts and properties about test-cost-sensitive decision systems and inconsistent neigh-
borhoods. Section 3 proposes the fast forward test-cost-sensitive attribute reduction al-
gorithm and gives some evaluation metrics for the algorithm. Experiment results and the
analyses are presented in Section 4. Finally, the paper is concluded in Section 5.

2. Problem Statement. This section discusses the basic knowledge of the paper. Firstly,
the concept of test-cost-independent decision system is reviewed. Then, we give the no-
tion and some crucial properties of inconsistent neighborhood with respect to numerical
data. Finally, the minimal-test-cost reduct problem is introduced.

2.1. Test-cost-independent decision systems. Decision system is a fundamental con-
cept in data mining and machine learning.

Definition 2.1. [21] A decision system (DS) S is the 5-tuple:

S = (U,C, D, V = {Va|a ∈ C ∪ D}, I = {Ia|a ∈ C ∪ D}),
where U is a finite set of objects called the universe, C is the set of conditional attributes,
D is the set of decision attributes with only discrete values, Va is the set of values for each
a ∈ C ∪ D, and Ia : U → Va is an information function for each a ∈ C ∪ D.

In most applications, D = {d}, that is, we are given only one decision attribute called
the class. If |D| > 1, we can construct |D| decision systems, each having only one class.

In neighborhood rough set models, the attribute values of numerical conditional at-
tributes are usually normalized to facilitate the data processing. An example of numerical
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Table 1. An example of numerical decision system

Plant sepal-length sepal-width petal-length petal-width class
x1 0.24 0.64 0.10 0.05 setosa
x2 0.18 0.41 0.10 0.05 setosa
x3 0.12 0.50 0.07 0.05 setosa
x4 0.76 0.45 0.60 0.52 versicolor
x5 0.35 0.09 0.38 0.43 versicolor
x6 0.65 0.32 0.52 0.52 versicolor
x7 0.59 0.55 0.86 1.00 virginica
x8 0.44 0.27 0.64 0.71 virginica
x9 0.82 0.41 0.83 0.81 virginica

decision system is shown in Table 1, where D = {class}. In fact, Table 1 is a subtable
of the normalized Iris dataset. For an attribute, the normalization of attribute values is
executed by using the function y = (x−min)/(max−min), where x is the initial value, y
is the normalized value, and min and max are the minimal value and the maximal value
respectively.

Test costs often occur in data collecting. Test-cost-sensitive decision systems can be
categorized into test-cost-independent decision systems and common-test-cost decision
systems according to the relations of test costs between different attributes [10]. Here we
only consider the former one.

Definition 2.2. A test-cost-independent decision system (TCI-DS) S is the 6-tuple:

S = (U,C, D, V, I, tc),

where U , C, D, V , I have the same meanings as in a DS, and tc : C → R+ is the test
cost function. Test costs are independent of one another, that is, tc(B) =

∑
a∈B tc(a) for

any B ⊆ C.

An example of TCI-DS is given by Tables 1 and 2.

Table 2. An example of test cost vector

a sepal length sepal width petal length petal width
c(a) $3 $5 $4 $6

As will be shown in Section 4, we generate different test cost settings for the same
decision system in the experiments. Therefore, we can have as many test-cost-independent
decision systems as we need.

2.2. Some key properties of inconsistent neighborhoods. In traditional models of
neighborhood rough set [14, 15], there are a number of fundamental concepts, such as
neighborhood, positive region, boundary region and reduct; and neighborhoods are used
to describe other concepts. In [18, 19], a new concept called inconsistent neighborhood was
introduced for hybrid data, and relevant properties were discussed thoroughly. Here we
revise the definition of inconsistent neighborhood given in [18, 19] to make it be suitable
for numerical decision systems.

Definition 2.3. Let S = (U,C, D, V, I) be a numerical decision system. Given xi ∈
U,B ⊆ C and δ > 0, the inconsistent neighborhood of xi with respect to attribute set B



2102 S. LIAO, Q. ZHU AND R. LIANG

and neighborhood radius δ is defined as

inB(xi) = {xj ∈ U |∆B(xi, xj) ≤ δ,D(xj) ̸= D(xi)} , (1)

where ∆ is a distance function.

Assuming that x1, x2 ∈ U , C = (a1, a2, . . . , an), and v(x, ai) denotes the value of object
x on attribute ai, then a frequently-used metric, named Minkowsky distance [22], is defined
as

∆p(x1, x2) =

(
n∑

i=1

|v(x1, ai) − v(x2, ai)|p
)1/p

. (2)

We use Euclidean distance ∆2 in the paper.
Since numerical data can be seen as the special case of hybrid data, the properties of

inconsistent neighborhoods with respect to hybrid data, which have been discussed in
[18, 19], are also applicable for numerical decision systems. In the following, we show the
key properties and obtain some new ones further.

