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Abstract. In this paper, we develop a coordinated traffic responsive ramp control strat-
egy, under which traffic density of freeway network can realize balanced. Firstly we pro-
pose a hybrid switched model of freeway network by using CTM; furthermore, we obtained
the balanced density in free flow state case; then, on this basis, we design a feedback con-
trol law, under which the proposed control system can realize asymptotic stable; at last, we
conduct a simulation on Beijing third ring freeway network. Simulation results show that
the proposed ramp control strategy compares favorably against the well-known ALINEA
control strategy in increasing the usage of freeway network and reducing delay of vehicles
in on-ramps.
Keywords: Freeway ramp metering, Coordinated control, Density balancing, State
feedback control

1. Introduction. Ramp control, or ramp metering, has been recognized as one of the
most effective ways for the control of freeway system. A common objective of ramp control
is to regulate the amount of traffic entering a freeway from on-ramps during a certain time
periods so that the flow on the freeway does not exceed its capacity. Ramp metering is
implemented by placing a traffic light at the on-ramps that allows the vehicles to enter
the freeway in a controlled way and thus reduces the disturbance of the traffic on the
mainline.

From the viewpoint of system control, ramp metering is a typical set-point problem.
A lot of control algorithms have been proposed, e.g., linear programming [1, 2]; PID
(Proportion Integral Derivative)-like controller [3]; LQR (Linear Quadratic Regulator)
[4]; model prediction control [5]; neural network and fuzzy control [6, 7]; optimal control
theory [8, 9]; ILC (Iterative Learning Control) approach [10]; Reinforcement learning [11].
All of these algorithms can be further classified into two classes of strategies: fixed time
strategies and real-time (traffic responsive) strategies. Fixed time strategies adopt fixed
signals at specific times and have been plagued with low efficiency. Traffic responsive
strategies determine ramp metering signals according to real-time traffic conditions.

Traffic responsive strategies can be further categorized into the local and coordinated
ramp metering strategies. Local ramp metering strategies employ measurements from the
vicinity of a single controlled on-ramp while coordinated ramp metering strategies use
measurements from an entire region of the network and are responsible for the concurrent
operation of all included on-ramps. Different approaches to the design of local ramp
metering strategies include feedforward control, that is, the demand-capacity strategy
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and its variations [3]; feedback control, that is, the ALINEA strategy and its variations
[3, 12, 13, 14]; neural network control [15, 16]. A number of design approaches have been
used for coordinated reactive ramp metering such as feedback control [17, 18] and optimal
control [8, 9]. In this paper, we will focus our attention on the feedback coordinated ramp
metering.

State balancing is studied in [19], which addresses the problem of averaging of a stored
resource in batteries. A distributed algorithm was proposed for flow control, and the
algorithm guarantees states asymptotically converge to the same value, which is equal to
the average of initial values. However, for the problem of density balancing of freeway
traffic system, we may represent vehicle density as the state of such a system while on-
ramp demands are assumed for the inputs. The goal of density balancing for freeway
traffic system is to find input flows that result in a uniform distribution of density. In
practice, this uniform distribution can be understood as an equal inter-distance between
vehicles. The equal inter-distance can be attractive to driver’s point of view. It reduces
the number and intensity of acceleration and deceleration events and therefore, it makes a
travel more safe and comfortable, while decreasing emissions. In [20], authors investigate
equilibrium sets for freeway system and give the necessary and sufficient conditions for the
existence of equilibrium. However, they do not research the problem of designing ramp
metering strategy. In this paper, therefore, we first derive the sets of balanced equilibrium
points for freeway network. Then, by using feedback control theory, we design a state-
feedback control law, under which the freeway system can realize asymptotic stable, which
implies that densities of freeway can converge to a balanced equilibrium point. Lastly, we
illustrate the obtained results by applying them to Beijing third ring road.

The rest of this paper is structured as follows. The traffic flow model of freeway network
used for both simulation and control design purposes is described in Section 2. The sets of
balanced equilibrium points of freeway network and the formulation of the control problem
for ramp metering are presented in Section 3. Section 4 presents simulation results. And
conclusions and further research topics are given in Section 5.

2. The Traffic Flow Model.

2.1. Density-based cell transmission model. In order to develop a ramp control
strategy, we must construct a mathematical model of freeway network. Many models
have been proposed in these years, for example, the well-known microscopic car-following
models [21], macroscopic LWR model [22, 23, 24]. Daganzo [25, 26] proposed the Cell
Transmission Model (CTM) by spatially and temporally discretizing the LWR model.
CTM is an analytically simple model, and it can capture many important traffic phenom-
ena, for example, queue build-up and dissipation, backward propagation of congestion
waves. Therefore, CTM is chosen as underlying traffic flow model of freeway network.
However, unlike the assumption of standard CTM [27], i.e., the link is divided into a
collection of segments, each of which is called a cell, we call a link of having the same
geometry and other conditions as a cell in our modeling framework. These cells are classi-
fied into three basic types: source cells, sink cells and internal cells, as shown in Figure 1.
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Figure 1. Example of three types of cells
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Figure 1(a) represents a source cell providing traffic demand to road network, Figure 1(b)
represents a sink cell receiving the output from road network, and Figure 1(c) represents
an internal cell.

