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ABSTRACT. A more effective Lyapunov functional has been constructed to investigate the
H, filtering problems for a class of neural networks with time-varying delay. By combin-
ing with some inequality technic or free-weighting matriz approach, the delay-dependent
conditions have been proposed such that the filtering error system is globally asymptot-
ically stable with guaranteed Ho, performance. The time delay is divided into several
subintervals; more information about time delay is utilized and less conservative results
have been obtained. All results are expressed by the form of linear matriz inequalities,
and the filter gain matriz can be determined easily by optimal algorithm. Exramples and
simulations have been provided to illustrate the less conservatism and effectiveness of the
designed filter.

Keywords: H,, filter design, Globally asymptotically stable, Linear matrix inequality
(LMI), Neural networks, Time-varying delay

1. Introduction. The H,, filtering issue was introduced in [1] and its main aim is to
design a signal estimator for given system such that L, gain of filtering error will be
less than a prescribed level. Comparing with the traditional Kalman filtering, the H.,
filtering can minimize the H.,, norm of the transfer function between the noise and the
estimation error, which has an advantage in dealing with external unknown noises. Since
then, the H, filtering technology has been extensively applied in diverse such as discrete-
time system [2-4], fuzzy systems [5-7], Markvoian delay system [8,9], nonlinear stochastic
system [10-12] and singular system [13].

At the same time, time delay is a natural phenomenon frequently encountered in various
dynamic systems such as electronic, chemical systems, biological systems, economic and
rolling mill systems, which is very often the main sources of instability, oscillation and
poor performance. Therefore, H,, filtering research for systems with different time-delays
such as independent-delay, dependent-delay, distributed-delay and discrete delay have
attracted a number of researchers, and many important results have been reported, see
[14-19] and the references therein.

For the time-varying delay case, it has been proved that delay-independent methods
[14-16] are more conservative than delay-dependent methods, especially for small time-
delays. Therefore, researchers have focused on designing the time-dependent H,, filters
and the main concern is to reduce the conservatism of these conditions [20-25]. In the
discussion above, a delay-partitioning approach was used to guarantee the reliable H,
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filtering for discrete time-delay system with randomly occurred nonlinearities in [21],
a switched Lyapunov function approach and free-weighted matrices were provided to
guarantee H, filtering for discrete time switched system with interval time-varying delay
in [22], an average dwell time method was used to achieve filtering for discrete-time
switched systems with constraint switching signal and interval time-varying delay in [23].
In order to overcome conservativeness, and void using both model transformation and
bounding technique for cross term, a finite sum inequality approach has been proposed
to research H, filtering for the uncertain discrete-time system with time-delay in [24].

During the past several decades, many kinds of neural networks have been extensively
investigated because of their successful applications in various scientific fields such as pat-
tern recognition, image processing, associative memories, and fixed-point computations.
A lot of research results about the stability analysis, passivity analysis, state estimation
problems and H,, filtering for neural networks with time delay have been reported [25-28].
In the literatures discussions above, H,, and generalized H, filtering problem for delayed
neural networks have been addressed in [28]; by employing a novel bounding technique
and introducing slack variables, sufficient conditions such that the resulting filtering error
system is globally exponentially stable with guaranteed H., performance have been pre-
sented, and examples and simulations have shown the effectiveness of proposed method.
While the conditions considered in [28], the limit to time derivative must be smaller than
one or a positive constant, which does not allow the fast time-varying delay and will limit
the application scope of results, see [31] and the references therein.

Motivated by the discussion above, in this paper, we investigate the delay-dependent
H . filter problem for a class of neural networks with time-varying delay. In order to reduce
the possible conservatism, a new Lyapunov functional is constructed by using the delay
decomposition idea [26]. By combining with some integral inequality technic [28] or free-
weighting matrix approach [26,29], the time delay is divided into several subintervals, and
more information about time delay is utilized and less conservatism has been obtained.
The H, filter is designed and H,, performance index v is obtained by linear matrix
inequalities (LMIs). Examples and simulations are presented to show the effectiveness
and low conservatism of proposed methods.

The rest of this paper is organized as follows. The H,, filtering problems for delayed
neural networks are formulated in Section 2. Sections 3 is dedicated to presenting delay-
dependent criteria to ensure the existence of filters. Three examples and simulations are
provided to illustrate the effectiveness and performance of the proposed approaches in
Section 4, also some discussions and comparisons are given in Section 4. Finally, we draw
some conclusions in Section 5.

