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ABSTRACT. In this paper, a new detection system for early stage short circuit fault in
stator winding of induction motor is proposed. The early stage of stator winding short
circuit is represented by a low magnitude current and a very short duration that is defined
as temporary short circuit. The proposed method is based on transient current recognizing
when short circuit fault starting occur and cleared. The transient current during fault is
recognized by high frequency signal energy trending of wavelet transform. Three energy
of high frequency signal from three consecutive current signal sampling are used as de-
tection variables. Three wavelet types and five levels transformation are evaluated using
linear discriminant analysis (LDA) to get the most suitable wavelet transform. The El-
man neural network is designed as detection system. The proposed method is applied to
laboratory experiment. As a result, the proposed method can clearly detect the temporary
short circuit fault even though the fault has very fast occurrence and the current mag-
nitude is lower than full load current. with the good accuracy and the ability to provide
time information of fault, the proposed method is suitable for monitoring system.
Keywords: Fault detection, Induction motors, Stators, Digital signal processing, Short
circuit currents, Discrete wavelet transforms, Wavelet coefficients, Linear discriminant
analysis, Recurrent neural networks

1. Introduction. Induction motor is known as a robust design with failure rate up to
0.064 failures/unit-years. However, the failure case of this motor is easily found because
it has high population in industrial plant [1]. Stator winding deterioration is known as
one of most common faults in induction motors. Considering industrial survey, stator
contributes up to 66% of motor faults [2]. Moreover, stator insulation is one of the weak-
est parts [3] and causes approximately 80% stator failures. Induction motor failure in
industrial plants can produce massive losses. For instance, in offshore oil plants, down-
time losses due to motor failures can reach $25.000 per hour [4]. To avoid those losses,
early fault detection system has been widely developed. Advanced methods of signal pro-
cessing, sensor technology and detection systems are being proposed as innovative tools.
Most of them are focused on detecting the early stage of winding deterioration while the
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machine is still rotating normally. The insulation systems of electrical machines can be
monitored online by considering variables such as capacitance, dissipation factor and/or
insulation power factor [5, 6, 7|, impedance [8], and sift phase [9] as an insulation failure
indicator. Signal injection is also proposed to detect the fault [10]. Some signal processing
techniques such as frequency spectrum analysis based on Fourier transform [11, 12, 13],
wavelet transform [14, 15, 16], combination the Park’s transform and Cross wavelet [17]
are proposed to increase detection performance. Moreover, artificial intelligence is widely
used for detection systems because of its ability to recognize nonlinear problem. Neural
network is proposed as automatic fault diagnostic in induction machine. In this method,
frequency spectrum is used as the input to detect the fault and speed of the machine
[18]. Moreover, improvement of Feed forward neural network (FFNN) with preprocessing
signal input can reduce a significant learning error. The post processing of FFNN fault
classification system yields the sensitive classification for slight defect such as two-turn
shorted winding [19]. A fault classification system that combines fuzzy systems, neural
networks, and the decision tree is designed to distinguish motor operation states that are
classified into normal, broken rotor, rotor eccentricity and unbalance voltage. Adaptive
neuro fuzzy inference system (ANFIS) is proposed as machine prognosis system. Histori-
cal failure data is trained in ANFIS and high order of hidden Markov model is designed as
noise model. The combination of this model is used as fault propagation proses to predict
the fault [20]. In order to improve classification performance, a cascade connection of
neural network systems that combines radial basis function and multi-layer perceptron is
proposed. This network is tested and gives better results than single network structures
only [21]. Another research work focused on designing robust fault detection is proposed
filter to anticipate unknown disturbance and parametric uncertainties. This property is
resulting sensitive fault detection and robust to disturbance [22]. Beside the advantages
of the recently proposed methods, the electric machine diagnostic system still has some
other future challenges. One of the challenges of stator fault detection research is to pro-
vide time estimation from symptoms fault to disaster or broken machine [23]. Moreover,
a simple, non-invasive and effective fault detection system at an early stage of winding
deterioration is still needed to be continuously developed [24]. All in all, the detection
of fault in an exact location will be a more interesting challenge in the future [25]. This
paper proposes a method to detect incipient of short circuit in stator winding that can
be implemented as online condition monitoring of electric machine. By identifying the
symptoms of fault inside the machine, the catastrophic failure can be avoided. In this
paper, the symptom of fault is defined as low current magnitude and temporary occur-
rence representing the initial stage of short circuit fault. The detection focuses on the
starting and ending points of fault. The fault is selected as the point detection because it
results in a higher transient current than other normal operating condition such as load
change [26, 27]. Wavelet transform is used as a feature extraction of the current signal
because it is more superior than frequency analysis for temporary fault analysis [28, 29].
For optimal selection of a wavelet filter, linear discriminant analysis (LDA) is used as a
wavelet filter evaluator. LDA is sellected because it can simply measure the separation
between predefined group of data, while neural network has advantages to recognize non-
linear data pattern and can avoid the complexity of determining a detection threshold
[30]. An Elman neural network is used in this paper because it has context layer that can
memorize the previous state of motor operation. Effectiveness of the proposed methods is
tested in laboratory experiment. The result shows that, the proposed method successfully
detects the fault including a very short time of fault that is defined as a spike short circuit.
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2. Temporary Short Circuit as Initial Failure of Stator Winding. Induction mo-
tors are recognized for strength and robustness which have been designed to operate
continuously for long periods. However, sometimes it is failure during operation as the
result of the ageing and deterioration inside the machine part. In this section, one of the
initial faults of this machine is defined as a low current magnitude and a short period
of short circuit. This fault occurs as an effect of insulation winding deterioration such
as turn-to-turn stator insulation. This fault case will produce thermal hotspot and pro-
gressive insulation degradation [12]. In the certain level of insulation deterioration, the
insulation capability is decreasing. When the operating stress such as over voltage sud-
denly occurs or increases to the capability level, the short circuit can be occurred. When
the stresses are increasing temporarily, for example voltage surge [31], the short circuit
is also occurring temporarily. The current is back to the normal with stress clearance.
Therefore, this fault is categorized into two parts based on its time duration. The first
type is a spike short circuit and the second is a temporary short circuit, which has a
longer duration.

