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ABSTRACT. This paper concerns with the problem of state-feedback H., control design
for a class of linear systems with polytopic uncertainties and mized time-varying delays
in state and input. Qur approach can be described as follows. We first construct a
state-feedback controller based on the idea of parameter-dependent controller design. By
constructing a new parameter-dependent Lyapunov-Krasovskii functional (LKF), we then
derive new delay-dependent conditions in terms of linear matriz inequalities ensuring the
exponential stability of the corresponding closed-loop system with a Ho, disturbance atten-
wation level. The effectiveness and applicability of the obtained results are demonstrated
by practical examples.

Keywords: Polytopic uncertainties, H,, control, Time-varying delays, Input delayed,
Linear matrix inequalities

1. Introduction. It it well known that time delay frequently occurs in engineering sys-
tems and usually is a source of bad performance, oscillations or instability [1, 2]. The
problems of stability analysis and controller synthesis for time delay systems are essential
and of great importance for theoretical and practical reasons [3], which have been exten-
sively studied in the past decades, see, for example, [4, 5, 6, 7, 8, 9, 10, 11, 12] and the
references therein.

In many models of control systems such as chemical, hydraulic and pneumatic systems,
digital control or communication networks, a time-varying input delay arises due to many
reasons. Its presence is usually motivated by a physical nature of a plant or being intro-
duced artificially to model a sampling effect [13, 14, 15]. Control of a system with input
delay is an important problem treated in the literature, see, for example, [15, 16, 17, 18, 19]
and the references within.

Beside, external disturbances are usually unavoidable in modeling a wide range of
phenomena in practical and engineering systems due to data transformations, model-
ing inaccuracies, linearization approximations, unknown disturbances and measurement
errors [20]. Therefore, the problem of control for dynamical systems subject to time-
delay/input delayed and external disturbance has been an important topic in control
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engineering [20, 21, 22]. Recently, considerable attention has been paid to address the
problem of H,, control especially for systems with prescribed ranges of uncertainties
[23, 24, 25, 26, 27, 28]. Roughly speaking, the main objective of the H,, control problem
is to design a stabilizing feedback controller for such system subjected to norm-bounded
disturbances. This controller is usually robust with respect to prescribed ranges of pa-
rameter uncertainties. Thus, the H,, control for time-delay systems is of practical and
theoretical interest in many industrial and engineering processes [15, 18, 29, 30].

Among the models for describing the realistic parameter uncertainty, the polytopic
uncertainty has been recognized to be more general, which can cover the well-known
interval and linear parameter uncertainty as well as multimodel structures [21, 31]. An
advanced research topic for time-delay systems with parameter uncertainties residing in
a polytope is to develop robust delay-dependent stability conditions using parameter-
dependent approach. Many attempts have been made in the past few years to realize
the parameter-dependent idea in stability analysis and control for time-delay systems,
and some less conservative robust stability conditions have been proposed [32, 33, 34,
35, 36, 37, 38, 39]. Particularly, in [34], the problem of exponential stabilization via state
feedback controller for linear polytopic systems with constant delay was studied which was
later extended to polytopic systems with mixed discrete and distributed constant delays
in state and input in [37]. The problem of H, control for a class of mixed time-varying
delays in the state was considered in [35]. By using a parameter-dependent approach
in designing a state feedback controller and in constructing an improved LKF, delay-
dependent conditions were derived in terms of some linear matrix inequalities.

However, it should be pointed out that, the problem of H,, control for polytopic systems
with mixed time-varying delays in both state and control input would be interesting.
Theoretically, analyzing the stability of systems with mixed delays in both state and
control input are quite complicated, especially for the case where the system matrices
belong to some convex polytopes. In practice, systems with distributed delays in both
state and input have many important applications in various areas as discussed in the
preceding paragraphs. Although many important results in the field of stability analysis
and control have been devoted to polytopic systems with delays, the problem of H.,
control for polytopic systems with mixed discrete and distributed time-varying delays in
state and control input has not yet been fully investigated.

Motivated by the above discussions, in this paper, we consider the problem of H.,
control for a class of linear polytopic systems with mixed time-varying delays in state and
control input. The novel features of the results obtained in this paper are twofold. Firstly,
the system considered in this paper is subjected to polytopic uncertainties and mixed
discrete and distributed time-varying delays in both state and control input. Secondly,
by constructing an improved parameter-dependent LKF, new delay-dependent conditions
are derived in terms of linear matrix inequalities in order to design a parameter-dependent
state feedback controller guaranteeing exponential stability of the closed-loop system with
an H,, disturbance attenuation level. The derived conditions in this paper do not require
any assumption on the controllability of the nominal system. The approach also allows
us to compute simultaneously the two bounds that characterize the exponential stability
of the closed-loop system.