Notation: Throughout this paper, if not explicit, matrices are assumed to have com-
patible dimensions. The notation M > (>, <,<)0 means that the symmetric matrix
M is positive-definite (positive-semidefinite, negative, negative-semidefinite). Apin(-) and
Amax(+) denote the minimum and the maximum eigenvalue of the corresponding matrix.
The superscript “T” stands for the transpose of a matrix; the shorthand diag{---} de-
notes the block diagonal matrix; || - || represents the Euclidean norm for vector or the
spectral norm of matrices. I refers to an identity matrix of appropriate dimensions, and
x means the symmetric terms. Sometimes, the arguments of a function will be omitted
in the analysis when no confusion can arise.
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2. Problem Statement and Preliminaries. Let us consider the following neural net-
work with time delay and subject to noise disturbances delays:

i(t) = —Az(t) + Wof(z(t)) + Wif(z(t — (1)) + J + Biu(t),
y(t) = Cx(t) + Dx(t — 7(t)) + Bau(t),
z(t) = Hx(t),

(t)=<¢(t), Vte[-2T1,0],

(1)

where z(t) = [z1(t), z2(t),...,z,(t)]T € R is the state vector of the neural network
associated with n neurons, y(t) € R™ is the network measurement, z(t) € RP, which
needs to be estimated, is a linear combination of the states, and u(¢) € R? is the noise
input belongs to L[0,00). A = diag{ay,...,a,} with |a;| <1 (i =1,2,...,n) is a diagonal
matrix with positive entries. f(z(t)) = [f(z1(t)), f(wa, (t)), ..., f(za(t))]" € R* denotes
the neuron activation function and J = [Ji, Jo,...,J,]7 € R™ is an external constant
input vector. Wy, W are the connection weight matrix and the delayed connection
weight matrix, respectively. By, By, C', D and H are known real constant matrices with
compatible dimensions. 7(¢) denotes the transmission delay that satisfies

0<7(t) <7, —n<7(t) <, (2)
where 7 and p are some scalars. ((t) is real-valued continuous initial condition on [—27, 0].
Remark 2.1. In this paper, we assumed the time-varying delay is differentiable, and the

time derivative can be positive or negative or zero, even bigger than one, so its result is
more general than [28].

Assumption 2.1. Fori € {1,2,...,n}, Va,y € R x # y, the neuron activation function
fi(+) is continuous, bounded and satisfies:

| file) = fily) IS Ll e =y, (3)
with L = diag{ly,la,...,1,}.
In this paper, we consider the following full-order filter for the estimation of z(t):
B(t) = —AR(t) + Wo f(#(1)) + Wi f(@(t = () + T + K(y(t) = §(1)),
y(t) = Cz(t) + Di(t — 7(1)),
2(t) = Hi (1),
(0) =0,
where Z(t) € R is the state estimation, g(t) € R™, and K € R™™™ is the filter gain
matrix to be determined.

Define the filter errors e(t) = z(t) — &(t) and Z(t) = z(t) — 2(¢). Combining the neural
networks (1) with (4), the filtering error system can be obtained as follows:
é(t) = —(A+ KC)e(t) — KDe(t — 7(t))

+Wop(t) + Wip(t — 7(t)) + (B1 — KBs)u(t),

8

(4)

where ¢(t) = f(z(t)) = f(2(t)), ¢(t = 7(t)) = f(x(t — 7(2))) = f(2( - 7(1))).

The H filtering problem considered in this paper is now formulated as follows. Given
a prescribed level of noise attenuation v > 0, design a suitable filter such that the filtering
error system (5) has a H., performance v for 7(¢) satisfying:

(i) the error system (5) with u(¢) = 0 is globally asymptotically stable and
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(ii) the H, performance ||Z(¢)||2 < 7[|u(t)||2 is guaranteed under zero-initial condi-

tions for all nonzero u(t) € Ly[0,00), where [|Z(t)||2 = \/fo ZT(t)Z(t)dt, and ||u(t)||2 =

\/ [ uT (t)u(t)dt.
0

At ﬁrst, we give the following lemma which will be used frequently in the proof of our
main results.

