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ABSTRACT. The common problems of particle swarm optimization (PSO) are those of
trapping in local optimum and premature convergence. This research paper aims to de-
velop a solution to both problems by introducing mutation around particles and employing
the reposition technique. The concurrent use of the introduced mutation and reposition
has proved to solve both problems and enhanced the PSO performance; and thus is em-
ployed in this research. The proposed technique is termed MRPSO. MRPSO is tested
on sizteen benchmark functions and the multidimensional knapsack problems (MKP).
MRPSO yields the more satisfactory search results than the genetic algorithm (GA) and
PSOs for the benchmark functions and the MKPs.

Keywords: Particle swarm optimization, Binary particle swarm optimization, Mutation
operator, Multidimensional knapsack problem, Genetic algorithm

1. Introduction. Kennedy and Eberhart [1,2] were the first to introduce the particle
swarm optimization (PSO) in 1995 by observing the behaviors of animals, e.g., bird flock-
ing and fish schooling. Their movements and communication mechanisms were thoroughly
studied. In comparison with several other population-based stochastic optimization meth-
ods, such as the genetic algorithm (GA) [3,4] and the evolutionary programming (EP),
PSO performs better in solving various optimization problems with fast and stable con-
vergence rates [5-7].

The advantages of PSO [8,9] are its simplicity, rapid convergence, and few parameters
to be adjusted. However, PSO has its own disadvantages of premature convergence to
a local optimum and high chances of trapping in the local optimum [8,9]. To overcome
both problems, researchers [9-27] increased search diversity in the population of PSO to
prevent stagnation of the search in the local optimum by adding mutation operators in
the PSO process.

This research has introduced mutation around individual particles (X) where the mu-
tation values update the individual’s best position (PBEST) and the best position found
in the whole swarm (GBEST). In comparison with the standard PSO, this procedure
increases search diversity without increasing the convergence speed; and is termed MX-
UPG. The experimental results of MXUPG on the benchmark test functions show MX-
UPG yields better solutions in the test functions than other mutation methods and the
standard PSO.

The local optimum trapping is possible for both MXUPG and the standard PSO. This
phenomenon leads to the stagnation of search in which the solution obtained at the
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point of trapping is repeatedly produced irrespective of the length of search time. Con-
sequently, certain research studies [28-31] added the reinitialize particles method (i.e.,
re-initialization) into PSO to improve the search solution. However, the reinitialize par-
ticles method requires a restart when trapping occurs. Therefore, an additional time is
needed to re-converge in the new run. The particles reposition method (i.e., reposition)
is proposed in this research in place of the reinitialize particles method to reduce the
required re-convergence time. In addition, resetting both PBEST and GBEST yields the
best results since the particles have more chances to converge in new areas after repo-
sition. Hence, the particles reposition method with the resetting of both PBEST and
GBEST (to be called RPG) is used to reduce the re-convergence time and increase the
possible convergences in the new areas. In addition, the experimental results of RPG
on the benchmark test functions yield better solutions in the test functions than other
re-initialization methods and the standard PSO.

To improve the search performance, a novel PSO algorithm is created by combining
MXUPG and RPG (to be called MRPSO). A set of benchmark test functions is used to
compare the proposed MRPSO method with the standard PSO [1,2], an adaptive particle
swarm optimization (APSO) [18], a hybrid particle swarm optimization which incorpo-
rates henon map mutation operation (HPSO) [19], the particle swarm optimization with
reinitialize particles (PSOR) [28], and the floating point representation for genetic algo-
rithm (FGA) [32]. The results show that the proposed MRPSO yields the best solutions
in all test functions. Moreover, tests on the multidimensional knapsack problems (MKP)
are performed with the proposed MRPSO, the binary representation for genetic algo-
rithm (BGA) [32], the standard binary particle swarm optimization (BPSO) [33], the
genotype-phenotype modified binary particle swarm optimization (GPMBPSO) [34] and
the modified binary particle swarm optimization (MBPSO) [35]. The results are then
compared. The comparison shows that the proposed MRPSO yields the best solutions in
all instances of MKP.

The rest of this paper is organized as follows. Sections 2 describes the standard PSO
and BPSO. The performance analysis of the standard PSO and the PSO with mutation
is detailed in Section 3. The proposed MRPSO method is discussed in Section 4 while
Section 5 presents the experiment setup, the experiment results, and the detailed result
analysis. Section 6 discusses certain applications of the proposed method. Section 7 is
the conclusion.

2. Particle Swarm Optimization and Binary Particle Swarm Optimization.

2.1. Particle Swarm Optimization. In the standard PSO, each population member is
called a “particle” with its own position and velocity. Each individual particle performs
search in the search space according to its velocity, GBEST and PBEST. The standard
PSO algorithm starts with randomizing particle positions and their respective velocities.
The position evaluation of each particle is achieved using the objective function of the
optimization problem. In a given iteration, each individual particle updates its position
and velocity according to the expression below:

Vi =@wVig +mrand()(Pig — Xia) + n2 rand() (Pya — Xia) (1)
X(d = X + zld (2)

)

where X!, is the current positions of i particle and d dimension, X;; is the previous
positions of ¢ particle and d dimension, and Vj4 is the previous velocity of ¢ particle and
d dimension. V}, is the current velocity of ¢ particle and d dimension, P4 is PBEST of i
particle and d dimension, and P,4 is GBEST of d dimension. 7, and 7, are acceleration
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constants, 0 < w < 1 is an inertia weight, and rand() generates random number from
interval [0,1]. A limit velocity is represented with Vi .x. Thus, if the calculated velocity
of a particle exceeds Vi.x, it will be replaced with V..

