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ABSTRACT. Job shop scheduling is a classical combinational optimization problem. Most
real-world environments are dynamic and a variety of disruptions may occur unexpect-
edly, e.g., arrivals of new jobs, machine breakdowns. This paper analyzes the limitations
of the static approaches when rescheduling in dynamically changing environments, and
the instability problem induced by rescheduling when only based on shop efficiency. Then
issues that have appeared in recent years on dynamic job shop scheduling with multiple ob-
jectives are described. We categorize the disruptions as data uncertainties and real-time
events, and classify the typical objectives in dynamic scheduling into three categories,
which are the shop efficiency, schedule robustness and system stability. A new mathe-
matical model of the multi-objective dynamic job shop scheduling problem (MODJSSP)
is constructed based on a robust-reactive scheduling approach. A literature review of the
state-of-the-art multi-objective dynamic job shop scheduling approaches is provided, and
the strength and weakness of different approaches are discussed, and the gaps in current
research work are summarized. Experimental studies validate the effectiveness and effi-
ciency of our new mathematical model for MODJSSP.

Keywords: Job shop scheduling, Dynamic scheduling, Multi-objective optimization,
Evolutionary algorithm, Mathematical modelling

1. Introduction. Job shop scheduling problem (JSSP) is well-known as a strongly NP-
hard combinational optimization problem [1]. In the job shop, suppose there are n
jobs to be processed on m machines. Each job .J; contains a sequence of n; operations
(Oi1,-++,0;4j,- -+ ,04p,). Each operation O;; should be processed on a predefined ma-
chine M;, (M, € {1,2,---,m}) without interruption within a given processing time p;;y.
The operations of each job should be processed one by one in the given order without
preemption, and at most one operation can be processed on each machine at one time
[2]. The task of JSSP is to find out the best sequences for processing jobs on each ma-
chine to achieve the required objectives (e.g., the shortest makespan) subject to certain
constraints.

Until recently, scheduling problems which are static in nature were studied assuming
that all the problem information is known beforehand. However, environments in a real-
world job shop are usually changing dynamically as unpredictable real-time events take
place during the process of production, e.g., one machine breaks down suddenly and gets
repaired after some time, new urgent jobs arrive in a stochastic way. A previously optimal
schedule may become ineffective or infeasible in the new manufacturing environment.
Moreover, some information about the job shop is not given beforehand. For example,
the due date, release date, and processing time of each new job are often not given until
the job arrives. Such problems are generally known as dynamic scheduling [3,4].
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Multiple objectives have to be considered simultaneously in JSSP. Most of the exist-
ing research generated a new schedule by minimizing the shop efficiency like makespan,
tardiness, or flow-time [5,6]. However, it may produce a new schedule totally different
from the previous one. Some remaining operations in the original schedule which have
not begun processing when rescheduling may have their starting time brought forward
or delayed, which has a negative impact on other production activities planned based on
the original schedule, and brings instability and lack of continuity in the shop system [4].
Besides, since it is often the case that some parameters in the job shop such as the oper-
ation processing time are uncertain and change over time, the robustness of the schedule
efficiency performances to such data variances should also be taken into account together
with the efficiency and stability. Above all, the job shop scheduling in the real world has
both the dynamic and multi-objective nature.

Most existing literature on the multi-objective dynamic job shop scheduling problem
(MODJSSP) adopted the linear weighted sum approach to handle multiple objectives [3-
9]. However, in most real-world cases, it would be difficult to identify suitable weights for
each objective. Furthermore, multiple objectives are usually conflicting with each other.
It is better to handle multiple objectives with a full knowledge about their Pareto front,
and obtain various trade-offs among different objectives.

The papers on MODJSSP were scattered among different journals and conferences. No
systematic survey is available in the field of dynamic JSSP with multiple objectives. The
primary purpose of this paper is to define MODJSSP mathematically, review the state-of-
the-art in MODJSSP, discuss the strength and weakness of different existing approaches,
and identify future research directions. The rest of this paper is organized as follows.
Section 2 provides a categorisation of the dynamic features and optimization objectives in
JSSP. Section 3 gives a definition of MODJSSP mathematically. In Section 4, a literature
review of the state-of-the-art scheduling approaches for MODJSSP is presented. Section
5 points out gaps of the existing work and the future research directions. Section 6 gives
experimental studies. Finally, conclusions are drawn in Section 7.