Lemma 2.1. [25] For any constant symmetric positive defined matriz J € R™ ™ scalar
n and the vector function v : [0,n] — R™, the following inequality holds:

n/on VT () Tu(s)ds > (/Onu(s)ds>TJ (/Ony(s)ds>

Lemma 2.2. [26] For given proper dimensions constant matric ®1, Py and Pz, where
®T = @, and ®F = &y > 0, we have &, + T DS '®3 < 0 such that only and only if

P, <I>3T —o, o5
[* _(1)2]<00r[ . o, <0

Lemma 2.3. [26] For given function uy < 7(t) < po, there exist nonnegative function
A (t) > and A\o(t) > satisfying A1 (t) + Ao(t) = 1, such that the following equation holds

7(t) = A (t) + pada(t)

Lemma 2.4. [26] For any real vectors a, b and any matriz Q > 0 with appropriate
dimensions, it follows that £2a”b < a”Qa + b7 Q~'b.

3. Main Results. In this section, firstly, we show the filtering error system (5) with
u(t) = 0 is globally asymptotically stable. When u(t) = 0, the system (5) becomes the
form as follows:
é(t) = —(A+ KQ)e(t) — KDe(t — 7(t)) + Wop(t) + Wip(t — 7(t)),
Z(t) = He(t), (6)
£(0)=0
Then we have the following Theorem 3.1.

Theorem 3.1. For given constant o, B, 7, p and diagonal matrices Ly, Lo, the error
system (6) is said to be asymptotically stable, if there exist symmetric positive definite
matrices P> 0, Q; >0 (i =1,2,3,4), R > 0, and two diagonal matrices Sy, Sy such that
the following linear matriz inequalities (LMIs) hold

@i T(I)T

7® 7(—2P + pR)

where ® = [-(PA+YC)0 —YD 00 PW, PWy],

<0, i=1,2, (7)

i @11 %R —YD 0 0 @16 i
% Og —(1—1a)TR 0 0 0
. - * * @33 6L'rR 0 0
O(7 (1) = * * % Ouy —(l_lﬁ)TR 0
* * * * Os5 0

B * * * * Os¢6 |

O =—PA-ATP-YC -C"Y" + LS\L+ Q) — =R, O3 = [PW, PW],
@22 = (]_ - O[T(t))(QQ - Ql) - %R - ﬁR,
O33 = (1 = 7(1))(Q3 — Q2) + LS, L — ﬁR - %R;
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Ou=(1-(1-8)7(t)(Qs—Qs) — 5B~ 5=R.

O55 = ~Qi — g R,

@66 = dwg{Q5 - Sl, —(]_ - T(t))Q5 - SQ},
where ©1 and Oy are defined as: replacing 7(t) in O(7(t)) by p and —u respectively.
Moreover, the estimator gain matriz is given by K = P~1Y .

Proof: Choose the following Lyapunov-Krasovskii functional candidate as:

= Z Vi(t) (8)

where

Vi(t) = e(t)" Pe(t),

/ / #)déds,
—7 Jt+s

t t—ar(t)
Va(t) :/t o 6T(S)Q16(8)d8+/t—r(t) e’ (5)Qze(s)ds

1—7(1) 1—5(t)
+/ eT(s)Q3e(s)ds+/ e’ (5)Que(s)ds

—4(t) t—7

¢
+ /tT(t) 0" (5)Qs0(s)ds

where P, Qr (k=1,2,...,4,) and R are positive definite matrices, §(t) = 7(¢t) + S(7 —
7(t),and 0 < < 1,0< g < 1.
Differentiating V' (¢) with respect to ¢ along error system (6), we can obtain that

Vi(t) =2¢" (1) Pé(t)
=2¢T () P[—(A + KC)e(t) — K De(x(t — 7(t))) 9)
+ Wop(z(t) + Wig(a(t -

Va(t) =7[—(A + KC)e(t) — KDe(x(t — 7(t))) + Wop(t) + Wip(t — 7(1))]"R
¢ ¢

X [—(A+ KC)e(t) — KDe(xz(t — 7(t))) + Wop(t) + Wip(t — 7(t))]

[
¢ at(t)

— Ré(s)ds — ¢l (s)Ré(s)ds 10

/t_m(t) (5)Re(s) /t_T(t) (5)Ré(s) (10)
t—7(t)

—/ (s)Ré(s)ds

t—6(t)