2.2. Binary Particle Swarm Optimization. Kennedy and Eberhart [33] were the
first to introduce the binary particle swarm optimization (BPSO) algorithm to allow the
standard PSO to operate in the binary problem spaces. BPSO has since been adopted as
a standard. In this algorithm, BPSO updates the velocity according to (3). The velocity
is a set of real numbers and the particle position is a set of bits. Consequently, the velocity
must be transformed into a set of probabilities using the sigmoid function as shown in
(4). The principle of the position update is that the velocity dictates a probability that a
position (bit) selects either zero or one; and the position update follows (5), where sig(v},)
is the sigmoid function for transforming the velocity into the probability.

viy = Vig + m rand()(Pig — Xia) + n2 rand() (Pya — Xiq) (3)
1
g(vl,)) = _ ~ 2.7182818 4
salld =L, g
;) 1 Irand() < sig(vy) (5)
W™ 1 0 Otherwise

3. The Performance Analysis of Standard PSO and PSO with Mutation.

3.1. Performance analysis of standard PSO. The search performance of the stan-
dard PSO is subject to types of optimization problems. For instance, if it is a unimodal
problem which consists of one single global optimum point [36], the standard PSO per-
forms well although the time required to search for the global optimum point is long.
On the other hand, in a multimodal problem in which there are many local optimum
points and one global optimum [36], the local optimum trapping frequently occurs in the
standard PSO due to the position update [10], the effect of (1) [17], and the attraction of
GBEST [23].

3.2. Performance analysis of PSO with mutation. This subsection discusses the
performances after adding mutation operators in the PSO process; and the advantages
and disadvantages.

The major advantage of mutation implementation is the increased population variabil-
ity. The mutation could reduce the trapping of the standard PSO and yield the better
search results. On the other hand, the disadvantage is the difficulty of adjusting the
mutation parameters to any specific problems. In other words, if the parameters were
under-mutated, the trapping could occur, making the mutation useless.

In the case of a non-compared mutation (NCM) operator [9-18] in which a mutation
value from any given point is applied without comparing against the original value prior
to mutation, if the parameters were over-mutated, the convergence of particles would be
less likely. This induces a random search and the search result is poorer than that of the
standard PSO.

In the case of a compared mutation (CM) operator [19-27] in which a mutation value
from any given point is applied only if the mutation value is better than the original value
prior to mutation, over-mutation of the parameters in a multimodal problem leads to a
faster convergence speed than the standard PSO. This could result in premature conver-
gence and a poorer search result than the standard PSO. In addition, CM is sometimes
called the local search [23,24].
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4. A Modified Particle Swarm Optimization with Mutation and Reposition.

4.1. The mutation around a point. To improve the performance of CM in multimodal
problems, this research has proposed the novel algorithm that maintains the variability in
the population without significant increase in the convergence speed when compared with
the PSO. In applying the novel algorithm, each iteration mutation is introduced around
particles. PBEST and GBEST are compared and updated with the resulting mutation
values, rather than directly updating the particle positions with the mutation values.
The update criteria are that if the resulting mutation values are better than the existing
PBEST and GBEST, the PBEST and GBEST are replaced with the mutation values; and
that if the resulting mutation values are poorer than the current PBEST and GBEST,
both PBEST and GBEST are retained. The goal of this indirect update is to maintain
the convergence speed of the standard PSO. The proposed novel algorithm is called the
“mutation around particle position and update of PBEST and GBEST (MXUPG)”. The
MXUPG method is less likely to disrupt the convergence of particles since the update of
particle positions is regulated by the standard PSO.

4.2. The particles reposition. As previously mentioned, the major shortcoming of the
standard PSO is the frequent local optimum trapping. Fortunately, the trapping is readily
detectable since GBEST is not updated for an indefinite period of time, as shown in Figure
3.

In the multimodal problem, when trapping is detected, the re-initialization method
restarts another round of search until a maximum iteration is reached, rather than leaving
the trapping problem unsolved. This allows the reinitialization particles to search for
solutions in other areas and returns the better search solutions than the standard PSO.

However, the re-initialization process requires the initializing of all particles. In addi-
tion, a significant amount of time is needed for the particles to converge in each subsequent
restart. The amount of time required for re-convergence in each restart reduces the num-
ber of possible reruns and subsequently the opportunity to search for better solutions in
other areas. To quicken the convergence in each new run, this research has introduced
the particles reposition method into the standard PSO.

The reposition is the use of NCM to allow for a vast distribution of particles prior to the
solution search by the standard PSO. The reposition is different from the re-initialization
in that it applies mutation to certain dimensions of the particles instead of re-initializing
all values.

However, the inappropriate application of the re-initialization and reposition methods
should be avoided since overuse could disturb the convergence of particles and results in
a random search. On the other hand, the methods should be applied when local optimum
trapping is detected and the trapping is long enough to guarantee that the trapping
problem does occur.

When the reposition begins, particles change their positions while PBEST and GBEST
could be either altered or unaltered. In the case of unaltered GBEST or unaltered PBEST
or both unaltered before reset, the particles return from their new positions to the pre-
vious GBEST and PBEST. In the return to the previous GBEST, if the particles locate
a better position than the previous GBEST, the better position is then occupied as a
new GBEST. Typically, the positions along the return path are worse than the previous
GBEST. Therefore, the swarm often returns to the previous GBEST and is re-trapped in
the former area. This restricts the search area to the area around the previous GBEST.