2. Dynamic Features and Multiple Objectives in the Job Shop Scheduling.

2.1. Dynamic features in the job shop scheduling. Environments of the real-word
manufacturing system are dynamic, and a typical job shop is always affected by some
disruptions. In this paper, disruptions are divided into two main categories: data uncer-
tainties and real-time events.

(i) Data uncertainties. A part of the system’s information may be uncertain and changes
over time. A typical example is that the processing time of an operation depends on the
current machine condition and job specification when the operation is being performed,
so it cannot be determined beforehand. Another example is that the due date of a job
may change dynamically since a less important job today may be of high importance
tomorrow. Changes in the job order priority or batch size also belong to information
uncertainties.

(ii) Real-time events. This kind of events may occur in two ways. In the first way,
real-time events occur haphazardly during the execution of the job shop, so the non-
operation-disruption assumption in the static JSSP is violated. For instance, one machine
breaks down suddenly. In the second way, dynamic events occur unpredictably, such as
jobs arrive in a continuous and stochastic pattern.

Scheduling in job shop environments with uncertainties and occurrences of real-time
events is called the dynamic job shop scheduling problem (DJSSP).
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2.2. Multiple objectives in the dynamic job shop scheduling. In a lot of real-
world manufacturing systems, many criteria should be optimized simultaneously, which
are often conflicting with each other. It is necessary to learn how the different trade-offs
among multiple objectives can be obtained.

We classify the typical objectives of DJSSP into three categories, which are the shop
efficiency, schedule robustness and system stability.

(1) The shop efficiency. There are several kinds of objectives related to the job shop
efficiency [7,10]. Among them, completion time based and tardiness based objectives are
the most commonly used. Makespan which represents the completion time of all the
available jobs in the shop is a typical one that belongs to the completion time based
objective. Tardiness gives penalties to delays from the due date of each job. It is usually
defined as the weighted sum (or mean) of differences between the completion time and
due date of each job in which its completion time is larger than the due date. Other kinds
of objectives with regard to the shop efficiency include: minimizing the mean, total, or
the maximal flow time, where flow time is the time interval between the arrival and the
departure time of a job; and the machine related objectives which consist of maximizing
the utilization rate of machines, the machine idle time, minimizing the total waiting time.

(2) Robustness. Considering data uncertainties in the DPSP, robustness which mea-
sures the sensitivity of the schedule quality to disturbances should also be taken into
account. The definition of the robustness measure can be divided into two categories:
scenario based approaches and surrogate measures. In scenario based approaches [11-13],
a set, of scenarios are constructed by sampling the values of uncertain parameters, and
then the robustness measure is defined as the deviation between the performances ob-
tained from different scenarios and that produced in the initial deterministic scenario.
Scenario based approaches are able to find a solution with strong robustness, especially
when the sample size is large. However, as indicated by [14], exhausted simulations may
be time-consuming. To deal with this problem, some surrogate measures are designed to
approximate the robustness. The average float time of all job operations and the total sum
of free slacks were adopted in [15,16] to evaluate the robustness of a schedule, respectively.
In [17], a modification of the slack based robustness measure was proposed to utilize some
uncertainty information that was available beforehand, such as probability of the ma-
chine breakdown occurrence, etc. With the idea that robust solutions were expected to
be located on broad peaks, [18] defined a neighborhood based robustness measure where
a weighted average of the makespans of schedules located in the predefined neighborhood
of a schedule was calculated.

