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Abstract. This paper investigates a trajectory-tracking-control method for an omni-
directional rehabilitative training walker (ODW) subjected to center-of-gravity shift and
faulty inputs. The tracking performance and reliability of the ODW are treated simultane-
ously. The motion of the ODW under a center-of-gravity shift is described by a stochastic
model. On the basis of the stochastic model, we developed a trajectory-tracking controller
with high fault tolerance and exponential stability of the tracking error system. If the
design parameters are appropriately chosen, the mean absolute error becomes arbitrarily
small. Simulation results demonstrate the feasibility and effectiveness of the proposed
method.
Keywords: Center-of-gravity shift, Tracking control, Faulty input, Omnidirectional
walker

1. Introduction. An omnidirectional rehabilitative training walker (ODW) [1,2], which
provides walking rehabilitation and support for people with walking impairments, is being
developed. This walker allows omnidirectional movement, including not only forward
and backward motions but also right and left motions, oblique motions, rotations, and
combinations of these motions. The training programs are stored in the walker enabling
accurate rehabilitation without the presence of physical therapists.

Safety and performance are important requirements of many mechanical systems and
are especially demanded in rehabilitative training robots. Hence, the design of controllers
that simultaneously satisfy these two requirements is a growing field [3]. In the classical
control approach, any faulty information (from the input items or sensor) will degrade the
system performance and may even destabilize the system. To overcome these disadvan-
tages, researchers have developed many effective control approaches that tolerate faulty
information while maintaining stability and satisfactory performance. Fault-tolerant con-
trol can be generally classified into passive fault-tolerant control, active fault-tolerant
control, and redundant fault-tolerant control [4]. Controllers in passive fault-tolerant
control are designed to be robust against a class of presumed faults, which limits their
fault tolerance capabilities. Active fault-tolerant control systems actively react to the
faults by switching the control parameters and maintaining real-time fault detection and
diagnosis, i.e., fault detection, isolation, and estimation [5]. However, active fault-tolerant
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control systems largely depend on the estimation of the fault value, which limits their ap-
plicability. For these reasons, redundant fault-tolerant control has attracted significant
attention. Increasing numbers of mechanical systems are now embedded with hardware
redundancy, for example, actuator or sensor redundancy.

As is well known, robotic systems in practical working environment often encounter
random disturbances and random uncertainties, which deteriorate their performance in
an uncertain manner. Thus, many methods have been proposed to solve this problem, for
instance, a robust tracking-control method for robot manipulators with input disturbances
is proposed [6] and an adaptive controller based on a stochastic Lagrange dynamic model
is investigated [7]. However, the above stochastic models and control approaches consider
only the random noise from input channels. In practice, mechanical systems are affected
by many unknown system parameters such as the variable arm-length of a robot manip-
ulator [6] and the center-of-gravity shift of a rehabilitative training walker [8]. When the
system parameters change at random, ensuring a safe and reliable operation with accu-
rate tracking performance is a non-trivial design problem. Simultaneous correction of the
center-of-gravity shift and faulty inputs to an ODW (using stochastic theory and redun-
dant fault-tolerant technology, respectively) would significantly advance robotic research,
but has not been previously reported. From both theoretical and practical engineering
perspectives, many problems are worthy of investigation by this approach.

Motivated by the above observations, we investigate an ODW under center-of-gravity
shifts and faulty inputs. The main contributions of this paper are summarized below.

(i) Correcting the center-of-gravity shift is a major challenge in many mechanical sys-
tems. By changing the random parameters into random disturbances, we construct
a reasonable stochastic model that describes the motion of an ODW subjected to
center-of-gravity shifts and faulty inputs.

(ii) On the basis of the stochastic model, we propose a trajectory-tracking control for the
ODW with shifted center-of-gravity and faulty input. To ensure exponential stability
of the tracking error system, we adopt the redundant fault tolerance approach. The
mean absolute error (and its derivative) becomes arbitrarily small with appropriate
tuning of the design parameters.

(iii) During the simulation, the ODW is subjected to realistic noises and fault inputs.
The effectiveness of the proposed method is confirmed in the tracking performance.
The control input and the mean absolute error show the appropriateness of the
designed parameters.

The remainder of this paper is organized as follows. Section 2 formulates the stochastic
ODW model under center-of-gravity shifts and faulty inputs. Sections 3 and 4 present
the design of the trajectory-tracking controller and the stability analysis, respectively.
Section 5 presents the simulation results, and Section 6 concludes the paper.