To avoid the search area restriction in the reposition, both GBEST and PBEST should
be reset. The reset allows particles to converge in new areas. The new areas could be
either better or worse than the areas prior to reset since the process is random, as shown
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by the restart from point A in Figure 3. However, resetting both GBEST and PBEST
increases the chances of searching in better areas although there is a possibility that the
swarm returns to the pre-reset area even with the resetting of both GBEST and PBEST,
as shown by the restart from point B in Figure 3. The reposition method used together
with the resetting of both PBEST and GBEST is called RPG.

The RPG method can solve the local optimum trapping when it occurs and reduce the
required re-convergence time. Moreover, the method increases the chances of convergence
in new areas after reposition.

4.3. A modified particle swarm optimization with mutation and reposition.
MXUPG and RPG can be concurrently applied to improve the PSO performance. MX-
UPG increases the variability in the population to avoid the local optimum trapping and
RPG solves the trapping problem when it occurs. Therefore, this research proposes in-
tegrating the two methods to improve the PSO performance. The use of the integrated
methods (i.e., MXUPG and RPG) yields better results than the use of either one of the
methods, as shown in Tables 2 and 3. The proposed integrated method is called MRPSO.

MRPSO begins searching using MXUPG and the search stops when an optimal solution
is found. On the other hand, if a trapping occurs, RPG is activated to solve the trapping.
When the trapping is solved, MXUPG resumes the search. RPG is reactivated if another
trapping is detected until another optimal solution is found. The pseudo code of MRPSO
is shown below:

Initial particles of each particle 1
While (termination condition # true) do 2
Evaluate the fitness of each particle 3
If fitness of each particle is better than PBEST, update PBEST 4
If fitness of each particle is better than GBEST, update GBEST 5
Update each particle position according to (1) and (2) 6
Fori=1to N (Mutation step) 7
For j =1to RM 8
Ford=1to D 9

T.Z‘d = Tid 10

If PM > rand() then 11

Apply (6) 12

End If 13

Next d 14

If fitness of Tz is better than PBEST, update PBEST = Tz 15

If fitness of Tz is better than GBEST, update GBEST = Tz 16

Next j 17

Next 4 (End mutation step) 18

If (times of GBEST consecutive unchanged) > TR (Reposition step) 19

Reset GBEST, PBEST 20

Fori=1to N 21

Ford=1to D 22

If PR > rand() then 23

Apply (7) 24

End If 25

Next d 26

Next 4 27

End If (End reposition step) 28

End while 29

Equations (6) and (7) are mutation equations used in MRPSO. A positive operator is
selected if the random number generated uniformly in the range [0, 1] is less than 0.5 and
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a negative operator otherwise.
Trxg=Txqgx (Txg x rand()) (6)
Tia = Tig £ (130 X rand()) (7)

where RM is the rounds of mutation, PM is the probability of mutation, PR is the
probability of reposition, T'R is the threshold of reposition, and T'x is the temporary
particle. Tx4 is the temporary particle of d dimension, x;; is the positions of i particle
of d dimension, N is the size of the population, and D is the dimension of the solution
space.

5. Results and Discussions. To prove the efficiency of the proposed MRPSO, it is
tested on sixteen benchmark functions [37,38], as listed in Table 1. Functions 1-9 are
multimodal problems while the remaining Functions 10-16 are unimodal problems. The
MRPSO results on the benchmark functions are compared with those of PSO, FGA,
APSO, HPSO, PSOR, MXUPG, and RPG. The benchmark functions are representative
of the floating-point representation. To prove the MRPSO ability in solving other rep-
resentations, MKP has been added as a binary representation. This research selects the
following MKPs from OR-Library [39], i.e., SENTO [40], WEING [41], WEISH [42], PB
[43] and HP [43]. The MRPSO results on MKPs are compared with those of BPSO, BGA,
GPMBPSO, MBPSO, MXUPG, and RPG.

TABLE 1. Details of benchmark test functions

Problem Function Expression Search space Objective | Dim | Attribute | V ax
no. name [ X maxs X min] function
value
f(@) = ~20exp ( ENES S )
1 Ackley =1 € [—32.768, 32.768]" 0 50 | Multimodal | 32.768
—exp <—Zco> )) +20+e

2 Griewank fl@) =%, %}0 ycos (z;/Vi) + 1 x € [-300, 300]" 0 50 | Multimodal | 300
3 Rastrigin f(xz) =10n+ Z:l:l(l — 10 cos(2mz;)) z € [—5.12,5.12]" 0 50 | Multimodal | 5.12
4 RosenBrock flz) = 2";[100(1,-+1 —22)? + (z; — 1)?] z € [—2.048,2.048]" 0 50 | Multimodal | 2.048
5 Schwefel F(z) = 418.9829 x n + 2 (1-- X sin ( \J-;\)) o € [~500,500]" 0 50 | Multimodal | 500
6 Schaffer’s F6 | f(z) = 0.5+ % x € [=100, 100]" 0 2 | Multimodal | 100
7 Step fl@) =30 (L) +0.5)? z € [—5.12,5.12]" 0 50 | Multimodal | 5.12
8 Cosine Mixture | f(z) = —0.1 x Y1 ;cos(5ma;) + i g2+ 0.1n ze[-1,1" 0 50 | Multimodal | 1