2.1. Spike current short circuit. At the beginning of a short circuit fault, the current
has low magnitude with a very short duration. This is called a spike fault in this paper.
This fault has a fast rise time [32] as the results of partial discharge activity in several
locations of winding insulation, indicating the intermittent failure of stator winding [33,
34, 35]. Short circuit duration is in a few milliseconds and captured as a spike current as
shown in Figure 1.

2.2. Temporary short circuit. A longer period of short circuit is defined as a tem-
porary short circuit as shown in Figure 2. In this case, the short circuit current is not
shown as a spike. The motor operation state is changed from normal to fault when a short
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FiGURE 3. Starting short circuit

circuit starts to appear. Therefore, the current pattern is changed at the point where the
short circuit starts. As the result of these changes, the gradient of current is changed.
Basically, the gradient can be obtained from the different values of the consecutive data.
In this paper, the gradient is represented by a high frequency signal of wavelet transfor-
mation. The gradient is higher at the starting point of the short circuit. Conversely, it is
lower at the end of the short circuit when the motor is back to normal operation due to
a temporary short circuit.

2.3. Short circuit occurrence. The main idea of this paper is to detect the temporary
short circuit by identifying the transient current pattern when a short circuit starts and
ends. The pattern changes are quite different to the load changes. In the case of load
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FIGURE 4. End of short circuit

changes, the current pattern changes smoothly in magnitude such as sinusoidal function
with linear magnitude [26, 27]. When the short circuit begins and ends, it looks like the
turn or the cessation of the current pattern as shown in Figures 3 and 4. These figures
show the current pattern changes during the beginning and end of the short circuit at
different magnitudes. Each short circuit waveform also compared with a normal operating
current. In order to detect the moment when faults start and end, the other operating
conditions need to be recognized as normal operations, steady state short circuits and spike
short circuits. Furthermore, those five operating conditions are defined as short circuit
occurrences. For industrial application purposes, if all defined operating conditions can
be detected using online monitoring system based on proposed method, more specific
time information can be provided such as when the fault starts, how often and how long
this fault strikes. This information can be used as diagnostic and condition assessment
of electric machine. Providing this information is also one of the future challenges in the
condition monitoring of induction machines [21, 22, 23, 24].