2.2. Dynamics of continuous state of the freeway system. As shown in Figure 2,
consider a cell i, its upstream cell i − 1 and its downstream cell i + 1. According to the
literature [25, 26], continuous dynamic of cell i can be described as follows:

ρi(t + 1) = ρi(t) +
T

Li

(qi−1,i(t) + di(t) − qi,i+1(t) − oi(t)) , 0 ≤ ρi(t) ≤ ρim, (1)

where ρi(t) is the density of cell i at time instant t; ρi0, ρim are respectively the critical
density and jam density, and they are constants in general; Li is the length of cell i; T is
the sampled period, and viT ≤ Li; vi is the free-flow speed of vehicles in cell i; Ci denotes
the maximum flow that can enter or leave cell i in the time interval [tT, (t + 1)T ]. The
relationship between these parameters is shown in Figure 3. qi,i+1(t) is the flow from cell
i to i + 1, and

qi,i+1(t) = min {si(t), ri+1(t)} . (2)

si(t) is the traffic flow sent by cell i in the time interval [tT, (t + 1)T ], and

si(t) = min{Ci, viρi}

=

{
viρi(t), if ρi(t) < ρi0;
Ci, if ρi(t) ≥ ρi0.

(3)

ri+1(t) is the traffic flow received by cell i + 1 in the time interval [tT, (t + 1)T ], and

ri+1(t) = min{Ci+1, wi+1(ρi+1,m − ρi+1)}

=

{
Ci+1, if ρi+1(t) < ρi+1,0;
wi+1(ρi+1,m − ρi+1(t)), if ρi+1(t) ≥ ρi+1,0.

(4)

where wi+1 is the backward wave speed of vehicles in cell i + 1.
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Figure 2. Cell i and its upstream cell i − 1, downstream cell i + 1
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2.3. Hybrid model of practical freeway network. Consider a freeway network, which
is divided into n cells, indexed i = 1, . . . , n, as is shown in Figure 4. Each cell is assumed
to be equipped with at most one on-ramp and one off-ramp, and di(t), i = 1, . . . , m, is
the demand of on-ramp i at time instant t, oi(t), i = 1, . . . , p, is the flow from upstream
mainline cell i to the corresponding off-ramp at time instant t. Here assume that the
off-ramp can receive enough vehicles, i.e., it is not congested, and

oi(t) =
βiqi,i+1

β̄i

, (5)

i.e., the flow entering the off-ramp from cell i is the βi times of the flow leaving from
the cell i, and β̄i = 1 − βi. For the freeway system, we adopt the density-based cell
transmission model described in previous section.
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Figure 4. The diagram of freeway network

For the convenience of our further investigation, substituting (2)-(5) into (1), we can
derive a switched control system as follows:

x(t + 1) = Asx(t) + Bsd(t) + Fs, x(t) ∈ Ds, s ∈ M = {1, . . . , m}, (6)

where s = 1, . . . , S, x = [ρ1, . . . , ρn]T ∈ Rn denotes the traffic density vector of the road
network, the input vector d ∈ Rm represents the on-ramp traffic demand of the road
network. As and Bs are the system matrix and the input matrix, Fs is a vector, and these
system parameters are composed of the parameters in the fundamental diagrams of all
the road segments. The switching signal σ(t) is determined by the convex polytopes Ds,
i.e., σ(t) = s if and only if x(t) ∈ Ds.
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3. The Coordinated Ramp Control Strategy.

3.1. The steady equilibrium sets of freeway network. In this section, our goal is
to analyze the equilibrium sets of freeway network. In particular, we will investigate sets
of balanced equilibrium points. Before analyzing our problem, we first introduce some
definitions as follows [20].

Definition 3.1. The steady equilibrium set Ω for freeway network described by (6) is a
set of pairs (x∗, d∗) that solve the following steady equilibrium equation:

(As − I)x∗ + Bsd
∗ = 0, x∗ ∈ D∗

s , s ∈ M = {1, . . . , m}, (7)

where I stands for the identity matrix. Similarly, the switching signal σ∗(t) is determined
by the convex polytopes D∗

s , i.e., σ∗(t) = s if and only if x∗(t) ∈ D∗
s . According to (7), the

steady equilibrium state is gained for each cell, i.e., the total flows entering and leaving
cell are equal. We denote by Ωx the set of steady equilibrium densities and Ωd the set of
steady equilibrium on-ramp flow respectively.