9 Exponential flz) = —exp(—053 1 2?)+1 ze[-1,1]" 0 50 | Multimodal | 1
10 Spherical flz) =30 a7 z € [—5.12,5.12]" 0 50 | Unimodal | 5.12
11 Parallel Ellipsoid | f(z) = 31, (i x a?) z € [—5.12,5.12]" 0 50 | Unimodal | 5.12
12 Multimod flz) =30 ] x [T, |z z € [—-10,10]" 0 50 | Unimodal 10
13 Rotated Ellipsoid | f(x) = Y, (3052, 23) x € [—65.536,65.536]" 0 50 | Unimodal |65.536
14 Zakharov f@)=2r, 2+ X0, b+ [, o] 7€ [-5.12,5.12" 0 50 | Unimodal | 5.12
15 Cigar f(z) = 2? + 100000 7, z? z € [—10,10]" 0 50 | Unimodal 10
16 Brown 3 flz) =315 [( 2)(eeat) 4 (a2, )@ “q ze[-1,1]" 0 50 | Unimodal 1

This research uses a personal computer with Intel Core i7 3770 with a 2.4-GHz CPU and
8 GB RAM, and Visual C++ as the programming language. To guarantee fairness, the
positions and velocity of particles are set identical in all the experiments. The measures
of algorithm performance in the experiments are as follows.
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The mean best fitness value (MBF): MBF is the mean of best fitness in the final iteration
from all running and indicates the search efficiency of an algorithm. In the case of the
experiments with the benchmark functions, all functions have a zero as the minimum
point. In Table 1, an entry less than 1073?* is given a value of zero. The closer the MBF
is to the zero point, the better the method is. In the case of MKP, where the best known
values are given, the closer the MBF is to the best known value, the better the method
is.

The success round (SR): SR is the number of running rounds that yields the optimum
solution and shows the reliability of an algorithm. A good algorithm can be identified
with a high SR. The higher the SR is, the better the algorithm is.

The logarithm mean fitness values of all particles (LMFP): LMFP is the logarithm mean
of fitness of all particles in each iteration. For the benchmark functions, any algorithm
that produces LMFP closer to the zero point is a good algorithm. The faster the LMFP
is to entering the stabilizing stage, the faster the convergence speed is.

The logarithm of population average distance among points (LD(t)): D(t) [44] isthe
distribution discrete degree between the particles in the population. D(¢) indicates the
diversity of the population. In PSO, D(t) can be calculated from (8). In MXUPG, D(¢)
is summation of the results of (8) and (9).

D(t) = _ > (aty = pia)? (8)
D(t) = 37 L v RMX;;‘ Z — MPig,)? 9)

where L is the diagonal length of search space, M is the size of the population, D is
the dimension of the solution space, and zf, is the d dimension coordinate values of the
i particle. p,, is the average value of the d dimension coordinate values of all particles,
mat,. is the d dimension coordinate mutation values from the i particle in the j round of
mutation, and mp,,, is the average value of the d dimension coordinate values of mutation
position from all particles in all rounds of mutation.

5.1. Experiment of the mutation around a point. This subsection discusses the
property of the proposed MXUPG algorithm in relation to the standard PSO. The pa-
rameters of the benchmark test functions are presented in Table 1. The PSO parameters
are as follows. 7; and 7, are 1.496180 and w is 0.729844, as suggested by Bergh [30].
Vinax 18 shown in Table 1. PM and RM are 0.10 and 5 rounds, respectively. To guaran-
tee fairness, the number of evaluations is set identical in all methods, resulting in 1200
particles in PSO and 200 particles in MXUPG. In Figures 1 and 2, each function has 50
runs. The MXUPG pseudo code is similar to the MRPSO pseudo code except that no
reposition step is present in MXUPG.

As seen in Figures 1 and 2, LD(t) and LMFP are high during the initial search stage.
They decrease and then stabilize toward the end. As shown in Figure 1, at the stabilizing
stage, LD(t) of PSO is much less than LD(t) of MXUPG. This phenomenon indicates
that the population variability of MXUPG is more than that of PSO. Figure 2 shows
that LMFPs of PSO and MXUPG stabilize at approximately 1200 iterations. Thus, the
convergence speeds of MXUPG and PSO are almost identical. It is possible to conclude
that MXUPG is less likely to induce to premature convergence.
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5.2. Experiment of particles reposition. This subsection examines the property of
the proposed RPG in relation to the standard PSO. In the reposition experiments, the
parameters are set similarly to Subsection 5.1 except that the number of particles is 200
in all methods. In addition, TR and PR are set at 100 and 0.70, respectively. In Figure 3,
this function runs only once since an average of the resetting results is difficult to detect.
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The RPG pseudo code is similar to the MRPSO pseudo code except that the mutation
step is not present in the RPG.

Figure 3 illustrates the local optimum trapping of PSO where LMFP initially decreases
and then stabilizes. In the case of RPG, LMFP initially decreases and stabilizes until the
local optimum trapping is detected. When the trapping occurs, the reposition is executed
and rapidly increases LMFP. Afterward, the standard PSO starts searching for solutions
and thus causes a decrease in LMFP.