V(t) =e" (1) Que(t) + (1 — a7 (1)e” (t — a7(t))(Q2 — Qu)e(t — ar(t))
+ (1= 7(t)e’ (t = 7(1))(Qs — Qa)e(t — 7(1))
+ (1= (1= p)7(0)e (t = 0(1))(Qu — Qs)e(t — 5(t)) (11)
— el (t —T)Que(t — 7) + o (H)Qs50(t)
— (L=7(8)(t = 7(1)" () @sp(t — 7(1))
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By virtue of Lemma 2.1, we can get that

- /tta'r(t) ¢ () Re()ds < _Ml(t) </tta‘r(t) é<8)d8> " R/ttm(t) e (12)

L Tty —el(t — ar e(t) —e(t —ar
ar () [e" (1) —e (¢ ()] Rle(t) — e(t ()],

t—ar(t) 1 t—ar(t) T t—ar(t)
- / &7 () Ré(s)ds < ——— / i(s)ds | R / é(s)ds
t—7(t) (1 —a)r(t) t—7(t) t—7(t) (13)

<

<@ _1Q)T[6T(t —ar(t)) — e (t = 7(1)|Rle(t — ar(t)) — e(t — 7(1))],
t—7(t) 1 t—r(t) T t—7(t)
— ¢T'(s)Ré(s)ds < — ée(s)ds| R é(s)ds
/t—é(t) (5)Re(s)ds < at(t) </t—6(t) =) ) /t—é(t) (2 (14)
< —%[J(t —7(t)) — e (t = d(t)|R[e(t — 7(1)) — e(t — 4(2))],
SON . B 1 t76(t)é . T t76(t)é .
-, ORI (/ o ) A )
! Tt — —eT'(t — 1) R[e(t — —e(t—71
< —m[e (t—4()) (t —7)|R[e(t —46(t)) —e(t —7)]

In addition, it can be deduced from Assumption 2.1 that there exist two positive diag-
onal matrices S7 and S, such that the following inequations hold:

P (O)Sip(t) = [f(x(t) — F@O) Silf(2(t) — f(@(1))]

< el (t)LS, Le(t) (16)
Therefore, we can obtain that
el (t)LS  Le(t) — o' (t)S1p(t) > 0 (17)
By the same way, the following inequality can be obtained
el (t — 7(t))LSaLe(t — 7(t)) — @ (t — 7(t))Sap(t — 7(t)) > 0 (18)

By substituting (9)-(11) into V (t), adding the left side of (17)-(18) into the right side of
V (t), then using (12)-(15), we can get that

V(t) <706 (1) + T RAJE(), (19)
where
[ ©1 R —-PKD 0 0 O |
* O ﬁR 0 0 0
. o * * @33 %R 0 0
G(T(t)) o * * * Oy ﬁR 0
* * * * O35 0
| x * * * * O¢6 |

M) =[e"(t) e" (t—ar(t) " (t = 7(t) e"(t = 0(t) " (t = 7) ¥ (t) ¥ (¢t —7(1))],
Q=[—(A+KC)0 — KD 00 W, Wy].
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By Lemma 2.3, there exist nonnegative functions A;(¢) and Ao(t) satisfying A;(t) +
Ao(t) = 1 such that

where ©; and O, are defined as: replacing 7(¢) in ©(7(t)) by p and —p respectively.
Substituting (20) into (19), then (19) can be rewritten as

V(t) < MOET()[O1 + TQTRQIE() + Ao (1)ET (1) [0 + TQTROJE(R). (21)
Therefore, the following matrix inequality holds
0,+mO'RO <0, i=1,2. (22)

We can get that V(¢) < 0, which implies that error system (6) is asymptotically stable.
By Lemma 2.2, (22) are equivalent to the following matrix inequality

@i TQTR

TRQ) —TR

Pre- and post multiplying (23) by diag{I,I,I,I,1,I,PR™"} and diag{I,I,I,1,1,I,R™"

P}, respectively, we can easily obtain the following inequality:
@i TQTP
TPQ —7PTR-'P
By using the fact —PR™!P < —2P + pR and introducing the new variable PK =Y, it is

clear that LMIs (7) can guarantee the asymptotic stability of the error system (6). This
completes the proof. [

] <0, i=1,2. (23)

] <0, i=1,2. (24)

Remark 3.1. The new Lyapunov function proposed in Theorem 3.1 is based on the decom-
position of delay interval [—7,0] into four subinterval, which are [—ar(t),0], [-7(t), —aT

(O], [=0(t), =r ()] and [=7, —7(t)].