(3) Stability. In the rescheduling mode, a new schedule is regenerated once a real-
time event occurs or rescheduled periodically at fixed time intervals. Stability measures
the deviation between the revised and original schedules, which is used to quantify the
negative impact caused by modifying the previous schedule [15,19]. There is no universal
definition for stability [4]. [20] defined stability as the number of times the rescheduling
occurred and suggested that more frequent rescheduling indicates a less stable schedule.
In [19,21], stability was defined as the operation starting time deviation and operation
sequence deviation. In [3,4], stability had two dimensions. One was the starting time
deviation, and the other reflected how close to the current time changes were made,
which had to use an approximate function to associate a penalty with rescheduling jobs
to earlier time.
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3. Definitions of the Multi-objective Dynamic Job Shop Scheduling Problem.
MODJSSP deals with finding out the best sequences for processing jobs on each machine
in an uncertain and dynamic environment, with the aim to optimize multiple objectives
simultaneously subject to certain constraints. So far, only a few studies have focused
on the mathematical formulations for the dynamic JSSP. A mathematical model for dy-
namic scheduling in a flexible job shop which minimized a weighted sum of two objectives
(makespan and stability) was developed in [3]. It used binary variables to form constraints.
[22] presented a neural network model for solving the dynamic hybrid flow shop problem.
[23] proposed a robust mathematical model for the job shop scheduling problem with
processing time uncertainties. To deal with both data uncertainties and real-time events,
we model MODJSSP based on a new robust-reactive approach. A predictive schedule is
generated at the initial time ¢y of the job shop by robust scheduling to reduce the sched-
ule quality sensitivity to information uncertainties, and then during the implementation
of the schedule, once a dynamic event occurs, a rescheduling approach is triggered to
regenerate a new schedule. The time at which a new schedule is constructed is called
the rescheduling point, and the time span between two successive rescheduling points is
named the rescheduling interval.

Based on the robust-reactive approach, the definition for MODJSSP at a specific
rescheduling point ¢, (¢, > t,) is given as follows.

At t;, all the current information gathered from the job shop floor is considered:

e m(t;) available machines which can work normally at #;;

e n(t;) available jobs at #;, and each job J;(¢;) (i = 1,2,---,n(t;)) contains n}(;) avail-
able operations O;;(t;) (suppose G;(1;) is the index of the first unprocessed operation
in job J;(t;) at t;, then j = G;(t;), Gi(t;) + 1, ,G;(t;) + ni(t;) — 1). The operation
0;j(t;) is regarded as available at ¢; if the following three conditions are satisfied
simultaneously: (i) O;;(t;) has not begun processing by #;; (ii) the machine on which
0;(t)) is predefined to be performed can work normally at ¢;; and (iii) all the unfin-
ished operations preceding O;;(#;) in the job J;(#;) satisfy the above condition (ii).
The job which has available operations left is called an available job.

A new schedule which represents the sequences for processing job operations on each
machine is constructed by optimizing the following objectives:

optimize F = [f1(t;), f2(t1), f3(t))] (1)

where fi(t;) represents the objective related to the shop efficiency, e.g., the makespan
which means the elapsed time required for finishing all the available jobs rescheduled at
t; f2(t;) is the schedule robustness measure; and f3(¢;) denotes the system stability. Note
that any criteria required by the real-world job shop can be added as one of the objectives.

In MODJSSP, constraints to the search space change dynamically with the occurrences
of random events and uncertainties. They are listed as follows.
1) Technological constraints

An operation of a job can be performed by only one type of machine which is predefined.
For instance, the j'™ operation of the i job (O;;(#;)) is predetermined to be processed on
the k'™ available machine My(#;) (k=1,2,---,m(t;)) at #;.
2) Processing time constraints

Assume the operation O;;(¢;) is predefined to be processed on the machine My(t;),
then a processing time p;;;, is associated with O;;(;). If the operation processing time is
uncertain and changes overtime, then a value pff}é is estimated as the initial scenario.
3) Initial available time constraints
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For each available job J;(t;) at ¢;, assume Ci(Gi(11)—1) denotes the completion time of the
last operation of job .J;(t;) that has begun processing before ¢;, then the initial release
time of job J;(¢;) during the rescheduling interval of ¢; is:

R;(ti) = max(t, cig)-1)), fori=1,2,--- n(t) (2)

For each available machine M (#;) at t;, assume c*12%(¢, ;) denotes the completion
time of the last operation processed on Mj(t;) before ¢;, then the initial available time of
machine My (t;) during the rescheduling interval of #; is:

Ak(tl) — max (tl, Ck'laSt(tl_l)) , for k = 1, 2, tee ,m(tl) (3)

Equation (2) gives the initial release time of each job. It guarantees that all the opera-
tions that have begun processing before ¢; not be considered in the rescheduling model. If
Gi(t;) = 1, then ¢ig,)-1) = 0. Equation (3) gives the initial idle time of each machine.
It indicates that one machine is available until it has finished all the operations that have
begun before ;.

4) No preemption constraints

An operation of a job cannot be processed until its preceding operations are completed.