5.3. Experiment of proposed algorithm on benchmark functions. This subsec-
tion investigates the performance of the proposed MRPSO on the benchmark functions
listed in Table 1. The search results of MRPSO are compared with those of PSO, FGA,
APSO, HPSO, RPG, PSOR and MXUPG. The PSO parameters, which are the underly-
ing parameters of all algorithms, are identical to those in Subsection 5.1 except for the
number of particles. The particles of PSO, FGA, APSO, HPSO, RPG, and PSOR are
each 1200 particles while those of MRPSO and MXUPG are each 200 particles.

The non-PSO parameters are as follows. For APSO and HPSO, all parameters are iden-
tical to those in the original papers of APSO [18], HPSO [19] and PSOR [28], respectively.
For FGA, the crossover probability and the mutation probability were set to 0.8 and 0.1,
respectively, according to [45,46]. For RPG, MXUPG and MRPSO, the parameters are
similar to those in Subsections 5.1 and 5.2. To guarantee fairness of the performance
measurement, the mutation Equations (6) and (7) are applied to all methods. In Table
2, each function has 100 runs with a maximum iteration of 40000 iterations.

TABLE 2. Comparative results of PSO, FGA, APSO, HPSO, PSOR, RPG,
MXUPG and MRPSO on the benchmark test functions

Techniques PSO FGA APSO HPSO PSOR MXUPG RPG MRPSO
Problem no. MBF SR MBF SR MBF SR| MBF |SR MBF SR| MBF |SR| MBF |SR|MBF |SR
1 1.21E-14 | 0 7.10e-015 0 0.109254 0 | 6.04E-15 | 0O 2.39E-14 | 0 |7.11E-15| 0O 0 100 0 100
2 0.00689239 | 54 0 100 | 0.00447973 | 67 0 100 | 0.00334614 | 80 0 100 0 100 0 100
3 91.138 0 0 100 147.532 0 92,1927 | 0 60.9643 0 0 100 0 100 0 100
4 0 100 13.521 0 0 100 0 100 0 100 0 100 0 100 0 100
5 2395.47 0 2221.31 0 2545.11 0 2283.74 | O 2530.3 0 0 100 | 1968.11 0 0 100
6 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100
7 0 100 0 100 0.22 86 0 100 0.05 95 0 100 0 100 0 100
8 0.0709364 | 63 0 100 | 0.791897 0 0 100 | 0.0635472 | 18 0 100 0 100 0 100
9 1.24E-16 0 1.11e-016 | 0 2.02E-16 0 | 7.11E-17 | 36 | 2.69E-16 | 0 |1.09E-16| 2 0 100 0 100
10 0 100 0 100 0 100 0 100 | 6.43E-317 | O 0 100 0 100 0 100
11 0 100 0 100 0 100 0 100 | 2.23E-279 | 0 0 100 0 100 0 100
12 0 100 0 100 | 2.11E-159 | 64 0 100 0 100 0 100 0 100 0 100
13 0 100 0 100 0 100 0 100 | 1.90E-287 | 0 0 100 0 100 0 100
14 1.10E-148 | 0 |1.3256e-154| 0 |4.94066e-324 | 51 | 1.26E-160| 0 0.353901 0 0 100 | 5.27E-147 | 0 0 100
15 0 100 0 100 0 100 0 100 | 2.53E-192 | 0 0 100 0 100 0 100
16 0 100 0 100 0 100 0 100 | 9.57E-306 | 0 0 100 0 100 0 100

As seen in Table 2, for the multimodal functions, RPG and MXUPG generally out-
perform APSO, FGA, HPSO, PSOR, and PSO. Hence, RPG and MXUPG can improve
the PSO performance. RPG can solve the local optimum trapping when it occurs. In
addition, RPG can increase the possibility of convergence in new areas after reposition
and reduce the required re-convergence time. Hence, RPG produces better results than
PSO in the multimodal problems. MXUPG increases variability without increase in the
convergence speed when compared with the standard PSO. The search results of MXUPG
are better than those of the standard PSO. For the unimodal functions, the search results
of RPG are similar to those of PSO since the reposition is not executed. In some multi-
modal functions, MXUPG is unable to locate the optimum points due to local optimum
trapping. The MBF and SR results indicate that MRPSO can locate the optimum points
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of all functions in Table 1. MRPSO outperforms PSO, FGA, APSO, HPSO, PSOR, RPG
and MXUPG in the floating-point representation problems. MRPSO is obtained from the
combination of RPG and MXUPG. Thus, the application of MXUPG with RPG produces
better search results than the use of either MXUPG or RPG.

PSO yields the better search results than FGA in some functions, such as the Rosen-
brock function. On the other hand, the research results of FGA are better than those
of PSO in some other functions, e.g., the Rastrigin function. This indicates that PSO
and FGA are appropriate for solving different optimization problems. Table 2 shows that
MRPSO could overcome the drawbacks of the standard PSO.

5.4. Experiment of proposed algorithm on multidimensional knapsack prob-
lem. The multidimensional knapsack problem (MKP) is a widely researched discrete
programming problem [47] and belongs to the group of NP-hard combinatorial optimiza-
tion problems [47-49]. The MKP formula can be applied to various business requirements,
such as the project selection problem, the capital budgeting problem, the cutting stock
problem, the cargo loading problem, the production planning problem, the scheduling
problem, the distributed processor problem, and the database allocation problem [49,50].
Hence, an algorithm that can solve an MKP would be able to solve every optimization
problem with the same MKP formula and has many uses [50].