Remark 3.2. In order to convert nonlinear matriz inequality into LMI, the fact —PR™'P
< =2 P+pR is used in [27]. It can be concluded that the proposed method in [27] is more
conservative than those in [29]. In Theorem 3.1, the fact —PR™'P < —2 P + R is used
to convert (24) into LMIs. It is obvious that the adjustable parameter p is introduced in
Theorem 3.1, which brings much flexibility in reducing the conservatism.

Next, we will establish the H,, performance for the filtering error system (5).
For simplicity, firstly, we define the following matrix

[ O11 O12 O13 O Oy

O15 T
% Oz O3 O Oy 0
A/ . * * @33 @34 @35 0
oGy =| &t Omgm g 0| (25)
* * * * (:)55 0
L X ES ES ES * (:)66 h

where

O =—PA-A"P-YC—-C"Y"+ LS\ L+Q+H"H+ M, + M, ©15 = M] —M; — Ny,
(?22 = (]_ - O[T(t))(QQ - Ql) - ]\_42 - MZT + NQ + NZT,

@13:—YD+N1_+U1+M§F, O =M -U + V4,
@15:M5T—V1,@23:—M3T+_N§F—N2+U2,
@24:—MZ+NI—U2+‘/2;@25:_M5T+N5T—Vv2, B
@33:(1—T(t))(Q3—Q2)+L52L—Ng—Ng—FUg,—FUg, @34:—MZ+UZ—U3+V},,
(:)35 — —Ng —|— Ug - ‘/E),, (:)16 — [PWU PW1 PB1 - YBQ)],
Ou=>01-0=8)7t)(Qs—Q3) —Us = U] + Vi + V]I, 045 = Ul + V[ =V},
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So for the error system (5), we have the following Theorem 3.2.

Theorem 3.2. For given constant o, 3, 7, p and diagonal matrices Ly, Lo, the error
system (5) is said to be asymptotically stable, if there exrist symmetric positive definite

matrices P >0, Q; >0 (i =1,2,3,4), R > 0 and two
the following linear matriz inequalities (LMIs) hold

6, 71" arMT (1—a)rNT ]
% (:)22 0 0
* * —atR 0

| x * * —(1—a)TR |
O, THT prut (1 -p8)rvt
% (:)22 0 0
* * —0BTR 0

| x * * —(1=pB)TR |

q}here
@22 = T(—2P + pR),

diagonal matrices Sy, So such that

<0, i=1,2, (26)

<0, i=1,2,

[[=[-(PA+YC)0 —YD 00 PW, PW; PB; — Y By,
©: and ©y are defined as: replacing 7(t) in O(7(t)) by u and —p respectively.

Proof: Choose the same Lyapunov functional as Theorem 3.1, and follow the same

line to that of Theorem 3.1, we have
Vi(t) =2¢" (t) Pé(t)
=2e" (t)P[—(A + KC)e(t) —
+ Wop(x(t)) + Wip(z(t —
+ (B1 — KBy)u(t)]

K De(x(t — (1))
7(t)))

(28)

VQ(t) =7[—(A+ KC)e(t) — KDe(x(t — 7(t)))
+ Wop(t) + Wip(t — 7(t) + (B) — KBy)u(t)]"R
X [—(A + KC)e(t) — KDe(x(t — (1))

+ Wop(t) + Wip(t — 7(t)) + (B1 — K By)u(t)]

ar(t)

t
- / &7 () Re(s)ds — /
t—ar(t) t—7(2)

t—d(t)

t—7(t)
/t—é(t)

(s Re(s)ds — |

t—1

(29)
¢ (s)Ré(s)ds

¢T(s)Ré(s)ds

Using the Leibniz-Newton formular, for any appropriately dimensional matrices M, N,

U, and V, we can obtain

26T (tyM”™ {e(t) —e(t —ar(t)) — /t ;T(t) é(s)ds]

(30)

(31)
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t—7(t)

€T OUT et — 7(t)) — et — () — /”(t) é(s)ds] 0, (32)
t—a(t)

28T (VT e(t—é(t))—e(t—T)—/t é(s)ds] 0, (33)

where

g'(t) =[e"(t) e"(t —ar(t)) e"(t — (1) e’ (t = d(t) e’ (t —7)],
M = [M] M; Mg M; MJ], N =[N/ N, Ny N Nj],
U=[Uf U U Uf U], and V = [ViT VF ViF VP VT