2. Stochastic Model of the ODW with Center-of-Gravity Shifts and Faulty
Inputs. Figures 1 and 2 display the ODW and the coordinate settings and structure of
the ODW, respectively.

In Figure 2, Σ(x,O, y) and Σ(x′, C, y′), respectively, refer to the absolute and translated
coordinate systems. The variables are defined as follows:

v: Speed of the ODW
vi (i = 1, 2, 3, 4): Speed of an omniwheel
fi: Force on each omniwheel
G: Center-of-gravity of the walker
r0: Distance between G and the center-of-gravity when the ODW is loaded
α: Angle between the x′ axis and the direction of v
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Figure 1. ODW and omniwheel Figure 2. Structure of ODW

β: Angle between the x′ axis and r0

L: Distance from the center of the ODW to each omniwheel
li: Distance from the center-of-gravity to the center of each omniwheel
λi: Vertical distance from the center-of-gravity to each omniwheel
θi: Angle between the x′ axis and the position of each omniwheel
ϕi: Angle between the x′ axis and li
The dynamic model is borrowed from [9]:

M0KẌ(t) + M0K̇Ẋ(t) = B(θ)u(t), (1)

where

M0 =

 M + m 0 0
0 M + m 0
0 0 I0 + mr2

0

 , K =

 1 0 p
0 1 q
0 0 1

 ,

p =
1

2
[(λ1 − λ3) sin θ + (λ2 − λ4) cos θ]

q =
1

2
[(λ2 − λ4) sin θ − (λ1 − λ3) cos θ]

, X(t) =

 x(t)
y(t)
θ(t)

 ,

B(θ) =

 − sin θ1 sin θ2 sin θ3 − sin θ4

cos θ1 − cos θ2 cos θ3 cos θ4

λ1 −λ2 −λ3 λ4

 ,

λ1 = l1 cos(θ1 − ϕ1)

λ2 = l2 cos(θ2 − ϕ2)

λ3 = l3 cos(θ3 − ϕ3)

λ4 = l4 cos(θ4 − ϕ4)

, u(t) =


f1

f2

f3

f4

 .

Here, M is the mass of the ODW, m is the equivalent mass of the user (which causes
an inertial mass mr2

0), and I0 is the inertial mass of the ODW. f1, f2, f3, and f4 are
the input forces, and λ1, λ2, λ3, λ4 and r0 are random parameters associated with the
center-of-gravity shifts. θ is the angle between the x′ axis and the position of the first
omniwheel. Denoting θ = θ1, the angular positions of the other wheels are θ2 = θ + π

2
,

θ3 = θ + π, and θ4 = θ + 3π
2

.
Using the above method and the idea proposed by Chang et al. [10], the stochastic

model under a center-of-gravity shift is expressed as

dX(t) = v(t)dt

dv(t) = M−1
1 B∗(θ)u(t)dt + M−1

1 N(θ)Σdw,
(2)
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where

v(t) =

 ẋ(t)
ẏ(t)

θ̇(t)

 , M1 =

 M + m 0 0
0 M + m 0
0 0 I0

 ,

B∗(θ) =

 − sin θ1 sin θ2 sin θ3 − sin θ4

cos θ1 − cos θ2 cos θ3 cos θ4

L L L L

 ,

N(θ)=

 −(M + m) sin θ θ̇2(M + m) sin θ −θ̇2(M + m) cos θ −(M + m) cos θ 0

(M + m) cos θ −θ̇2(M + m) cos θ −θ̇2(M + m) sin θ −(M + m) sin θ 0
0 0 0 0 1

 .

Here, w is a five-dimensional independent standard Wiener process. M−1
1 NΣdw depicts

the influence of the center-of-gravity shift, and Σ/2π is the power spectral density of the
white noise.