3. Proposed Method for Occurrence Detection Temporary Short Circuit. The
proposed detection method for temporary short circuit fault occurrence is described in this
section. The main contribution of the proposed method not only can detect temporary
short circuit [28] but also be able to classify the short circuit occurrence. Moreover, the
short circuit duration and time occurrence can be identified. This result will improve
the other proposed work that only considers fault detection not time occurrence [12, 13,
14, 15]. The detection system development is shown in Figure 5. This system is divided
into three steps: current signal processing using wavelet transform, evaluation wavelet
filter using LDA to obtain the most appropriate one, and designing the neural network
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Ficure 5. Flowchart of designing detection system

detection system for distinguishing the operation state of a motor. In this paper, the
wavelet filter is intended as the coefficient of scaling function. These coefficients are also
called as decomposition high-pass filter. The convolution between the originals signal and
this coefficient is resulting high frequency filter.

3.1. Feature extraction using discrete wavelet transform. The current signal is
measured and recorded using a current transformer and analog to digital converter respec-
tively. Current signal is stored in n number data and expressed by I(t) = [i1 2 i3 * - ip].
Current signal I(t) is applied to the wavelet filter W in order to obtain a high frequency

or detail signal d(t) using the following equation.

Wavelet filter W is defined as follows.

d(t)=1(t) W
p Qg Qg --*- (673
0 0 oy ot 9
o 0 0 --- 0

k1

(1)

0
(2)

O

where « is the filter coefficient of each wavelet type. The matrix W has (n/QL) x n, where
L is the wavelet level transformation and n is the size of transformed signal. Energy of
high frequency signal within the determined period is obtained as follows:

e = |d(n)

(3)
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FIGURE 6. Current signal treatment using wavelet transform

Considering three periods sampling of the current signal (Figure 5), the energy of each
period can be expressed as:
r = [61 €2 63] (4)
Three consecutive energy values are then used as detection variables and defined as x.
Figure 6 shows the current signal processing to obtain a high frequency signal energy
using a wavelet filter. In the case of a temporary short circuit, the fracture of the current
signal pattern during the start or end of a short circuit can produce a high value of high
frequency signal. As with a spike short circuit, the higher value of a high frequency signal
due to a spike is more noticeable. Moreover, all operating states can be identified using
three consecutive energy measurements. In this paper, there are three wavelet types:
Haar, Daubechies and Meyer. The first to fifth levels are evaluated to obtain the best
result. In order to do the evaluation analysis, our dataset of motor current consists of all
of motor state operations that can be expressed as follows.

I(t) =[ic1 Geg - lem ] € case number (5)
By using a wavelet filter matrix, the detail signal can be obtained as in (6).
dg' (t) = I. () w*! (6)

where ¢ is wavelet type and [ is the wavelet level. Moreover, the data set for the energy
of the current signal can be calculated as follows:

t=k
et =) ld! (1) (7)
t=1

where £ is the length of signal in one period. The detection variables of all data set signals
can be expressed as in (8).

tl tl tl il
T, = [ec,l 60,2 60,3:| (8)
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TABLE 1. Energy trend of motor states

State of motor Energy level of each input variable
€1 €2 €3
Normal operation Low Low Low
Steady short circuit High High High
Starting short circuit High Medium Low
End of short circuit Low Medium High
Spike short circuit Low High Low

3.2. Evaluating wavelet filter using LDA. Discriminative analysis measurement is
one of statistical methods used to obtain the differences between the groups in the data set
or the signal [40]. Certain groups have been determined beforehand. Moreover, the linear
combination of the variable is then calculated to find the optimal separation of the groups
with means as close as possible within the groups and as far as possible between other
groups [41]. This method is one of the simple algorithms used to measure discrimination
of the groups of data even if the groups are not a function of its variables [42].

Figure 6 shows that all operation states of an induction motor can be divided into five
states: normal operation, steady state short circuit, starting of short circuit, end of short
circuit and spike short circuit. These states follow the trend of having three measurements
of consecutive energy of high frequency signal. During normal operation, all of three
variables have low energy levels while the beginning is a fault that is represented by high
level of ey, a medium level of e; and a low level of e3. A steady state fault results in a
high level of those three variables, and the last state, end of fault is characterized by a
low level of ey, a medium level of e; and a high level of e3. Spike fault has a low level
of ey, a high level of e5 and a low level of e3. Table 1 summarizes the five basic trends
of three variable inputs which correspond to the states. Based on this trend, the data
set is divided into five groups or clusters, Clusters 1-5, correspond to the state of motor
operation.