By Lemma 2.4, we can get that

2T (tyM”™ /t t (t)é(s)ds <ar(t)ET()MTRME(t) + /}: Y ¢T(s)Ré(s)ds,  (34)

t—1 (37)
t—5(t)
+/t T (s)Reé(s)ds
Define
J(t) = /0 T W) - " (u()] de (38)

Under the zero-initial condition, we can obtain that V(t) |;—o= 0 and V' (¢) > 0, then for
any nonzero u(t) € Ly[0,00), the following inequality hold:

< /0 N [T ()27 (1) — Yu" (Ou(t)] dt + V(t) |isoo =V (£) |i=o
_ /0 T @) — T () + V() d

By substituting (11), (28)-(33) into ( 9), utilizing (34)-(37), we can get
T

)-

()27 (1) — " (Dult) + V(1)
<nT(t)[O((t )) +71Q"RQ + ar(t)yMTR™'M
Q) TNTR™'N + pr(t)U"R™'U
B)(r — )V R V]n(t)

(39)

)"

)

)[©
+(1—
+(1-
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=0, (t)n" (1)[0(7(t)) + TQT RQ
+arMTR™M + (1 — a)TNT R N]n(t)
+ 0,()n" () [O(7(t)) + TQTRQ
+ BrUTR'U + (1 — B)rVIR'V]n(t)

where (:)(z'(t)) is defined in (25), 6, (t) = @ >0, 0,(t) = =2

' (t) = [€7() o (1) ¢ (¢t —7(1) u" (1)),
From Lemma 2.3, we can obtain the following equation

O(7(t)) = M1 ()0 + Ao(t)Os, (41)

where A () > 0, A2(t) > 0 and Ay (t) + Ao(t) = 1.
Therefore, by using the same method as Theorem 3.1, we can get the following matrix
inequalities

>0

)

O, + 7Q"RO + arMTR'M + (1 — a)rNTR™'N <0, i=1,2, (42)

O; +TU"RA+ BrUTRT'U+ (1 - B)rVIR™'V <0, i=1,2. (43)

By Lemma 2.2, (42) and (43) are equivalent to the following matrix inequalities:

0; Q" arM” (1-a)rNT

x —TR 0 0 .

s R 0 <0, i=1,2, (44)
| * * * —(1—-a)TR |
o, Q" pruT (1-p8)rvT ]

* —TR 0 0 .

L aR 0 <0, i=1,2, (45)
| x * * —(1=pB)TR |

respectively.

Pre- and post multiply (44) and (45) by diag{I,I,I1,I,I,1,I,I,PR™' I, I} and diag{I,
I,I,I,I,1,I,I,R~'P,1I,I}, respectively. By introducing the new variable PK =Y, then
using the fact —PR'P < —2P + pR, (26) and (27), we can obtain that

FET () — v2T (Hu(t) + V(t) <0, (46)

so we can get

J(t) = /Ooo[zT(t)zT(t) — *ul (t)u(t)])dt < 0, (47)

and the error system (5) is said to be asymptotically stable with performance ~. This
completes the proof.

Remark 3.3. Recently, the free-weighting matriz approach is used in many literatures
about time delay to reduce the conservatism, a lot of examples have proved that the free-
weighting matriz approach is a good method in reducing the conservatism, see [26,30].
The free-weighting matriz approach is introduced in this article, so the less conservatism
can be expected.
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4. Numerical Example. In this section, two numerical examples with simulation results
have been provided to demonstrate the low conservatism of the proposed H,, filtering
design approaches.

Example 4.1. Consider the delayed neural network with parameters as follows [28]:
0.76 0 0.2 —-0.5 —0.5 0.2 1 1
A:[ ] WO:{ ] Wl:{—oz 0.5]’ H:{o 1]’

0 1.32 7 —-04 1.2 —
—0.2 0.8
B,=02, B = { o ] J= {0‘5], C=[-10], D=[05 0].
Choose the same neuron activation function given by f(z) =03(|z+1]|— ]z —1])

with L = diag{0.6,0.6}.
Just like [28], we set noise disturbance u(t) = 0.01e "% gin(0.02¢), t > 0 and 7 = 1.
By using the Matlab LMI Control boz, solving the LMIs (26) and (27), the filter gain

matriz can be obtained as
—1.0000
K= { 1.0000 ] ) (48)

At the same time, the optimal H,, performance index vy, can reach 0.0001. Compare
with the H,, performance index ymi, = 0.8991 in [28], it is obvious that our result has
reduced the conservatism.