Notations: Throughout this paper, we let R, N denote the set of real numbers and
natural numbers, respectively. For given p € N, we denote p = {1,2,...,p}. R denotes
the n-dimensional Euclidean space with standard norm ||.|| and scalar product (,). R™*"
denotes the set of m x n-matrices. For a matrix A € R™*" AT denotes the transpose
of A. Let A € R, we denote by A(A) the set of eigenvalues of A and Apax(A),
Amin(A) the maximal and minimal real part of the eigenvalues of A, respectively. A
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matrix Q € R**" is symmetric if Q = QT, semi-positive definite, write Q > 0, if it is
symmetric and (Qz,x) > 0, Vo € R" and positive definite, write Q > 0, if it is symmetric
and (Qz,z) > 0, Ve € R*, v # 0. Forany A,B € R A > B, A > B mean that
A—B>0and A— B > 0, respectively.

2. Problem Statement and Preliminaries. Consider the following control system
with mixed time-varying delays in state and input

.

1) = Aof€)ot) + (Ot — o) + Aa(e) [ 76+l

\ + Bo(§)u(t) + Bi(§u(t — h(t)) + BQ({E)/ u(s)ds, t >0, (1)

t—r(t)
2(t) = E(©)x(t) + F(§)u(t),
\x(t) = ¢(t)a te [_ha O]a

where z(t) € R", u(t) € R™ are the state vector and control input, respectively, w(t) € R®
is unknown disturbance, z(t) € R? is the observation vector, h(t), r(t) are time-varying
delays satisfying 0 < h(t) < h, 0 < r(t) < r, h(t) < 6, #(t) < 8, where § < 1 is a
constant, h = max{h,r} and ¢ € C([—h,0],R") is the initial function with the norm
||l = sup <0 [|6(¢)]|. The system matrices are assumed belonging to a polytope
defined by

p p
Q= {[Ak, By, C,E,F|(&) =Y &[Aw, B, Ci, B, F], k=0,1,2, >0, Y & = 1} ,
i=1 1=1

where p € N is the number of vertices of €, Ay;, By, Ci, Ej, Fi, k = 0,1,2, 4 € p :=
{1,2,...,p}, are given real matrices with appropriate dimensions.

In this paper, we will design a parameter-dependent state feedback controller of the
form

u(t) = K(§)z(t), t=>0, (2)

solve H,, control problem for system (1) given in the following definition.

Definition 2.1. Given 3 > 0, v > 0. System (1) is said to be Hy, stabilizable if there
exists a controller (2) satisfying the two following requirements

(i) The closed-loop system of (1) without disturbance, i.e., w(t) = 0, is B-exponentially
stable, that means, there exists a positive number o such that every solution x(t, @)
of the closed-loop system satisfies

(¢, o)l < ollglle™, t=>0.

(ii) There is a number ¢y > 0 such that

() ||2dt
f; IIZ£O)II <
coll @l + [y [Jw(t)|[>dt

where the supremum is taken over all ¢ € C([—h,0],R") and nonzero w € Ly([0, 00), R®).

sup

The main goal of this paper is to derive delay-dependent conditions in terms of linear
matrix inequalities for designing the parameter-dependent controller (2) to solve the H,
control problem for system (1).
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Remark 2.1. In this paper, the idea of parameter-dependent approach is employed to
derive conditions for designing Hs, stabilizer (2) which depends on the parameter . As
discussed in [32], the polytopic-type uncertainty can describe the parametric uncertainty
more precisely, and thus less conservative than the norm-bounded uncertainty. Moreover,
i many practical applications, parameters can be measured on-line without difficulty and
the parameter-dependent controller (2) can lead to less conservative conditions.

Let us introduce some auxiliary lemmas as follows.
Lemma 2.1 (Non-strict Schur complement lemma [20]). For any matrices X, Y with
appropriate dimensions, X = X', Z = Z" > 0, then {;(T —YZ] < 0 if and only if
X+YZ YT <o.

Lemma 2.2 (Completing square [35]). For any matrices P, QQ with appropriate dimen-
sions, @ = QT > 0, then

2(Py,z) — (Qy,y) < (PQ 'PTz,z), Va,y€eR"

Lemma 2.3 (Jensen’s inequality [4]). For given v > 0, symmetric positive definite matriz
W, then for any vector function w(.) such that the concerned integrals are well defined,
the following inequality holds

UOV“(S)C[S]T W [/OV“’(SWS] < V/OV W (5)Weo(s)ds.