Assume O, 1,)(ti) represents the first unprocessed operation of job J;(¢;). It should
start after the job initial release time R;(t;), and its starting time s;q, ;) (¢;) satisfies:

Sict) (t) > Ri(ty), for i =1,2,---  n(t;) (4)
For other unprocessed operations of job J;(¢;) at t;, the starting time s;;(¢;) satisfies:
Si]‘(tl) 2 Ci(j—l)(tl)a fOI" Z = 1, 2, s ,n(tl), ] = Gi(tl) + 1, v ,Gi(tl) + n;(tl) — 1 (5)

where ¢;;(t;) represents the completion time of operation O;;(%;).

An operation can be processed on its predefined machine until the machine has finished
its previously scheduled operations. Suppose at #;, O;;(#;) is scheduled as the " operation
on Mk (tl).

If r =1, then O;;(¢;) should start after the initial machine available time Aj(¢):

Sij(tl) > Ak(tl), forr=1, ke {1,2, s ,m(tl)} (6)

If r > 2, suppose the completion time of the (r — 1)*" operation scheduled on M;(t,) is
Ok(r—1)
¢ (t;), then

si(t) > V@), forr =2, ¢" (1), ke {l,2,--- ,m(t)} (7)

where ¢*(t;) denotes the number of operations scheduled on the machine My (t;) at t;.

It should be mentioned that at the initial time ¢;, the mathematical model is similar to
the above model for the rescheduling point ¢, > t,. The difference is that only objectives
f1(t;) and f5(#;) related to the shop efficiency and robustness are to be optimized.

4. Multi-objective Dynamic Job Shop Scheduling Approaches. Two primary is-
sues in MODJSSP are how to deal with uncertainties and dynamic events when they
occur during the implementation of an original schedule, and how to optimize multiple
objectives simultaneously. Generally, representative approaches in the existing literature
on MODJSSP can be classified into four categories described as follows.
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4.1. Alternative approaches for heuristic rules. In completely reactive scheduling
[24-26], no deterministic schedule is produced a priori, and only partial schedules are
created for the immediate future based on current job shop status and local information
at each decision instant. The simple priority rules are commonly used for the local decision
making, such as the shortest processing time (SPT) [27], first in first out (FIFO), and
earliest due date (EDD) [28]. For example, when a machine becomes idle, the job with
the highest priority will be selected from the candidates in the waiting queue based on a
priority dispatching rule, or when a new job arrives, its due date is estimated by a due-date
assignment rule. The simple priority rules are usually intuitive and easy to implement.
However, most of them are developed to meet just one production requirement, thus they
are unable to deal with multiple objectives simultaneously. Some work has been done to
design an alternative approach for the local decision making instead of the simple priority
rules. A hybrid multiple attribute decision making (MADM) technique which used grey
numbers to deal with uncertainties was given in [8] to determine which lot in the waiting
queue was suitable to be processed next when a machine was free. Challenges for this
method are how to determine the positive and negative ideal alternatives, and how to
combine all criteria into a global value appropriately. [9] focused on the implementation
concept of a discrete event simulation based dynamic scheduling system using conjunctive
simulated scheduling. The weighted sum method was used to convert the due date priority,
set up cost factor, and cycle time priority into a single one, and it was used as the
performance measure to select a lot from the waiting queue of each machine at every
decision instant. However, just a simple manual simulation experiment with ten jobs and
one machine was given. In [7], the artificial immune system was applied to establish the
idiotypic network model in advance that encapsulated the relationship between the job
shop configurations, objectives and existing dispatching rules based on a large amount of
training data. Then at each scheduling point, an existing dispatching rule that performed
the best under the given objective and a specific environment condition was determined
by looking up the idiotypic network model, and calculating the concentration to schedule
the waiting jobs.

There are three common limits with the existing approaches in this category. Firstly,
multiple objectives are handled by the linear weighted sum method, where it would be
difficult to identify suitable weights for each objective in most real-world cases. Secondly,
most studies focus on the job dispatching method. More approaches for surrogating other
heuristic rules such as the due-date assignment rule should be further studied. Thirdly,
this class belongs to completely reactive scheduling, which makes decisions locally based
on attributes of current jobs and machines, without considering global information. Thus
the whole job shop performance cannot be guaranteed, and it is easy to be trapped into
a local optimum. It cannot offer any plan information to other production activities [24],
e.g., when to deliver the secondary materials such as tools to the corresponding machines.