The wheels of rehabilitative walking robots are inevitably damaged by working under
poor conditions or incorrect operations. Given that the ODW tolerates faults to some ex-
tent, it should be governed by a redundant fault tolerance controller. The fault controller
should enable training of the ODW when a wheel breakdown occurs. Actuator faults are
handled by a uniform actuator fault model [11]. After separating the redundant actuator
as

u(t) = (I − ρ∗)u∗(t), (3)

we factorize the redundant controller u∗(t) and the matrix B∗(θ) as follows:

u∗(t) =
[
u∗T

i (t) ∆u∗
i (t)

]T

(4)

B∗(θ) = [B∗
i (θ) ∆B∗

i (θ)]. (5)

The redundant actuator is then separated as

u(t) =
[
u∗T

i (t) (1 − ρi)∆u∗
i (t)

]T

, (6)

where ρ∗ = diag{ρ1, ρ2, ρ3, ρ4}. 0 < ρi ≤ 1 (i = 1, 2, 3, 4) is a constant (here, the index
i denotes the ith faulty actuator), and u∗

i (t) and ∆u∗
i (t) are the input forces from the

normal and faulty actuators respectively, with corresponding control matrices B∗
i (θ) and

∆B∗
i (θ), respectively. When 0 < ρi < 1, the ith actuator loses its effectiveness, i.e., the

ith controller loses a proportion ρi of its force. The state ρi = 1 denotes outage of the ith
actuator, i.e., zero force is input to the ith controller.

Combining (5) and (6) with (2), the stochastic model of the ODW with center-of-gravity
shifts and faulty actuators are obtained as

dX(t) = v(t)dt

dv(t) = M−1
1 B∗

i (θ)u
∗
i (t)dt + M−1

1 ∆B∗
i (θ)(1 − ρi)∆u∗

i (t)dt + M−1
1 N(θ)Σdw.

(7)

Assumption 2.1. As the angular velocity θ̇ is bounded by practical constraints, there
exists a constant h such that

2θ̇4(M + m)2 + 2(M + m)2 + 1 ≤ h. (8)

Assumption 2.2. As ∆u∗
i (t) and ∆B∗

i (θ) are bounded, M−1
1 ∆B∗

i (θ)(1 − ρi)∆u∗
i (t) are

also bounded. Thus, there exists a three-dimensional constant vector W such that

M−1
1 ∆B∗

i (θ)(1 − ρi)∆u∗
i (t) ≤ W. (9)
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3. Design of the Tracking Controller. The trajectory tracked by the rehabilitative
training program in the ODW is designed by a therapist. Therefore, the quality of the
training is enhanced as the tracking accuracy improves. With respect to a reference signal
Xd(t) ∈ C2(Rn), the tracking error is defined as

e1(t) = X(t) − Xd(t)

e2(t) = ė1(t) + αe1(t) = v(t) − Ẋd + αe1(t).
(10)

Combining (10) with the stochastic model (7), the error system becomes

de1(t) = [e2(t) − αe1(t)]dt

de2(t) = M−1
1 B∗

i (θ)u
∗
i (t)dt + M−1

1 ∆B∗
i (θ)∆u∗

i (t)dt − Ẍddt

+ αe2(t)dt − α2e1(t)dt + M−1
1 N(θ)Σdw,

(11)

where the parameter α will be designed later.
We next define the Lyapunov function

V (t) =
1

2
eT
1 (t)Q2

1e1(t) +
1

2
eT
2 (t)Q2

2e2(t), (12)

where Q1 = diag{q11, q12, q13} > 0 and Q2 = diag{q21, q22, q23} > 0.

The infinites generator of V (t) along the system
(
eT
1 (t), eT

2 (t)
)T

satisfies

LV (t) = eT
1 Q2

1(e2 − αe1) + eT
2 Q2

2

(
M−1

1 B∗
i (θ)u

∗
i (t) + M−1

1 ∆B∗
i (θ)(1 − ρi)∆u∗

i (t)

− Ẍd + αe2(t) − α2e1(t)
)

+
1

2
Tr

{
ΣT NT (θ)M−1

1 Q2
2M

−1
1 N(θ)Σ

}
.

(13)

By Young’s inequality, we have

eT
1 Q2

1e2 ≤
ε2
1

2
eT
1 Q2

1e1 +
1

2ε2
1

eT
2 Q2

1e2 (14)

eT
2 Q2

2M
−1
1 ∆B∗

i (θ)(1 − ρi)∆u∗
i (t) ≤ eT

2 Q2
2W ≤ ε2

2

2
eT
2 Q2

2e2 +
λ2

max Q2

2ε2
2

W T W, (15)

where λmax Q2 is the maximum eigenvalue of Q2 and εi > 0 (i = 1, 2) are design parameters.
Furthermore, by considering the definition of the Frobenius norm, the norm compatibility,
Equation (8), and Young’s inequality, we have

1

2
Tr

{
ΣT NT (θ)M−1

1 Q2
2M

−1
1 N(θ)Σ

}
≤ 1

2
∥Q2∥2

F

∥∥M−1
1

∥∥2

F
∥N(θ)∥2

F ∥Σ∥2
F

≤ 1

2
∥Q2∥2

F

∥∥M−1
1

∥∥2

F

[
2θ̇4(M + m)2 + 2(M + m)2 + 1

]
∥Σ∥2

F

≤ h

2
∥Q2∥2

F

∥∥M−1
1

∥∥2

F
∥Σ∥2

F .