MKP consists of m knapsacks with maximum capacity C; (5 = 1,...,m) for each
knapsack and a set of n objects, where each object i (i =1,...,n) has a price (P;) and a
weight (w;;). The goal of MKP is to select a subset of objects that maximizes the total
price without exceeding the total capacity of all knapsacks. MKP can be expressed as

Maximize Zpixi z; € {0,1} (10)
i=1
Object Zwijxi <C; =z €{0,1} (11)
i—1

This subsection investigates the performance of the proposed MRPSO on MKP. The
search results of MRPSO are compared with those of BPSO, GPMBPSO, MBPSO, MX-
UPG, RPG and BGA. The application of MRPSO pseudo code to MKP requires changes
to some parts of the MRPSO pseudo code. The changes and reasons are detailed as the
following: a dimension (d) or bit, which represents an object, selects 1 if the object is
selected and 0 otherwise. The standard PSO is replaced with BPSO, and if a bit changes
from 0 to 1, BPSO checks the capacity of all knapsacks. If the capacity of all knapsacks
can handle the weight of this object, the bit is allowed to change from 0 to 1; otherwise,
the bit remains unchanged. The capacity check is to guarantee that the search does not
exceed the solution space boundaries. The mutation step of the MRPSO pseudo code is
to replace Line 12 (6) with T, = 1. The reposition step is edited by replacing Line 24
(7) with a flipped bit of ;4. In addition, a velocity reset is required since the particle
velocity influences the particle bit change [51]. Unless the velocity is reset, the particle
bits would return to the pre-reposition state and thus make the reposition useless.

The BPSO parameters are as follows: 7; and 7y are both set at 2, and V., is set
at 4, as recommended by Deep [35]. On the other hand, the non-BPSO parameters
are as follows: the parameters of GPMBPSO and MBPSO are identical to those in the
original papers of MBPSO [35]. In RPG, MXUPG and MRPSO, PM is 0.05, RM is
1 round, TR is 30 iterations, and PR is 0.3. For BGA, the crossover probability and
the mutation probability were set at 0.8 and 0.1, respectively, according to [45,46]. To
guarantee fairness, the number of evaluations is set identical in all methods. This results
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in 1000 particles each in BPSO, BGA, GPMBPSO, MBPSO and RPG; and 500 particles
each in MRPSO and MXUPG.

In Table 3, each instance has 100 runs with a maximum iteration of 5000 iterations. In
the same table, the results of MBF and sums of SR show that MRPSO can locate the op-
timum points of all instances. MRPSO outperforms BPSO, BGA, MBPSO, GPMBPSO,

TABLE 3. Comparative results of BPSO, BGA, GPMBPSO, MBPSO, MX-
UPG, RPG and MRPSO on MKP