Proposition 2.1. Let S = (U,C, D, V, I) be a numerical decision system. Given any
x, xi, xj ∈ U and B ⊆ C, we have
(1) in∅(x) = {y ∈ U |D(y) ̸= D(x)};
(2) xj ∈ inB(xi) ⇔ xi ∈ inB(xj).

Proposition 2.2. Let S = (U,C, D, V, I) be a numerical decision system, B ⊆ C. For
any X ⊆ U , lower and upper approximations of X can be described as

NB(X) = {x ∈ X|inB(x) = ∅},
NB(X) = X ∪ {x /∈ X|inB(x) ∩ X ̸= ∅}.

(3)

Proposition 2.3. Let S = (U,C, D, V, I) be a numerical decision system, B ⊆ C. The
positive region and the boundary region can be described as

POSB(D) = {x ∈ U |inB(x) = ∅},
BNB(D) = {x ∈ U |inB(x) ̸= ∅}.

(4)

Proposition 2.4. Let S = (U,C,D, V, I) be a numerical decision system. Any B ⊆ C is
a decision-relative reduct if:
(1) ∀x ∈ POSC(D), inB(x) = ∅;
(2) ∀a ∈ B, ∃x ∈ POSC(D), s.t. inB−{a}(x) ̸= ∅.

In fact, POSC(D) = U in most cases, then we have

Corollary 2.1. Let S = (U,C, D, V, I) be a numerical decision system. Any B ⊆ C is a
decision-relative reduct if:
(1) ∀x ∈ U , inB(x) = ∅;
(2) ∀a ∈ B, ∃x ∈ U , s.t. inB−{a}(x) ̸= ∅.

Proposition 2.5. (Type-1 monotonicity). Let S = (U,C,D, V, I) be a numerical decision
system, B1 ⊆ B2 ⊆ C. We have ∀x ∈ U , inB1(x) ⊇ inB2(x).

Proposition 2.6. (Type-2 monotonicity). Let S = (U,C,D, V, I) be a numerical decision
system, B ⊆ C, δ1 ≤ δ2. We have ∀x ∈ U , in1(x) ⊆ in2(x).

According to Proposition 2.5, the following corollary can be obtained.
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Corollary 2.2. Let S = (U,C, D, V, I) be a numerical decision system, B ⊆ C. Assuming
that Bi ⊆ B (1 ≤ i ≤ L, L is a finite positive integer), then for any x ∈ U , we have

inB(x) ⊆
L∩

i=1

inBi
(x).

Proof: Based on Proposition 2.5, for any x ∈ U and any Bi, we have inB(x) ⊆ inBi
(x),

so inB(x) ⊆
∩L

i=1 inBi
(x).

From Corollary 2.2, it is known that

inB(x) ⊆
∩
a∈B

in{a}(x). (5)

An example is given to illustrate the concepts and properties discussed above.

Example 2.1. A numerical decision system is indicated by Table 1, from which it is
known that U = {x1, x2, x3, x4, x5, x6, x7, x8, x9} and D = {class}. For convenience, let
a1 = sepal-length, a2 = sepal-width, a3 = petal-length, and a4 = petal-width. Let δ = 0.2,
then the inconsistent neighborhoods with respect to any attribute subset B can be computed.
Some exemplary results are shown in Table 3, where B takes values listed as column
headers. Then according to Corollary 2.1 and Table 3, it can be immediately known that
{a1, a3} is a reduct of the numerical decision system with δ = 0.2.

Table 3. Inconsistent neighborhoods of objects on some attribute subsets

x {a1} {a2} {a3} {a1, a2} {a1, a3} {a2, a3} {a1, a2, a3}
x1 {x5, x8} {x4, x7} ∅ ∅ ∅ ∅ ∅
x2 {x5} {x4, x6, x7, x8, x9} ∅ ∅ ∅ ∅ ∅
x3 ∅ {x4, x6, x7, x9} ∅ ∅ ∅ ∅ ∅
x4 {x7, x9} {x1, x2, x3, x7, x8, x9} {x8} {x7, x9} ∅ {x8} ∅
x5 {x1, x2, x8} {x8} ∅ ∅ ∅ ∅ ∅
x6 {x7, x9} {x2, x3, x8, x9} {x8} {x9} ∅ {x8} ∅
x7 {x4, x6} {x1, x2, x3, x4} ∅ {x4} ∅ ∅ ∅
x8 {x1, x5} {x2, x4, x5, x6} {x4, x6} ∅ ∅ {x4, x6} ∅
x9 {x4, x6} {x2, x3, x4, x6} ∅ {x4, x6} ∅ ∅ ∅

Besides, the universe U is divided into a set of equivalence classes by the decision
attribute, U/D = {{x1, x2, x3}, {x4, x5, x6}, {x7, x8, x9}}. In other words, the objects are
grouped into three subsets X1 = {x1, x2, x3}, X2 = {x4, x5, x6} and X3 = {x7, x8, x9}. The
lower and upper approximations with respect to the three object subsets can be computed
by combining Table 3 with Proposition 2.2. Some results are depicted in Table 4.