Then we set v = 0.8991, @ = 0.6, p = 0.5, and § = 0.5, the allowable upper bounds
of 7, which guaranteeing the error system (5) stable are listed in Table 1. From Table 1
we can see that in [28], the maximum value of time delay is 1.300. However, by Theorem
3.2 in our article, when we take y = 1.2 > 1, the maximum value of time delay can reach
1.5232; what is more, when increasing the value p and decreasing the value p, we can get
much bigger value of the 7. For example, when we set p = 0.05, 5 =0.8, a = 0.2, u = 18
and v = 3, the allowable upper bounds of 7 can reach 2.5585.

TABLE 1. Allowable upper bounds of 7 with different values of p

7 02] 05| 08] 1.2
28] 1.300 | 1.300| 1.300| 1.300
Theorem 3.2 | 1.5345 | 1.5320 | 1.5276 | 1.5232

z1(t)
—-— a1(t) [

| | |
0 5 10 15 20
1time(sec)

FIGURE 1. Response of the true z(¢) and its estimation ()
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I I I
5 10 15 20
time(sec)

FIGURE 2. Response of the true z5(t) and its estimation Zo(¢)

0.6

| | |
5 10 15 20
time(sec)

FIGURE 3. Response of the filtering error state e(t) of Hy,

On the other hand, by choosing the parameters in Example 4.1, and using the Matlab
software, we can get the state estimate and filtering error simulation results. The simula-
tion results are shown in Figures 1-3, where Figure 1 and Figure 2 show the true states z,
2o and their estimations, respectively, and Figure 3 shows the responses of the filtering
error e(t). The simulation results confirm the effectiveness of Theorem 3.2 for the H,
filtering design of the delayed neural networks.

Remark 4.1. The introduction of parameter p is also an important technic to reduce
the possible conservatism. What is more, the restrictive requirements that time derivative
must be smaller than one or a positive constant are no longer needed.

Remark 4.2. In order to utilize the new methods, a new modified Lyapunov functional
which including two adjusting parameters is constructed, and the delay derivative is con-
sidered and assumed to be bounded. When the lower bound of delay derivative is unknown
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or time-varying delay is not differentiable, the corresponding results are also given by us-
ing the modified Lyapunov functionals. The H, filter is designed in terms of linear matriz
inequalities (LMIs), which can be easily solved by the Matlab LMI toolboz.

Example 4.2. Consider a delayed neural network with parameters as follows [28]:

1 00 000 —0.1 0.1 0 0.2]
A=|010]|, Wo=|00O0]|, By=| 01 |, Wy=| 0 —-01 1 |,
00 1 000 0.1 -3 =05 0 |
1 =10 0.5
H=|0 -1 0|, C=[100], D=[110], B,=01, J=| -1 |.
0 0 1 —0.2 |

The neuron activation function is of the form f(x) = tanh(z) with L = I and 7 = 0.1.
When we set p = 0.5, f = 0.4, a = 0.8, and p = 2.2. By the Matlab LMI Control
Toolbox, we find the solution to the LMIs (26) and (27) and get the the filter gain matriz
as follows:

[ 2.6930 1
K =1 —1.3041
{ —0.1824 J

with the optimal performance Hy, inder Vi, = 1.199. Compare with Yy, = 6.9402 in
[28], our result has been improved greatly.

Remark 4.3. In [28], the slack variables are introduced to reduce the conservatism, but
the time derivative introduced must be smaller than one or a positive constant, which does
not allow the fast time-varying delay and will limit the application scope of results, while
in our article, the free weight matrixz and inequality technic are used, when we take p = 2.2
and pp = —2.2, respectively, a less conservative results have been obtained, and the time
deriwative that must be smaller than one is no longer needed.

5. Conclusions. In this paper, a more effective Lyapunov functional has been developed
to investigate the H, filtering problems for a class of neural networks with time delay.
By combining with some inequality technic or free-weighting matrix approach, the delay-
dependent conditions have been proposed such that the filtering error system is globally
asymptotically stable with guaranteed H,, performance. It has been also shown that
the filter gain matrix can be determined by solving LMIs. Finally, two examples and
simulations have been provided to illustrate the effectiveness and low conservatism of the
designed filter.
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