This class of approaches is suitable for online dynamic scheduling.

4.2. Evolution of the customized heuristic rules. In completely reactive scheduling,
although a lot of human-made simple priority rules have been widely applied in industry,
little is known about the robustness of such rules to the changing shop environment [5], and
their efficiency performance remains poor [29]. So it is difficult for a scheduler to decide
which rule should be used in a specific job shop configuration and operation state. In
recent years, more attention has been paid to evolving customized and composite heuristic
rules based on the characteristics of a specific dynamic environment in advance. Due to
its capability to represent and search the program structure, genetic programming (GP)
has become the most commonly used tool for evolving heuristic rules [30-34]. Among the
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existing work, multiple objectives were addressed in several studies when producing the
rules. Four multi-objective genetic programming based hyper-heuristic approaches were
developed in [35] for simultaneous design of dispatching rules for sequencing and due-date
assignment rules for new arriving jobs. Objective evaluations were performed by applying
the rules into four different job shop training scenarios with real-time job arrivals and
calculating the average performance measures. Reusability of the obtained Pareto rules
was validated in another set of testing scenarios with the same type of dynamic events.
Gene express programming [36] was adopted in [37] to evolve machine assignment rules
and job dispatching rules together in the dynamic flexible job shop scheduling problem
where jobs arrive over time. Although three measure criteria of makespan, mean flow time
and mean tardiness were considered, they were not dealt with simultaneously, and only
one of them was taken as the single objective in each experiment. In [29], a composite
dispatching rule which can minimize the weighted sum of makespan, mean tardiness and
flow time in the flexible job shop is evolved by GP. The key issue in GP is the selection
and design of the terminal set and function set which can meet the requirement of the
considered problem.

Problems with this kind of approaches are that individual evaluations are highly com-
putational expensive since a great many training sets with different dynamic job shop
scenarios should be used to evaluate the quality of a solution. Besides, offline analysis can
become inaccurate over the longer term when facing the real-world shop circumstances
with different kinds of unforeseen disruptions from the training job shop instances.

This class belongs to the offline dynamic scheduling approach.

4.3. Rescheduling in dynamic environments. This class of approaches can be cat-
egorized as the predictive-reactive scheduling [24], where a production schedule is gener-
ated first considering the given deterministic information, and then the original schedule
is revised in response to a dynamic event to minimize its impact on the system perfor-
mances in an event-driven way, or the previous schedule is periodically rescheduled at
predefined time intervals. Predictive-reactive scheduling uses global information of the
shop floor. Thus its search space is large, and high quality schedules which achieve good
system performances can be obtained. It is the most commonly used scheduling method
in manufacturing systems [25].

A conventional genetic algorithm (GA) was used in [6] to regenerate a new schedule
whenever a dynamic event took place, considering the mean job cost and job tardiness.
However, it is often inefficient to restart the optimization process with a totally new
population [38] due to the heavy computational time cost by a GA. Besides, although
the symbolic representation of the schedule individual in [6] is intuitive, it is not easy to
handle when programming. In [5], the variable neighborhood search (VNS) was triggered
to optimize the makespan and tardiness in respond to a random event, and the parameters
in VNS were adjusted by a trained artificial neural network (ANN) according to current
job shop conditions at any rescheduling point. The difficulty with this method is how well
the weights of ANN are trained is uncertain, because there can be training errors due to
the presence of improper or inadequate learning samples. The proposed approaches in [5,6]
were compared to some simple priority dispatching rules in various simulated job shops,
respectively, and it was found that both of them had better scheduling performances.
However, they may disrupt system stability and continuity if a new and totally different
schedule is regenerated. In order to solve the instability problem induced by unrestricted
rescheduling, bi-objectives of stability and efficiency were considered simultaneously in
[3,4]. Both studies used a GA to generate schedules at each rescheduling point. [4]
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employed periodic rescheduling, and discussed the influence of the stability term and the
length of the scheduling interval on the performance of the methodology used.