The data point in the k-th column vector of data set e is represented by ay, the average
point of the i-th cluster is ¢, and the global average is ¢. The scatter matrix within the
i-th cluster S,(,f), the within-cluster scatter matrix S,,, the between cluster scatter matrix
Sy and the total (or mixture) scatter matrix S, are defined, respectively as follows [43]:

SO =" (ar— ) (a — )’ (9)

Sy = Z Z (e —¢) (@ — C)T (11)
Sy = Z Z (ar — c) (ax, — c)T (12)
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Optimum cluster separation can be obtained by maximizing the ratio between-class to
within-class scatter.
B GTS,G
- GTS,G
In order to obtain the best training data set corresponding to the wavelet filter, perfor-
mance classification based on error classification is defined as follows:

7 (G) (14)

EC
error = o X 100% (15)

where F'C is the misclassification cases and T'C' is the total number of all cases.

3.3. Neural network detection system. Artificial neural networks (ANNs) are known
as a good classifier system because of features such as robustness, adaptive learning,
generalization capability and self-organization [41]. If the amount of data is enough for
training, the ANN methods are very useful and suitable for the detection system [42].
This paper uses the Elman neural network (ELNN) to detect short circuit occurrences,
specifically to distinguish the state of induction motor operation defined as normal, steady
state fault, starting fault, ending fault, and spike fault.

ELNN is used in this paper because it considers the previous state that is stored in the
context layer. This design is appropriate with the detection system design requirements.
As shown in Figure 6, the state of motor operation has a strong relation to the previous
operating state. Normal operation has several previous states that are normal, end of
short circuit and spike short circuit. Starting short circuit is initiated by normal operation.
Steady state short circuit is initiated by starting short circuit. The preliminary state of
the end of a short circuit is a steady state short circuit. The previous state of a spike
short circuit is normal operation. This pattern is considered in the training and testing
process. This network mainly consists of four layers: input layer, hidden layer, context
layer and output layer (Figure 7). In this paper, the three nodes are represented by three
input variables, e;, e; and e3. The input layer nodes are expressed as follows.

e (k) = fi (net;) = net;, i=1,2,3 (16)

The hidden layer has two variable inputs from the input layer and the context layer.
The node input inside the hidden layer is expressed as follows:

netj:fon(k)—i—ZWéxneti, r=1,2...,r (17)

The output of this layer is calculated based on the node input and the sigmoid activation
function as follows.

1
14+ e—netj ’

The context layer stores information about previous operating conditions and is used
to determine the present state. It can be expressed by:

vy (k) =z (k—1) (19)

r

z; (k) =S (netj) = j=12...,7 (18)

The input and output of the output layer are expressed respectively as:

net, (k) = Z W2 x x; (k) (20)

Yo (k) = f (net, (k)) = net, (k) (21)
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FIGURE 7. Elman neural network structure

During the training process the mean square error (MSE) is used as a performance
index, expressed as follows:

len o, 1 & )
MSE:N;(Q) :N;(ti_ai) (22)
This network presents a back propagation algorithm with a feedback connection from
the output of the hidden layer to the input layer. Two hidden layers with tangent sigmoid
(tansig) activation function are designed inside the networks. Meanwhile, the output layer
uses the purelin activation function. The five output nodes represent the five states of the
motor operating condition. Each output node is defined with a series value of 0 and/or
1. Five outputs are designed to represent the state of motor operation, defined as: (1
0000),(01000),(00100),(00010),and (0000 1) for normal, steady state
fault, starting fault, ending fault, and spike fault respectively. The training process of the
ELNN is based on the Levenberg-Marquardt back propagation algorithm. The validation
data for this network is defined as a 105% deviation from the training data for the input
variable and 100% for target data.

3.4. Detection performance. Several methods were used to measure performance of
the proposed detection system. These methods consist of detection positive predictive
value, confusion matrix and detection efficiency [43]. The proposed method comprises the
combination between the wavelet, LDA and the neural network. The next sub-sections
will describe these methods. The positive predictive value (PPV) represents the number
of cases detected as absolutely true. This value is expressed in percent (%) as the result
of the ratio of true positive and summation of true positive and false positive. This value
can be obtained using the following equation:

TP
PPV = —— x 1 2
V TP+FPX 00% (23)

True positive (TP) is the case that detects a similar state to the actual state. For
example, Case Number 1 is normal operation and detected as normal operation. A false
positive (FP) is the case detected as belonging to one of the operational states when
actually this case belongs to other states. For example, Case Number 20 is detected as
the normal operation states, but it is actually the starting point of a short circuit. The
confusion matrix is used to illustrate the result of a classification or detection system.
This matrix is expressed as a table with each row representing the prediction result, while
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the column represents the actual condition of the data or cases. Using this table, it is very
easy to analyze the result of the detection system such as confusion between two classes
or wrongly detecting one for another state. This paper presents training data and testing
data separately in different columns and compares two detection systems consisting of the
proposed method (wavelet-LDA-neural network) and wavelet-LDA.