Techniques BPSO BGA GPMBPSO MBPSO MXUPG RPG MRPSO

Problem |Best known| MBF | SR | MBF | SR | MBF | SR | MBF | SR | MBF | SR | MBF | SR | MBF | SR
Sentol 7772 77713 | 95 7772 100 7772 100 | 7770.88 | 98 | 7T77L.72 | 98 | 7771.58 | 97 7772 100
Sento2 8722 8718.91 | 67 8722 100 8722 100 | 8719.97 | 74 | 8719.64 | 76 | 8720.61 | 79 8722 100
‘Weingl 141278 141278 | 100 | 141278 | 100 | 141278 | 100 | 141278 | 100 | 141278 | 100 | 141278 | 100 | 141278 | 100
Weing2 130883 130883 | 100 | 130883 | 100 | 130883 | 100 | 130883 | 100 | 130883 | 100 | 130883 | 100 | 130883 | 100
Weing3 95677 95660.6 | 96 95677 | 100 | 95676 98 | 95661.6 | 98 | 95676.5 | 99 95677 | 100 | 95677 | 100
‘Weing4 119337 119337 | 100 | 119337 | 100 | 119337 | 100 | 119337 | 100 | 119337 | 100 | 119337 | 100 | 119337 | 100
Weing5 98796 98796 | 100 | 98796 | 100 | 98796 | 100 | 98796 | 100 | 98796 | 100 | 98796 | 100 | 98796 | 100
‘Weing6 130623 130623 | 100 | 130623 | 100 | 130623 | 100 | 130623 | 100 | 130623 | 100 | 130623 | 100 | 130623 | 100
‘Weing7 1095450 1095340 | 6 |1094150 | 0 | 1095380 | 0O |1095370| 27 |1095300| & |1095440| 90 | 1095450 | 100
Weing8 624319 620857 | 14 | 624319 | 100 | 620594 0 621366 | 14 | 624319 | 100 | 622038 | 32 | 624319 | 100
‘Weish01 4554 4554 100 4554 100 4554 100 4554 100 4554 100 4554 100 4554 100
‘Weish02 4536 4535.9 | 98 4536 100 4536 100 4536 100 4536 100 | 4535.9 | 98 4536 100
‘Weish03 4115 4115 100 4115 100 4115 100 4115 100 4115 100 4115 100 4115 100
‘Weish04 4561 4561 100 4561 100 4561 100 4561 100 4561 100 4561 100 4561 100
‘Weish05 4514 4514 100 4514 100 4514 100 4514 100 4514 100 4514 100 4514 100
‘Weish06 5557 5556.02 | 94 5557 100 | 5549.72 | 44 | 5556.46 | 97 | 5556.87 | 99 | 5556.87 | 99 5557 100
‘Weish07 5567 5567 100 5567 100 5567 100 5567 100 5567 100 5567 100 5567 100
‘Weish08 5605 5605 100 5605 100 5605 100 5605 100 5605 100 5605 100 5605 100
‘Weish09 5246 5246 100 5246 100 5246 100 5246 100 5246 100 5246 100 5246 100
‘Weish10 6339 6339 100 6339 100 6339 100 6339 100 6339 100 6339 100 6339 100
‘Weish11 5643 5643 100 5643 100 5643 100 5643 100 5643 100 5643 100 5643 100
‘Weish12 6339 6339 100 6339 100 6339 100 6339 100 6339 100 6339 100 6339 100
‘Weish13 6159 6159 100 6159 100 6159 100 6159 100 6159 100 6159 100 6159 100
‘Weish14 6954 6954 100 | 6944.08 | 68 6954 100 6954 100 6954 100 6954 100 6954 100
‘Weish15 7486 7486 100 7486 100 7486 100 7486 100 7486 100 7486 100 7486 100
‘Weish16 7289 7288.94 | 97 7289 100 7289 100 | 7288.78 | 97 | 7288.96 | 98 7289 100 7289 100
‘Weish17 8633 8633 100 8633 100 8633 100 8633 100 8633 100 8633 100 8633 100
‘Weish18 9580 9579.26 | 94 | 9578.16 | 76 9580 100 | 9579.85 | 99 9580 100 9580 100 9580 100
‘Weish19 7698 7697.74 | 98 | 7664.08 | 8 | 7695.14 | 78 | 7697.61 | 97 7698 100 7698 100 7698 100
‘Weish20 9450 9450 100 | 9449.4 | 88 9450 100 9450 100 9450 100 9450 100 9450 100
‘Weish21 9074 9074 100 | 9072.95 | 85 9074 100 | 9073.76 | 99 9074 100 9074 100 9074 100
‘Weish22 8947 8940.88 | 66 | 8922.2 5 893044 | 8 8940.7 | 65 | 8943.58 | 81 | 8945.38 | 91 8947 100
‘Weish23 8344 8343.79 | 93 | 8306.55 | 0 | 8343.94| 98 | 8343.76 | 96 | 8343.94 | 98 8344 100 8344 100
‘Weish24 10220 10219.8 | 99 | 10215.6 | 80 10220 | 100 | 10220 | 100 | 10220 | 100 | 10220 | 100 | 10220 | 100
‘Weish25 9939 9935.32 | 78 |9918.95 | 20 9939 100 | 9937.56 | 91 | 9938.01 | 93 | 9938.84 | 99 9939 100
‘Weish26 9584 9575.93 | 69 | 9550.9 | 21 9584 100 | 9576.96 | 78 | 9578.24 | 82 | 9582.72 | 96 9584 100
‘Weish27 9819 9819 100 | 9798.15 | 33 9819 100 9819 100 9819 100 9819 100 9819 100
‘Weish28 9492 9492 100 9459 20 9492 100 | 9491.77 | 99 9492 100 9492 100 9492 100
‘Weish29 9410 9410 100 | 9381.85 | 39 9410 100 | 9409.52 | 98 9410 100 9410 100 9410 100
‘Weish30 11191 11190.6 | 90 | 11131.5| O 11191 | 100 | 11190.8 | 94 | 11190.8 | 94 11191 99 11191 | 100
PB1 3090 3090 100 3090 100 3090 100 3090 100 3090 100 3090 100 3090 100
PB2 3186 3185.28 | 96 | 3113.92 | 14 3186 100 | 3184.2 | 93 | 3185.82 | 99 | 3185.82 | 99 3186 100
PB4 95168 95168 | 100 | 95168 | 100 | 95168 | 100 | 95168 | 100 | 95168 | 100 | 95168 | 100 | 95168 | 100
PB5 2139 2137.98 | 94 | 2129.36 | 50 | 2137.64 | 96 2139 100 2139 100 | 2138.83 | 99 2139 100
PB6 776 776 100 776 100 776 100 776 100 776 100 776 100 776 100
PB7 1035 1034.96 | 96 1035 100 1035 100 | 1034.8 | 98 | 1034.91 | 99 1035 100 1035 100
HP1 3418 3416.18 | 92 3418 100 3404 0 | 3416.61 | 95 3418 100 | 3417.58 | 97 3418 100
HP2 3186 3186 100 | 3106.48 | 4 3186 100 | 3185.82 | 99 3186 100 | 3185.82 | 99 3186 100
Sum of SRs 4432 3611 4322 4506 4624 4674 4800
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RPG and MXUPG in terms of reliability and solution quality of the binary representation
problems. This is shown by MBFs and the sums of SR, both of which are higher than
other algorithms. In addition, Table 3 reaffirms the fact that the use of MXUPG with
RPG produces better search results than the use of either MXUPG or RPG.

As shown in Table 3, the BPSO search results are better than those of BGA in some
instances, such as Weish23 and Weish30. On the other hand, BGA gives better search
results than BPSO in some other instances, e.g., Sento2 and Weing8. The phenomena
confirm that both algorithms are capable of solving different optimization problems. In
addition, the table shows that MRPSO could overcome the PSO drawbacks.