According to Table 3 and Proposition 2.3, we can obtain the positive regions and the
boundary regions on the exemplary attribute subsets, which are
POS{a1}(D) = {x3}, BN{a1}(D) = {x1, x2, x4, x5, x6, x7, x8, x9};
POS{a2}(D) = ∅, BN{a2}(D) = U ;
POS{a3}(D) = POS{a2,a3}(D) = {x1, x2, x3, x5, x7, x9},
BN{a3}(D) = BN{a2,a3}(D) = {x4, x6, x8};
POS{a1,a2}(D) = {x1, x2, x3, x5, x8}, BN{a1,a2}(D) = {x4, x6, x7, x9};
POS{a1,a3}(D) = POS{a1,a2,a3}(D) = U , BN{a1,a3}(D) = BN{a1,a2,a3}(D) = ∅.

Comparing the concept and properties of inconsistent neighborhood with the coun-
terparts of neighborhood in [14], it can be known that the introduction of inconsistent
neighborhood provides some new solutions for computing the quantities in neighborhood
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Table 4. Lower and upper approximations of object subsets on some at-
tribute subsets, where U = {x1, x2, x3, x4, x5, x6, x7, x8, x9}

X {a1} {a2} {a3} {a1, a2} {a1, a2, a3}
X1 {x3} ∅ {x1, x2, x3} {x1, x2, x3} {x1, x2, x3}

NB(X) X2 ∅ ∅ {x5} {x5} {x4, x5, x6}
X3 ∅ ∅ {x7, x9} {x8} {x7, x8, x9}
X1 {x1, x2, x3, x5, x8} U − {x5} {x1, x2, x3} {x1, x2, x3} {x1, x2, x3}

NB(X) X2 U − {x3} U {x4, x5, x6, x8} {x4, x5, x6, x7, x9} {x4, x5, x6}
X3 U − {x2, x3} U {x4, x6, x7, x8, x9} {x4, x6, x7, x8, x9} {x7, x8, x9}

rough set (i.e., lower and upper approximations, positive region, boundary region, and
reduct). In general, these solutions are more direct than the existing ones which use
neighborhoods. For example, now the reducts can be captured immediately according to
the situation of inconsistent neighborhoods, while in previous solutions they cannot be
obtained until positive regions or related values such as dependency degrees have been
computed. Furthermore, the inconsistent neighborhoods are often much narrower than
neighborhoods. Therefore, the solutions employing inconsistent neighborhoods are usually
more efficient than those employing neighborhoods.

2.3. The minimal-test-cost reduct problem. Traditional attribute reduction aims to
find the minimal-length reduct, while in test-cost-sensitive attribute reduction, people are
interested in the reduct with minimal total test cost. The relevant concept has been given
in [7].

Definition 2.4. Let Red(S) denote the set of all reducts of a TCI-DS S = (U,C, D, V, I,
tc). Any R ∈ Red(S) satisfying tc(R) = min{tc(R′)|R′ ∈ Red(S)} is called a minimal-
test-cost reduct.

Minimal-test-cost reducts are also called optimal reducts in test-cost-sensitive learning.
The problem of finding such a reduct is called the minimal-test-cost reduct (MTR) prob-
lem. Generally speaking, exhaustive attribute reduction algorithms can always obtain the
optimal reducts, while heuristic algorithms may get the reducts with sub-minimal total
test cost.

3. Algorithm Design and Evaluation Metrics. In this section, we first propose a fast
forward test-cost-sensitive attribute reduction (FTCAR) algorithm based on the proper-
ties of inconsistent neighborhoods, and then introduce some evaluation metrics for the
algorithm.