4. Implementation.

4.1. Experimental setup. The laboratory experimental setup is established to obtain
the current signal waveform in different cases of temporary short circuit which has low
current fault and temporary occurrence. A single phase motor 1/4 hp, 1400 rpm, 50 Hz,
110/220 Volt 4.8/2.4 Ampere with external winding extension at 25%, 50%, and 75% of
total winding is used to model the machine under temporary fault. This machine is also
coupled by mechanical load as shown in Figure 8. In order to simulate a temporary fault
with high impedance, the short circuit switch is connected to a series with a variable resis-
tor. The resistor is adjusted to simulate the low fault current magnitude. The electronic
switch is used to perform a very short duration of short circuit. The current spectrum is
recorded using an analog-to-digital converter with a 50 kHz sampling frequency. Current
signal consisting fault case is recorded in data storage. Each case has 1.5 cycle current
waveform or 30 millisecond of 50 Hz power frequency. The waveform consists of three
consecutive current sampling periods, and each period is half cycle or 10 ms. Although
the single phase is used in the experiment, the proposed method is also subjected to the
high power three phase induction machines because it has similar behavior of short cir-
cuit occurrence. When the short circuit occurs, the increasing current is much faster than
other normal operation.

4.2. Data collection and signal processing. Several cases of short circuit can be
performed using this experimental setup. The data are made up of 355 cases which
represent 290 datasets used for training and 65 cases for testing. These data are varied by
current magnitudes as shown in Table 2. The next step is calculating the high frequency
signal of the motor current and obtaining the energy level using Equations (6) and (7)
respectively. In this step 15 wavelet filters are used that are varied by three wavelet types
and five level transformations. This process results in 15 data sets based on the filter.
Each data set consists of five groups based on the operating state of the motor. The next
step is evaluating data sets using LDA based on Equations (9)-(14). Classification error
is calculated based on Equation (15) and is used as a performance index.

The result of the LDA evaluation is summarized in Table 3. The third level Haar
wavelet yields the best performance that gives smallest classification error, 22.1%. The
scatter plot of dataset groups is shown in Figure 9. The current signal data for a motor
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FiGURE 8. Laboratory experimental setup
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TABLE 2. Motor current data set

Operation | Training and validation Testing
Case Number Variation Number Variation
of cases (Ampere) of cases (Ampere)
Normal 40 1; 1.3 10 1.2; 1.5
Steady 100 2.75; 3.2; 10 3.5; 4.5
state S.C 3.6; 3.8; 4
Starting 50 2.3; 3.1; 3.25; 15 2.4; 3.2; 4.5
S.C 3.75; 4
Ending 50 2.3; 3.1; 15 3.1; 3.6; 3.86
S.C 3.6; 3.8; 4
Spike 50 0.48; 0.55; 0.91; 15 0.48; 0.55; 0.91;
S.C 1.03; 2.82 1.03; 2.82
Total 290 65

TABLE 3. Evaluation of wavelet filter using LDA

Wavelet LDA classification error using wavelet Level 1-5 (%)
type 1 2 3 4 5
Haar 39.7 24.8 22.1 28.3 33.4

Daubechies 56.6 46.9 40.0 60.0 44.1
Meyer 50.3 39.0 42.1 65.9 51.7

under normal operation is marked using number 1 that gathers around the origin of the
variable axis. Data represented by number 2 represents the steady state of short circuit.
This data is linear and higher for every variable axis. Data numbers 3 and 4 have a
similar trend for the input-2 axis, medium, and have the opposite trend for the input-1
and input-3 axes. Furthermore, number 5 has a small value for input-1 and input-3 but
being higher for input-2. Several data is close to data number-1 when input number-2 is
not too high.