Three common weaknesses can be found in the existing work of this category. Firstly,
since a variety of data uncertainties exist in the practical job shop, robustness should also
be considered in addition to the efficiency and stability objectives when rescheduling so
that the sensitivity of the schedule quality to date variances can be reduced. Secondly,
with regard to the multi-objective handling method, the linear weighted sum method
was usually adopted [3-6] to covert multiple objectives into a single objective. To better
deal with multiple objectives, other multi-objective optimization approaches to the field
of rescheduling should be further studied. Thirdly, in a large-scale problem, if real-time
events occur frequently, how to find the scheduling solutions efficiently within a reasonable
time span by an iteration-based algorithm like GA is an open question.

This class of approaches is suitable for online dynamic scheduling.

4.4. Generation of a priori robust schedule. The class can be categorized as the
robust scheduling, which develops a predictive schedule in advance that can minimize the
impact of disruptions on the shop performances without rescheduling [39]. [40] introduced
four different probability distributions to model stochastic processing times in a permuta-
tion flow-shop scheduling problem, and proposed three uncertainty handling approaches
which estimated the fitness of a solution based on the single evaluation, average value of
several evaluations and probabilistic estimate, respectively. Makespan and tardiness were
simultaneously optimized by an evolutionary algorithm. A simplified multi-objective ge-
netic algorithm was proposed in [41] for the multi-objective stochastic job shop scheduling
problem with exponential processing time. Objective evaluations and the decoding pro-
cedure were executed by operations of exponential random variables. [12,14,18] generated
the robust schedule for one machine scheduling, JSSP, and flexible JSSP with random ma-
chine breakdowns by a GA, respectively. They tried to obtain a predictive schedule which
can best accommodate disruptions and minimize the impact of machine breakdowns on
performances of makespan and stability. In [17], a multi-objective evolutionary algorithm
is used to solve the flexible job shop problems with random machine breakdowns. Two
slack-based surrogate measures for robustness which considered the probability of machine
breakdowns and the machine breakdown locations were developed, and compared with
the scenario-based and other existing surrogate robustness measures. However, in [12,17],
it was assumed that all possible breakdowns were aggregated as one type of breakdown,
so the predictive schedule quality may degrade when facing different types of breakdowns.
[42] employed a multi-objective immune algorithm to solve JSSP with uniform processing
time uncertainties. The mean and standard deviation of makespan obtained from a set
of workflow simulations were used as two objectives.

In this category, in order to guarantee the applicability of the obtained schedule to
various dynamic job shop conditions, an efficient fitness estimation strategy for dealing
with disruptions needs to be designed. Besides, only one type of disruption (processing
time or machine breakdown was commonly used) was considered in the stochastic model.
Thus, it might become inaccurate when facing unexpected uncertainties or events which
were not incorporated in its predictive stochastic model.

This class also belongs to the offline dynamic scheduling approach.

5. Discussions. There are some gaps in the existing literature on MODJSSP. Firstly,
both data uncertainties and real-time events occurring in the job shop should be addressed,
while most of the current work just takes one of them into account. Secondly, shop
efficiency, schedule robustness and system stability should be considered simultaneously
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when regenerating a new schedule, or selecting an appropriate rescheduling strategy in
response to real-time events. More general and efficient robustness and stability measures
should be defined. Thirdly, types of uncertainties and dynamic events considered in the
existing studies are rather limited (processing time uncertainties, machine breakdowns and
new job arrivals are most commonly used), thus more kinds of disruptions (e.g., changes
in the job specifications or due dates) should be incorporated in the future experimental
studies. Fourthly, some assumptions have been made in the current work to simplify the
complexity of JSSP. To bridge the gap between the theoretical and real-world model, more
practical constraints in the job shop must be considered, e.g., the sequence dependent
setup time, lot sizing, limited buffer, due date and resource availability.

Evolutionary algorithms (EAs) are a class of stochastic optimization approaches that
simulate the process of natural evolution. EAs have been recognized to be well suited for
multi-objective optimization problems due to their capability to evolve a set of solutions
simultaneously in one run. In the past 20 years, multi-objective evolutionary algorithms
(MOEASs) received much attention. However, until now, only a few papers have applied
MOEAs to MODJSSP [35,40,41].

In the future, it will be interesting to incorporate the problem specific heuristic strate-
gies and preference information into MOEA so that its searching efficiency and conver-
gence speed can be improved when solving MODJSSP. Another promising research topic
is to link robust scheduling to the rescheduling approach. In such a way, both the ro-
bustness to data uncertainties and the response to dynamic events can be addressed, and
the effectiveness of both approaches can be largely improved. The predictive scheduling
policies can also serve as a guide for the search of the rescheduling approach.