According to [20], we know that the system is in different modes under the different
parameters. And the balanced equilibrium sets of densities only exist for the free flow
case (Due to space limitations, more details can refer to [20]). Therefore, in this paper,

we only consider the special case. The set of steady equilibrium densities Ωf
xB and the set

of steady equilibrium on-ramp flow Ωf
dB in the free flow case are respectively described as

follows:

Ωf
xB =

{
x∗ ∈ X , x∗ = ϕ1 : 0 < ϕ ≤ min({ρi0}n

i=1), ϕ =
d∗

1

v1 − β̄nvn

, u∗ ∈ Ωf
dB

}
, (8)

where 1 is a column vector for all-ones.

Ωf
dB =

{
d∗ ∈ D, d∗

1 ≤
(
v1 − β̄nvn

)
min ({ρi0}n

i=1) , d∗
i ≤

(
vi − β̄i−1vi−1

)
min ({ρi0}n

i=2) ,

d∗
1

v1 − β̄nvn

=
d∗

i

vi − β̄i−1vi−1

, i = 2, . . . , n

}
. (9)

In the following, we will design a state feedback controller, under which the densities
of freeway asymptotically converge to the balanced equilibrium point.

3.2. State-feedback controller design. From the previous section, we derive the bal-
anced equilibrium density x∗, d∗ is corresponding on-ramps flow of balanced equilibrium
density, which has to satisfy:

x∗ = Ax∗ + Bd∗. (10)

Let x̄(t) = x(t) − x∗ and u(t) = d(t) − d∗ are state error and control input error
respectively. Then we have:

x̄(t + 1) = Ax̄(t) + Bu(t), (11)

where x̄ = [ ρ̄1 · · · ρ̄n ]. Based on the feedback control theory, we design a distributed
state feedback control law such that the system (11) can realize asymptotic stable, which
is as follows:

ui(t) = Kiixi(t) + Ki,i−1xi−1(t) + Ki,i+1xi+1(t), i = 1, . . . , n. (12)

Let u = [ u1 · · · un ], then, the closed-loop freeway system resulting from (11) and
(12) can be written as

x̄(t + 1) = Ax̄(t) + BKx̄(t) = Āx̄(t), (13)
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where Ā = A + BK,

K =



K11 K12 0 · · · · · · K1n

K21 K22 K23 · · · · · · 0
...

. . . . . . . . . . . .
...

0 0 Ki,i−1 Kii Ki,i+1 0
...

...
...

. . . . . .
...

0 0 0 · · · · · · 0


.

In order to ensure the densities of freeway converge to the balanced equilibrium, it is
necessary that the system (13) asymptotically converges to 0. To achieve the goal, we
give the following lemma.

Lemma 3.1. The equilibrium x̄ = 0 of (13) is asymptotically stable if and only if the
matrix Ā is Schur stable, i.e., the eigenvalues of Ā lie inside the interior of unit circle.

Thus, from results in Lemma 3.1, the problem solving the feedback gain matrix K such
that (13) can realize asymptotic stable, is transformed to the problem solving the matrix
K such that the matrix Ā = A + BK in (13) is Schur stable, which is the standard
problem of feedback stabilization of discrete-time linear time-invariant control systems.
Then, Linear Matrix Inequality (LMI) methods [28] can be used to numerically solve the
matrix K. Thus, we can obtain the following ramp metering rates:

d(t) = u(t) + d∗. (14)

4. Simulation Example.

4.1. Parameters setting. In this section, we report on simulation tests using the pro-
posed control strategy in this paper. Beijing third ring freeway is approximately 48 km
long and includes 62 on-ramps and 62 off-ramps. For the purpose of our study, only the
counter-clockwise direction of ring road was modelled. And in order to reduce the com-
putational complexity, we only consider a simplified version of Beijing third ring freeway.
The simplified version third ring freeway is divided into n = 24 cells. Each cell contains an
on-ramp, and there exists an off-ramp in cell 3, 7, 11, 15, 19, 23 respectively. The split ratio
are as follows: β3 = 0.31, β7 = 0.39, β11 = 0.41, β15 = 0.38, β19 = 0.42, β23 = 0.37. The
time interval T is 10 s. The lengths of each link are 2.2754, 0.9139, 1.1128, 2.4992, 1.6475,
1.7283, 5.2097, 1.8588, 1.2185, 1.3304, 1.3304, 1.8215, 2.5643, 2.2381, 1.9769, 3.0587,
1.4423, 4.6813, 1.3242, 3.0152, 1.2993, 1.9459, 1.5107, 1.6324 km, respectively. The free
flow speeds are 69.41, 83.77, 94.43, 73.25, 84.96, 91.38, 95.90, 68.26, 75.03, 84.56, 94.12,
69.39, 76.99, 87.92, 94.42, 68.41, 75.78, 84.40, 94.63, 63.52, 72.13, 84.68, 92.12, 59.36
km/h, respectively. Through Equations (8) and (9), the balanced equilibrium densities
x∗ = 83.75 · 1′

24 are derived, where “′” is the transpose of a matrix or vector, 124 stands
for all-ones row vector.