6. Applications of the Proposed Algorithm. The PSO and GA algorithms belong
to the evolutionary algorithm (EA) group [52] and have several similar useful properties to
EA [52]. This research demonstrates the practical use of the proposed MRPSO algorithm
by applying it to the optimization problems and presents the benefits of EA.

The optimization problems are found in various business problems [53], such as the
project selection problem, the capital budgeting problem, the cutting stock problem,
the cargo loading problem, the production planning problem, the scheduling problem,
the distributed processor problem, the database allocation problem, and the knapsack
problem (KP). In addition, they are found in different logistic operations, e.g., the logistics
and transportation problem, the shortest path problem, the maximum flow problem, the
generalized assignment problem, the traveling salesman problem (TSP), and the vehicle
routing problem. The optimization problems are also discovered in several other problem
types, e.g., the blending problem and the crop planning problem.

In the case of optimization problems with small solution space, e.g., KP which consists
of 5 items, the brute force method can locate the optimum point because the search is
carried out with all feasible solutions (i.e., 32 solutions). On the other hand, in the case
of optimization problems with very large solution space, such as KP with 500 items, the
total number of feasible solutions is 2°°°. Therefore, the brute force method is unsuitable
since it requires a very long time for the method to locate the optimum point. In this
case, other methods (e.g., PSO and GA) should be adopted to solve the optimization
problems with very large solution space.

One major benefit of PSO is its applicability to the optimization problems with very
large solution space. The basic principle of PSO is that it would not search for all feasible
solutions but would focus on the areas that produce good results. This narrows down the
scope of solution search. Therefore, PSO can search for the solutions very efficiently since
it is typical to locate better solutions around the areas that previously produced good
solutions.

A problem-specific algorithm produces a better optimization performance than an EA
(e.g., PSO and GA), but the problem-specific algorithm is only applicable to the type of
the optimization problem for which it was designed [36]; for example, the Lin-Kernighan
heuristics can solve TSP efficiently but cannot be applied to MKP. On the other hand, the
repair operator algorithm [54] can solve MKP efficiently but cannot be applied to TSP.
In addition, implementing the problem-specific algorithm requires the knowledge of the
method to solve that specific optimization problem. Hence, the implementation of the
problem-specific algorithm is complicated and is limited to only one specific problem. In
contrast, implementing PSO is not subject to the optimization problems. In other words,
implementing PSO requires adjusting certain parameters to fit the problems [36], such as
amount of generation, amount of population, and constraint of the optimization problem.

Another main benefit of PSO is its ease of implementation. In addition, after the
implementation, PSO can be reused with other optimization problems.
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FIGURE 4. A practical application of PSO

Figure 4 illustrates a practical application of PSO. The optimization problems are
converted into mathematical equations. If the equations can be solved, the optimization
problems would be solved at the same time. Then, PSO searches for the solutions of the
problems.

Many optimization problems contain local optimum in solution space [36], so if an
algorithm were poorly designed, the local optimum trapping incidence would occur. If
the trapping happened, the best solution would not be found. However, if there were no
trapping, the best solution would be located quickly.

One main drawback of the standard PSO is a tendency of the local optimum trapping
to occur. Therefore, the aim of this research is to minimize the local optimum trapping of
PSO. The improved performance of PSO is achieved by combining the mutation technique
with the reposition technique.

The experimental outcomes in Subsections 5.3 and 5.4 confirm that the proposed
MRPSO method can improve the efficiency and effectiveness of PSO and that the best re-
sults are achieved with the proposed MRPSO when compared with the other algorithms.
The proposed MRPSO has the highest efficiency because it has the same number of eval-
uations as the other algorithms but produces the best solutions. In terms of effectiveness,
the proposed MRPSO achieves the highest effectiveness since it minimizes the local op-
timum trapping of PSO. Thus, the MRPSO algorithm can locate every global optimum
point in the experiments, whereas PSO fails to locate the global optimum points in several
functions and instances.

In practice, the proposed MRPSO is applicable to solving the optimization problems. In
addition, it has been proved that the proposed MRPSO solves the optimization problems
better than the standard PSO. Many previous research papers studied hybrid algorithms,
such as that which combines PSO with the repair operator algorithm to solve MKP [54],
and that which combines the Lin-Kernighan heuristics with PSO to solve TSP [55]. The
hybrid algorithms improve the solution search performance. In the hybrid algorithms,
if PSO were replaced with the proposed MRPSO, the MRPSO hybrid algorithm would
produce a better result than the PSO hybrid algorithm.

7. Conclusion. This research paper has proposed MRPSO derived from the concurrent
application of MXUPG and RPG to solving the optimization problems. MXUPG in-
creases the population diversity without increasing the convergence speed relative to the
standard PSO. This reduces the occurrence of local optimal trapping. However, since
some trappings are inevitable with the application of only MXUPG, RPG is therefore
introduced and used in combination. The reason is that RPG increases the chances of
finding better solutions when the trappings occur.

Thus, the concurrent application of MXUPG and RPG is proposed to improve the PSO
performance. On the benchmark functions, the MRPSO, PSO, FGA, APSO, PSOR and
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HPSO are tested and the results are compared. In addition, the MRPSO, BGA, BPSO,
GPMBPSO and MBPSO are tested on MKP and the results are compared. The results
indicate that the proposed MRPSO outperforms PSO, FGA, APSO, HPSO, PSOR, BGA,
BPSO, MBPSO, and GPMBPSO with regard to the reliability and quality of solutions
in all the experiments. The proposed MRPSO is able to find the optimal points.
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