3.1. The fast forward test-cost-sensitive attribute reduction algorithm. The
proposed algorithm is described as follows.

Input: The TCI-DS S = (U,C,D, V, I, tc), the neighborhood radius δ.
Output: The reduct R.
Step 1: Set R = ∅ and S = U , where S is the set of objects out of the positive region.
Step 2: Compute in∅(x) for any x ∈ U .
Step 3: while (S ̸= ∅) do

Step 3.1: for (each ai ∈ C − R) do
IPRi = ∅; //IPRi is the incremental positive region induced by ai

for (each xj ∈ S) do
inR∪{ai}(xj) = ∅;
for (each xk ∈ inR(xj)) do
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if (∆R∪{ai}(xk, xj) ≤ δ) then
inR∪{ai}(xj) = inR∪{ai}(xj)

∪
{xk};

endif
endfor
if (inR∪{ai}(xj) = ∅) then

IPRi = IPRi ∪ {xj};
endif

endfor
endfor

Step 3.2: Find al such that Sigl = maxi(|IPRi|/tc(ai));
if (Sigl > 0) then

R = R ∪ {al};
S = S − IPRl;

else
break;

endif
endwhile

Step 4: return R.

The FTCAR algorithm is essentially a heuristic algorithm, and there are four steps
in the algorithm. Step 1 is to initialize some variables. Step 2 is to compute the initial
inconsistent neighborhoods for each object in the universe. Step 3 is to select attributes
into the reduct step by step, in which Step 3.1 is to calculate the incremental positive
regions induced by unselected attributes, and Step 3.2 is to choose the attribute with the
maximal significance. Step 4 is to return the obtained reduct.

In Step 3, the key step of the algorithm, the attributes are added into the reduct R one
by one according to the attribute significances until none of the significances is larger than
0 or no object is outside the positive region. For each unselected attribute ai ∈ C −R, its
significance is evaluated by |IPRi|/tc(ai), namely the ratio of the size of the incremental
positive region induced by ai to the test cost of ai, in which the incremental positive
region IPRi is obtained by using the inconsistent neighborhoods.

As shown in Step 3, there are mainly two techniques to improve the efficiency of the
algorithm. One is that, since inR∪{ai}(x) ⊆ inR(x) according to Proposition 2.5, it is only
required to judge whether the objects in inR(x), instead of all objects in U , belong to
inR∪{ai}(x), and meanwhile inR(x) will get smaller and smaller as the attribute reduction
proceeds. The other is that, one only needs to compute the inconsistent neighborhoods of
the objects out of the positive region, while by using S = S − IPRl, this kind of objects
will get fewer and fewer with the attribute reduction going on. In general, the computation
complexity will be reduced gradually at the sequential rounds of the while-loop, and the
process of attribute reduction will be accelerated greatly.

3.2. Some evaluation metrics. Some metrics have been introduced in [7] to evaluate
the performance of a heuristic test-cost-sensitive attribute reduction algorithm by com-
paring with the results obtained by the corresponding exhaustive algorithm. The metrics
are mainly finding optimal factor and average exceeding factor.

Suppose that the number of experiments executed by a heuristic algorithm is K, and
the number of successful searching an optimal reduct is k. The finding optimal factor
(FOF) is formulated as

FOF =
k

K
. (6)
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Obviously, the higher the FOF is, the better the heuristic algorithm performs on finding
the optimal reducts.

For a dataset with a particular test cost setting, let R′ be an optimal reduct. The
exceeding factor of a reduct R is

ef(R) =
tc(R) − tc(R′)

tc(R′)
. (7)

Suppose that the number of experiments run by a heuristic algorithm is K, and let Ri

denote the reduct obtained by the algorithm in the i-th experiment (1 ≤ i ≤ K). The
average exceeding factor (AEF) is defined as

AEF =

∑K
i=1 ef(Ri)

K
. (8)

Naturally, the smaller the AEF is, the better the heuristic algorithm performs on mini-
mizing the total test cost.

4. Experiments. In this section, two kinds of metrics are used to evaluate the perfor-
mance of the proposed fast forward test-cost-sensitive attribute reduction algorithm by
experimentation. One is the run-time compared with the two existing test-cost-sensitive
attribute reduction algorithms presented in [16, 17]. The other is the ability of minimizing
the total test cost, which is measured by using metrics finding optimal factor and average
exceeding factor introduced in Section 3.2.

Six datasets from the UCI library are employed in the experiments. The basic infor-
mation of the datasets is listed in Table 5, where |U | is the number of objects, |C| is the
number of condition attributes, and D is the name of the decision. To make the data
easier to handle, data items of condition attributes are normalized onto [0, 1], and missing
values are directly set to be 0.5. Because most datasets from the UCI library have no
intrinsic test costs, we generate them for experimentation. For each dataset in Table 5,
the test costs are set to be uniformly distributed random integers ranging from 1 to 100.
Furthermore, there is a remark about the range of neighborhood radius δ. That is, for
each dataset, the range of the neighborhood radius is selected according to the charac-
teristic of the dataset. If the neighborhood radius is larger than the chosen range, the
reduct obtained by the backtracking algorithm in [16] may be an empty set. Hence, the
neighborhood radiuses are not necessarily the same between different datasets.