4.2. Simulation results. As shown in Figure 5, the demand on on-ramps rises from low
levels to high levels, then subsides. The performance of ramp metering is measured by
the total number of vehicles using freeway network and ramp queue delay. The former is
defined as num =

∑Nm

t=1

∑n
i=1 ρi(t)Li, and the latter is defined as D = T

∑Nm

t=1

∑n
i=1

(
d̄i(t)

−di(t)
)
, where Nm is the length of the time horizon, d̄i(t) is the traffic demand entering

on-ramp i. Before presenting the simulation results, we describe briefly the ALINEA
control law [3] so that the performance of the two types of controllers can be compared.
It is shown as follows:

d(t + 1) = d(t) + KA(ρ̃ − ρ(t)). (15)
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Figure 6. The densities of freeway network

The key to design an ALINEA controller is to obtain the regulator parameter KA and
a desired value ρ̃ for the downstream density. Here, in order to compare with our method
easily, we use ρ̃ = x∗, and KA = 71. The performance is calculated for two types of
control algorithms; the simulation results are shown in Figures 6, 7 and 8.
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Figure 7. The number of vehicles
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Figure 8. The ramp delay of freeway network
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From Figure 6, we can see: using our designing method, the densities of all cells can
asymptotically converge to the balanced equilibrium states, as is shown in Figure 6(a);
the densities of cells also converge to balanced equilibrium state when ALINEA algorithm
is applied, as is shown in Figure 6(b). The number of vehicles using the freeway in the
sample time is described in Figure 7. It is apparent that the usage of freeway in Figure
7(a) is highest, i.e., when our design approach is applied, the total number of vehicles is
4.5155 × 106, yet it is only 4.4937 × 106 when ALINEA law is applied, which can show
the proposed ramp control strategy compares favorably against the well-known ALINEA
control strategy increasing the usage of freeway network. The delay, i.e., queues of vehicles
in on-ramp in the time interval, is shown in Figure 8, by which, we can calculate the total
delay in simulation horizon is 123.7515 veh · h, which is lower than 124.3793 veh · h when
ALINEA is applied.

5. Conclusions. Ramp control has been an effective method for combating freeway con-
gestion. It has produced a lot of ramp control algorithms in past research. We give the
ideas about balancing of road traffic density distributions, and derive the numerical so-
lution, on the basis of which, we design a coordinated control strategy based on state
feedback control theory. Under free flow conditions, we conducted a simulation of third
ring freeway in Beijing; simulation results show our method outperforms ALINEA law in
increasing the total number of vehicles and reducing the total delay of on-ramp. In this
paper, we only consider free flow condition; further research topics will focus on applica-
tions of our developed methods to the other conditions and compare our methods with
existing methods proposed in the literature.
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[19] M. Bariń and F. Borrelli, Distributed averaging with flow constraints, IEEE 2011 American Control
Conference, San Francisco, USA, pp.4834-4839, 2011.

[20] D. Pisarski and C. Canudas-de-Wit, Analysis and design of equilibrium points for the cell-
transmission traffic model, IEEE 2012 American Control Conference, Montreal, Canada, pp.5763-
5768, 2012.

[21] D. C. Gazis, R. Herman and R. W. Rothery, Nonlinear follow-the-leader models of traffic flow,
Operations Research, vol.9, no.4, pp.545-567, 1961.

[22] M. G. Lighthill and G. B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded
roads, Sciences, vol.229, no.1178, pp.317-345, 1955.

[23] P. I. Richards, Shock waves on the highway, Operations Research, vol.4, no.1, pp.42-51, 1956.
[24] H. J. Payne, Models of freeway traffic and control, Mathematical Models of Public Systems, pp.51-61,

1971.
[25] C. F. Daganzo, The cell transmission model: A dynamic representation of highway traffic consistent

with the hydrodynamic theory, Transportation Research Part B: Methodological, vol.28, no.4, pp.269-
287, 1994.

[26] C. F. Daganzo, Requiem for second-order fluid approximations of traffic flow, Transportation Re-
search Part B: Methodological, vol.29, no.4, pp.277-286, 1995.

[27] X. Sun, L. Mun̈oz and R. Horowitz, Mixture Kalman filter based highway congestion mode and
vehicle density estimator and its application, IEEE 2004 American Control Conference, Boston,
USA, pp.2098-2103, 2004.

[28] S. P. Boyd, L. E. I. Ghaoui, E. Feron et al., Linear matrix inequalities in system and control theory,
Philadelphia: Society for Industrial and Applied Mathematics, 1994.