(16)

Substituting (14)-(16) into (13), we obtain

LV ≤ − αeT
1 Q2

1e1 +
ε2
1

2
eT
1 Q2

1e1 +
1

2ε2
1

eT
2 Q2

1e2 + eT
2 Q2

2M
−1
1 B∗

i (θ)u
∗
i (t) +

ε2
2

2
eT
2 Q2

2e2

+
λ2

max Q2

2ε2
2

W T W − eT
2 Q2

2Ẍd + αeT
2 Q2

2e2(t) − α2eT
2 Q2

2e1(t)

+
h

2
∥Q2∥2

F

∥∥M−1
1

∥∥2

F
∥Σ∥2

F .

(17)
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The tracking controller and its parameter are designed as follows:

u∗
i (t) = B∗−1

i (θ)M1Q
−2
2

(
− c2

2
Q2

2e2(t) −
1

2ε2
1

Q2
1e2(t)

− ε2
2

2
Q2

2e2(t) + Q2
2Ẍd − αQ2

2e2(t) − α2Q2
2e1(t)

) (18)

α =
ε2
1

2
+

c1

2
, (19)

where cj > 0 (j = 1, 2) are time-invariant designed parameters. Substituting (18) and
(19) into (17), we have

LV ≤ −c1

2
eT
1 (t)Q2

1e1(t) −
c2

2
eT
2 (t)Q2

2e2(t) + d ≤ −cV + d, (20)

where c = min{c1, c2} and d =
λ2
max Q2

2ε2
2

W T W + h
2
∥Q2∥2

F

∥∥M−1
1

∥∥2

F
∥Σ∥2

F .

4. Stability Analysis.

Theorem 4.1. For any appropriately designed stochastic ODW model with center-of-
gravity shifts and faulty inputs (7) and given a reference signal Xd(t) ∈ C2(Rn), the

closed-loop system
(
eT
1 (t), eT

2 (t)
)T

of the controller has a unique solution on [t0,∞) and
is exponentially stable for initial values e1(t0) ∈ Rn and e2(t0) ∈ Rn. The tracking errors
e1(t) and ė1(t) satisfy

lim
t→∞

E |e1| ≤
√

2 ∥Q1∥−1
F

(
d

c

) 1
2

(21)

lim
t→∞

E |ė1| ≤
√

2(1 + α)
(
∥Q1∥−1

F +
∥∥Q−1

2

∥∥−1

F

) (
d

c

) 1
2

. (22)

Moreover, the right-hand sides of (21) and (22) can be made arbitrarily small by choos-
ing appropriate design parameters.

Proof: For practical purposes, the inertia matrix M1 is symmetric and positive-definite.
Therefore, M1 is also smooth, implying that the local Lipschitz condition holds in M1 and

in the functions u∗
i (t) and B∗

i (θ). Therefore, the closed-loop system
(
eT
1 (t), eT

2 (t)
)T

also
satisfies the local Lipschitz condition. From (12) and (20), and Lemma 1 in [7], there

exists a unique strong solution to the closed-loop system
(
eT
1 (t), eT

2 (t)
)T

on [t0,∞) for

initial values e1(t0) ∈ Rn and e2(t0) ∈ Rn, and the closed-loop system
(
eT
1 (t), eT

2 (t)
)T

is
exponentially stable.

Moreover, multiplying the inequality (20) by ect > 0, we find that

ect (LV (x, t) + cV (x, t)) ≤ ectdc. (23)

Hence, by Lemma 3.3.1 in [12] and integrating (23) from t0 to t, we have

E
(
ectV (x, t)

)
≤ ect0V (x0, t0) + E

∫ t

t0

ecsdc·ds ∀t ≥ t0. (24)

From (12), we can deduce that

E |e1(t)| ≤
√

2 ∥Q1∥−1
F e

1
2
c(t0−t)

(
1

2
eT
1 (t0)Q

2
1e1(t0) +

1

2
eT
2 (t0)Q

2
2e2(t0)

) 1
2

+ ∥Q1∥−1
F

(
2d

c

) 1
2

(25)
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E |e2(t)| ≤
√

2 ∥Q2∥−1
F e

1
2
c(t0−t)

(
1

2
eT
1 (t0)Q

2
1e1(t0) +

1

2
eT
2 (t0)Q

2
2e2(t0)

) 1
2

+ ∥Q2∥−1
F

(
2d

c

) 1
2

.