Table 5. Dataset information

No. Name Domain |U | |C| D
1 Image graphics 210 19 class
2 Iono physics 351 34 class
3 Sonar physics 208 60 class
4 Wine agriculture 178 13 class
5 Wdbc clinic 569 30 diagnosis
6 Wpbc clinic 198 33 outcome

For each dataset, we run the three algorithms for 1000 times with different test cost
settings. The values of the above-mentioned metrics are computed accordingly. Firstly, we
show the average run-time of each algorithm on each dataset in Figures 1-6, where “EB-
TCAR” and “EH-TCAR” denote the existing backtracking test-cost-sensitive attribute
reduction algorithm in [16] and the existing heuristic test-cost-sensitive attribute reduction
algorithm in [17], respectively. From the figures, it can be found that the proposed fast
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(a) (b)

Figure 1. Comparisons of average run-time on Image dataset, where
“EB-TCAR” and “EH-TCAR” denote the existing backtracking test-cost-
sensitive attribute reduction algorithm in [16] and the existing heuristic
test-cost-sensitive attribute reduction algorithm in [17], respectively

(a) (b)

Figure 2. Comparisons of average run-time on Iono dataset

forward algorithm runs much more quickly than the two existing algorithms in most
cases. Moreover, although the run-time of the proposed algorithm usually grows with the
increase of the neighborhood radius, in general the growth is slow. It means that the
algorithm is relatively stable in terms of the computational efficiency.

Then, the values of finding optimal factor and average exceeding factor are depicted in
Figures 7-9. Note that, the two metrics are computed by comparing the results between
the proposed algorithm and the algorithm in [16]. The reason is that, the latter is a
backtracking algorithm whose results are optimal reducts. From the figures, it is known
that although the finding optimal factors are not very high in some cases, most of the
average exceeding factors are not more than 0.2. Hence, the results are satisfactory. The
proposed algorithm can achieve good results on minimizing the total test cost.

Finally, we explore whether there is an optimal setting of neighborhood radius δ among
different datasets. On one hand, from Figures 1-6, it is found that the smaller δ is, the
more quickly the proposed algorithm runs. The reason is that, according to Proposition
2.6, the inconsistent neighborhoods, which play a crucial role in the attribute reduction,
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(a) (b)

Figure 3. Comparisons of average run-time on Sonar dataset

(a) (b)

Figure 4. Comparisons of average run-time on Wine dataset

(a) (b)

Figure 5. Comparisons of average run-time on Wdbc dataset

expand with the increase of δ. On the other hand, from Figures 7-9, it is known that
there is not a universally optimal value of δ. Even if for the same dataset, the largest
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(a) (b)

Figure 6. Comparisons of average run-time on Wpbc dataset

(a) (b)

Figure 7. Finding optimal factors (FOF) and average exceeding factors
(AEF) on datasets: (a) Image, (b) Iono

finding optimal factor and the smallest average exceeding factor may be achieved at
different δ. Since in general average exceeding factors do not change greatly, we mainly
consider the setting of δ from the viewpoint of finding optimal factors, and conclude that
δ = 0.02 might be a rational setting if only a single value instead of a value range is
given for δ (Note that, in fact we also run the three algorithms on Wine dataset with
node δ = 0.02. Although the results are not displayed in the paper, they can support the
inference effectively).

To sum up, the proposed fast forward test-cost-sensitive attribute reduction algorithm
performs well not only on the computational efficiency but also on the effectiveness in
terms of total test cost minimization.

5. Conclusions. Test-cost-sensitive attribute reduction is an important issue in cost-
sensitive learning. In recent years, some algorithms have been presented to solve the
minimal-test-cost reduct problem of numerical data based on neighborhood rough set.
Unfortunately, these algorithms are not efficient enough. To overcome this difficulty,
in this paper an efficient approach is proposed by using the properties of inconsistent
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(a) (b)

Figure 8. Finding optimal factors and average exceeding factors on
datasets: (a) Sonar, (b) Wine

(a) (b)

Figure 9. Finding optimal factors and average exceeding factors on
datasets: (a) Wdbc, (b) Wpbc

neighborhoods. Experimental results demonstrate that the designed algorithm is both
efficient and effective.

In the future, we will study the test-cost-sensitive attribute reduction for more complex
data, such as hybrid data, or under more complicated environments, such as the case
where the total test cost has an upper bound.
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