6. Experimental Studies. To validate the effectiveness and efficiency of our mathemat-
ical model for MODJSSP constructed in Section 3, a realistic job shop has been simulated,
and it was compared to the model of [3]. All the experiments in this paper are performed
on a personal computer with Intel core i5, 3.2 GHz CPU and 4 GB RAM.

It was pointed out that a job shop with more than six machines presents the complexity
involved in large dynamic job shop scheduling [5]. In this paper, a job shop consisting of
ten machines is simulated to evaluate the performance of approaches. Simulation starts
with a 10x10 static job shop problem, where the initial numbers of jobs and machines
are both 10. Then new jobs arrive following the Poisson distribution [31]. Operation pro-
cessing time uncertainties are also considered because modifications in job specifications
may cause the changes in the initially estimated processing time of each operation. Here,
processing time variances are assumed to follow the Normal distribution.

In our robust-reactive approach, considering the processing time uncertainties, a pre-
dictive schedule is generated at the initial time of the job shop by the MOEA-based
robust scheduling, where two objectives of makespan and robustness are optimized si-
multaneously. Then during the implementation of the job shop, once a dynamic event
occurs (here, a new job arrives), an MOEA-based rescheduling approach is triggered to
regenerate a new schedule, where three objectives of makespan, robustness and stability
are optimized simultaneously. In contrast, in the model of [3], robustness to uncertainties
is not considered, and only makespan was optimized in the initial static problem. When
rescheduling, makespan and stability are converted into a single objective and then opti-
mized by a GA. In this paper, the definitions of makespan and stability are the same as
those of [3], while robustness is defined as follows:

N <max (0, makespang(t;) — makespanl(tl)>>2 N

1
robustness(t;)) = ,| — Z
N put makespany(t;)
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where robustness(t;) evaluates the sensitivity of makespan to processing time uncertain-

ties. Here, the scenario-based approach is used. A schedule undergoes a set of processing
time scenarios {0,] ¢ =1,2,---, N}, where 0, is the ¢'" sampled scenario of processing
times, NV is the sample size, and we set N = 30. makespany(t;) represents the elapsed
time for completing all the jobs rescheduled at ¢, under the initially estimated scenario,
and makespan, is the corresponding makespan values under the scenario 6,.

First, the strength of using the MOEA-based scheduling approach is validated. At each
rescheduling point, a set of non-dominated solutions was evolved by an MOEA. In order
to demonstrate the trade-offs among these solutions, Pareto fronts evolved at the initial
time and at the first rescheduling point (when the first new job arrives) in one run of the
MOEA are shown in Figure 1 and Figure 2, respectively. It is obvious from Figure 1 that
in the initial static problem, makespan is seriously conflicted with the robustness objective.
When tracing along the Pareto front to find solutions that have higher efficiency (lower
makespan), it can be observed that robustness becomes worse. Table 1 gives several
examples of the objective vectors selected from the Pareto front given in Figure 2. A
solution may perform well for one objective, but give bad results for others, such as
Solution;-Solutions. And one solution may have a ‘not bad’ value on each objective,
which means a good compromise among all the objectives, such as Solutiony-Solutiong.
The Pareto front produced by MOEA can provide the decision maker (e.g., a production
scheduler) with a full knowledge about various trade-offs among multiple objectives. It
is very helpful for him/her to make an informed decision about the ‘best compromise’
with regards to his/her preference. It can also help the decision maker adjust his/her
preference after he/she understands more about the trade-offs. In contrast, the model of
[3] just obtains one solution in one run of GA, which cannot reflect different compromises
among multiple objectives. Furthermore, in most real-world cases, it would be difficult to
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TABLE 1. Several examples selected from the Pareto front at the first
rescheduling point

[makespany, robustness, stability)

Solution; [722.1756, 0.0381, 1330.9031]
Solution, [1138, 0.0001495, 1199.8994]
Solutions 760.1756, 0.0241, 704.1341]

785.1756, 0.0091, 921.6343]
741.1756, 0.0157, 871.9077]
809.1756, 0.0047, 781.7347]

Solutiony
Solutiony
Solutiong

——|——|——[—|
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TABLE 2. Performance improvements (or deteriorations) of MOEA-R over
GA-FF on each objective at the initial time (The positive value means
improvement and is in bold)

Objective makespan robustness

MOEA-R vs. GA-FF —6.55% 64.63%

identify suitable weights for each objective by using the weighted sum method. Thus, it is
better to handle multiple objectives with knowledge about their Pareto front, which can
be obtained by our mathematical model that is based on an MOEA-based robust-reactive
scheduling approach.