(26)

From (25) and (26) and acknowledging that |ė1| ≤ |e2|+ α |e1| ≤ (1 + α) (|e2| + |e1|), it

follows that (21) and (22) hold. Also noting that c = min{c1, c2} and d =
λ2
max Q2

2ε2
2

W T W +

h
2
∥Q2∥2

F

∥∥M−1
1

∥∥2

F
∥Σ∥2

F , the right-hand side of (21) and (22) can be made sufficiently small
by choosing the independent quantities c1, c2, ∥Q1∥F , and ∥Q2∥F .

5. Simulation Results. This section verifies the proposed trajectory-tracking-control
algorithm by simulating an ODW under center-of-gravity shifts and faulty inputs.

To rigorously evaluate the tracking performance, we assume that the walker follows
a cycloidal path. The random parameters of the center-of-gravity shift were given by
r0 = 0.1(1 + sin t) m, λ1 = L − r0 sin t m, λ2 = L + r0 cos t m, λ3 = L + r0 sin t m, and
λ4 = L − r0 cos t m. The physical ODW parameters in the simulation were M = 58 kg,
m = 70 kg, L = 0.4 m, and I0 = 27.7 kg.m2 and the design parameters were c1 = 1.3,
c2 = 0.02, ε1 = 0.95, ε = 0.03, Q1 = diag{1.4, 1.3, 2.1}, and Q2 = diag{1.4, 1.5, 0.9}.
Assuming the second input faults, the control matrix is calculated as follows:

B∗
2(θ) =

 − sin θ − sin θ cos θ
cos θ cos θ sin θ
L −L L

 ,

B∗−1

2 (θ) =


−sin θ + cos θ

2
−sin θ − cos θ

2

1

2L

−sin θ − cos θ

2

sin θ + cos θ

2
− 1

2L

cos θ sin θ 0

 .

The path Xd and the fault value are described by
xd = 2(0.3t − sin(0.3t))

yd = 2(0.3 − cos(0.3t))

θd =
π

4

0 ≤ t ≤ 120s; ρ2 =

{
0.5 0 ≤ t ≤ 60s

1.0 60 ≤ t ≤ 120s
.

The simulation results are shown and discussed below.

Figure 3. Tracking perfor-
mance of the x position

Figure 4. Tracking perfor-
mance of the y position
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Figure 5. Tracking perfor-
mance of the angle

Figure 6. Tracking of the cy-
cloidal path

Figure 7. Control inputs Figure 8. Mean absolute errors

Figures 3, 4 and 5 plot the tracking performance of the ODW in terms of the x position,
y position and orientation angle, respectively, and Figure 6 displays the cycloidal path
tracking result. Clearly, the closed-loop system realizes an exponentially stable behavior,
and the controller achieves effective trajectory tracking of the ODW (18). Therefore,
the stochastic ODW model (7) successfully corrects the center-of-gravity shift and faulty
input. The control inputs (see Figure 7) confirm that f2 contributes only half of the
expected force during the first 60 s. Thereafter, f2 vanishes for all time, but its loss
is compensated by an increase in the other force inputs. Moreover, when the design
parameters are appropriately chosen, the mean absolute errors become arbitrarily small
(see Figure 8). These simulation results demonstrate the effectiveness of the stochastic
model (7) and the tracking controller (18) in correcting center-of-gravity shifts and faulty
inputs in ODWs.

6. Conclusions. We proposed a tracking-control method based on a stochastic model
of an ODW subjected to center-of-gravity shifts and faulty inputs. Exploiting the re-
dundant input of the ODW, we first separated the fault item from the previous control
input. We then described the motion of the disturbed ODW by a reasonable stochastic
model. Thirdly, we designed a trajectory-tracking controller that guarantees exponential
stability and input-fault tolerance of the tracking error system. Finally, we demonstrated
the effectiveness of our proposed controllers in simulation studies. Ultimately, we plan
to simultaneously resolve center-of-gravity shifts and faulty inputs in other mechanical
systems. These generalizations of our model will be attempted in future work.
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