4.3. Detection system training and testing. Based on the result from the wavelet
filter evaluation, the third level of the Haar wavelet filter is selected as a signal processor.
The data set from this filter is used as training data for the neural network detection
system. The network used in this system has two hidden layers. Moreover, the numbers
of hidden-node from 2 until 9, are evaluated in order to get the best performance detection
system. In total, 81 networks are evaluated based on mean square error as shown in Figure
10. The best training performance is given by the network with five and six nodes for the
first and second hidden layer respectively. The mean square error for the training process
is 9.17 x 107'2 and 4.45 x 1077 for validations. In order to check the performance, the
detection system is tested using a non-trained data set. The testing data set consists of
65 cases, including all operation states of a motor as shown in Table 2. The data consists
of normal operation (case number 1-10), steady state short circuit (case number 11-20),
starting of short circuit (case number 21-35), end of short circuit (case number 36-50)
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and spike short circuit (case number 51-65). Moreover, the fault cases are also varied by
current fault magnitude. Some of fault cases have fault magnitude below the motor full
load current.

Figure 11 shows the testing results. The first output indicates normal operations. If
the motor operates in normal conditions, the first output will equal 1; otherwise it is 0
for other operating conditions. This rule is also applied to the other outputs; output-2
is a steady state short circuit, output-3 is a starting short circuit, output-4 is the end of
short circuits and output-5 is a spike short circuit. Based on the test results, all the cases

are successfully detected.
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FIGURE 11. Detection result of testing data

5. Result and Discussion. The neural network detection system is trained, tested, and
gives satisfactory results. In order to confirm the performance of the proposed methods,
a comparison between wavelet and the LDA method is provided. The positive predictive
value and confusing matrix are used to evaluate the result as shown in Table 4. The
evaluation of training and testing data using the wavelet-LDA method shows that false
detection happens most often in normal (N) and spike short circuits (SP). False detections
occur because those two states are only differentiated by ey, while the other input vari-
ables, e; and e3, have similar values. Since the LDA method basically uses linear function
as a classifier, this method will detect low spike faults as a normal operation. Similar false
detection cases happen between the end of short circuit cases with normal operation, the
end of a short circuit with spike fault and a steady state with a spike fault. Based on
PPV analysis, normal conditions and spike faults contribute to the low level value. It can
be concluded that the system cannot discriminate normal operation and spike faults well.
The proposed method gives 100% detection results for training and testing. In this case,
the neural network can recognize the pattern of variable input as a function of the operat-
ing state of the motor, even though the pattern is not absolutely linear. The advantages
of the proposed method are emphasized by the efficiency of detection. The overall results
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TABLE 4. Positive predictive value analysis

Detection Actual training Actual testing Positive
Method cases cases predictive

N|SS|ST|EN|SP|N |SS|ST|EN|SP value
Wavelet-LDA | N |40 — | — | — | = |10 — | = | — | — 100%
-NN SS|— 1100 — | — | = |—-]10| — | — | — 100%
(proposed | ST | - | — |50 | — | — | —| — | 16| — | — 100%
method) EN|-| = | = |50 | - | -] -] - |15 | — 100%
SP| -] — | - | =50 —-|—-|—-| — |15 100%
Wavelet-LDA | N (40| — | — | 8 |21 |10 — | — | = | 6 59%
SS|—-19% | - | - | - |—-|10] — | — | - 100%
ST|—-| — |50 — | —|—-|—-1|5 ] -] - 100%
EN|-| - | = |37 | - | -] -] - |15 | — 100%
SP| -1 4| —-15 (29| -] —-1]10| — 1|9 67%

show that the proposed method gives the efficiency of training and testing data as 100%,
while wavelet-LDA are 85.6% and 75.4% for training and testing, respectively.

6. Conclusion. A new approach to intelligent detection of early stage short circuit fault
in induction motor winding has been proposed in this paper. The sensitivity and accuracy
of proposed methods is confirmed by successfully detecting the very short time occurrence
and low current fault. The optimal design utilizes LDA to evaluate 15 wavelet filters to
get the most suitable filter. Moreover, the Elman neural network structure is analyzed
by modifying the combination of hidden node number. The design analysis yields the
most suitable detection system that uses the third level Haar wavelet as signal processing
and Elman network with five and six numbers of hidden nodes for the first and second
hidden layers respectively. This system is successfully recognizing all of data training and
detecting all of testing cases. In addition, the utilization of wavelet transforms in the
proposed methods to detect transient current of fault is potential applied as continues
monitoring system because it can provide time information of the fault cases. The advan-
tages of Haar wavelet is easy to be implemented to embedded system due to the simple
calculation. Moreover, the development of micro controller technology allows to build NN
system in embedded system. However, one of the disadvantages of this method is that it
need very high speed processor and large memory for calculating the energy of signal.
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