Next, the effectiveness of the initial robust scheduling in improving the schedule ro-
bustness to processing time uncertainties is validated. At the initial time of the job
shop, performance comparisons were done between our robust approach (two objectives
of makespan and robustness were considered simultaneously, and it is called MOEA-R),
and the approach of [3] where only makespan was considered (it is called GA-FF). 30
independent runs of both approaches were replicated. Then the value of the objective
“robustness” was calculated for all the solutions obtained by the two approaches using
the same sampled processing times (100 scenarios were sampled at random here), in spite
of the fact that only one of them was optimizing this objective. With the aim to determine
the overall performance improvement (or deterioration) on each objective by incorporating
“robustness” as one of the multiple objectives, the solutions of MOEA-R were averaged
along each objective, respectively, and also for GA-FF. The quantitative improvement (or
deterioration) of MOEA-R over GA-FF on each objective is calculated as follows:

(AvgfOPAR — Avg fEATT)
Avg_fGA'FF

FOATT
—J1

Impi(ty) = — x 100%, i=1,2 (9)

where Avg_fMOEAR and Avg represent average values of the solutions obtained by
MOEA-R and GA-FF on the objective f; over 30 runs, respectively. The results are listed
in Table 2. It can be observed that compared to GA-FF (without robustness), our MOEA-
R improves the robustness significantly with a small sacrifice in the initial makespan. The
improvement in robustness is much more than the deterioration in makespan, which indi-
cates that if the predictive schedule is produced by simultaneously considering efficiency
(e.g., makespan) and robustness, there will be a high opportunity of getting a more robust
schedule without seriously affecting the shop efficiency.

7. Conclusions. This paper gives a comprehensive review of the approaches for solving
dynamic job shop scheduling with multiple objectives. Our first contribution is to classify
disruptions occurring in the job shop into two categories which are data uncertainties
and dynamic events, and identify three classes of typical objectives in dynamic job shop
scheduling: shop efficiency, schedule robustness and system stability.

Our second contribution is that we provide a new mathematical definition of MODJSSP,
which is based on a robust-reactive scheduling approach. This model can deal with
both uncertainties and real-time events, and optimize efficiency, robustness and stability
simultaneously. Experimental results show that our method can obtain a Pareto front at
each rescheduling point. It provides much better knowledge about various trade-offs in
the objective space for the decision maker to make an informed decision, which cannot
be achieved by the approaches using a weighted sum method. Furthermore, compared to
the approach without considering robustness, our robust scheduling reduces the schedule
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sensitivity to uncertainties significantly with only a small sacrifice in the makespan under
the initial scenario.

Our third contribution is that we review the representative approaches in the existing
studies on MODJSSP and classify them into four categories, of which the strength and
weakness are discussed, respectively. The first class develops an alternative approach in-
stead of simple priority rules in completely reactive scheduling. It considers only local
information thus it may be trapped into a poor local optimum. The second class evolves
customized rules based on the features of the environment. However, individual evalua-
tions are highly computational expensive since a lot of training scenarios should be used.
In the third class, a new schedule is generated in an event-driven way or periodically.
This class may bring instability in job shops. Thus, generating a schedule considering
the efficiency, robustness and stability simultaneously is more desirable. The fourth class
produces a predictive schedule in advance. Its limitation is that it may become inaccurate
over the longer term when facing unforeseen dynamic events.

Our review shows that although some progresses have been made in the field of MOD-
JSSP, some gaps still exist in the current work, and further studies need to be done. To
improve the flexibility and robustness of the dynamic scheduling system, the approach
which is developed based on the problem specific knowledge, and integrates the merits of
different approaches such as heuristics, meta-heuristics, expert systems, and multi-agent
architectures would be very promising for the future work. Furthermore, the proposed
mathematical model of MODJSSP should be applied to other job shop scenarios with
more dynamic events and uncertainties, e.g., machine breakdowns, due-date variations.
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