3. Main Results. The following notations are specifically used in this paper. For sym-
metric positive definite matrices P;, ();, R;, semi-positive definite matrices S;, S, and
matrices Y;, we denote =1 — ¢ and, for 4, j € p,

Aij = AoiPj + PiAg;,

Bi; = ByY; + Y] B, + " (™' BBy, + rByBy,)

Pij - Aij + Bi]‘ + 26P] + Qj + hRj,

Hij = [Alipj \/EA%P]' v1+ TY}T] ;

D; = diag {pe " Qj, e " Ry, In}, My = Fij %ij] )

2= |

Sl _ |:Sl 0n><(2n+m) :| , 82 _ |:SQ 0n><qj| )

* 0(2n+m)>< (2n+m) * 0q><q

—28P; +1/7*C;C]  P;E] + YjTFJ]
* -1, ’

For sake of brevity, we use the following notations P = Y7 &P, Q = Y8 &Q;,
R=37 &R, Y =377 &Y, and

)\min(P) - Hlln )\min(]Di); )\max(P) = max )\max(lji)a
1Ep ZEE

)\max(Q) - meax )\max(Qi); )\max(R) = max )\max(Ri)a
Lep

iEp
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)\max(YTY) - meaX )\max(Y;TK)a )\1 - [)\max(P)]ila
ep

P | — =2 .
e =P+ { A Q)+ A4TY)
2Bh +e 2Ph — 1
+ 452 )\max(R)
28r +e720r — 1 - -
+ 462 )\maX(Y Y)}[)\mln(P)] 2-

We are now in the position to state our first result as given in the following theorem.

Theorem 3.1. Given 3 > 0,y > 0. System (1) is Hy, stabilizable if there exist symmetric
positive definite matrices P;, Q;, R; € R*™", 1 € p, semi-positive definite matrices Sy, So €
R™ ™ and matrices Y; € R™*",i € p, satisfy the following LMIs

M +81 <0, i€p, (3a)
.MU+AW—E%T&S0,1Si<j§n (3b)
Ni+8S, <0, i€p, (3c)
N+ Ny = —28,<0, 1<i<j<p (34)

The stabilizing feedback controller is given by (2) with

= (Zfﬂﬁ) (Z&B) . (4)

Moreover, every solution x(t, ) of the closed-loop system of (1) without disturbance, i.e.,
w(t) = 0, satisfies the following exponential estimate

A -
W@@HSVﬁWMBﬁtza

Proof: Since P;, i € p, are symmetric positive definite matrices and & > 0, matrix

P =" &P, is symmetric positive definite, and thus, P = P !is also a symmetric
positive deﬁnlte matrix. Let Q = PQP, R = PRP and K = YP. We will prove that
system (1) is H,, stabilizable by controller u(t) = K(&)xz(t), where K(&) = Y (§)P(£) L.
For this, we construct the following LKF for the closed-loop system of (1)

Viz) =Vi+ Vot Va+Vi+ V5, (5)

where

Ve [ Q) a0
Vi [ [ 0 o), oo,
Vi= / T ICE0),2(0)d.
Vi [ [ T o), (0 o



110 L. V. HIEN, T. D. TRAN AND H. M. TRINH

It follows from (5) that
Mz <Vt @) < Aellzlf?, > 0.
Taking derivative of V; along solution of the closed-loop system of (1) we obtain

Vi = 2(P[Agz(t) + Arz(t — h(1))], 2())
+ 2(P[Bou(t) + Biu(t — r(t)) + Cw(t)], z(t))

4+ 2(PA, /t | P 20

¢
+ 2(?32/ u(s)ds, 2(1)).
t—r(t)
Let y(t) = Px(t), by Lemma 2.2 and Lemma 2.3, we have

2Asw(t — h(1), y(1) < = (A4Q " ATy(#), y(#)
+pe ™M (Qu(t — h(t)), a(t — h(1)));
2(Bru(t — (1)), y(t)) < e = (BiBly(t), y(1)) + pe™" Jult —r(t))|%

’ <A2 /tthm w(s)ds, y(t)> < heM (AR ATy(1), y (1))

e L] (o]

t
< h€2ﬂh<A2E_1A;y(t), y(t)) + e_%h/ z' (s)Rx(s)ds;
t—h

and
t
2 <Bz/ U(S)dsay(t)> < re*(ByByy(t), y(1))
t—r(t)
| t T
4 e {/ u(s)dS] [/ u(s)ds]
r t—r(t) r(t)
< re? (BQB;y Y +e 2br / Ju(s)||Pds.
Therefore,

Vi <{(AoP + PAQ)y(t), y(t))

+ e A Q T AT y(1), y()) + (BoY + Y B )y(t), y(t))
+he?™ (AR ATy(t),y(1)) + € i (BuBTy(t), (1))
+re®(ByBy y(t), y(t)) + 2(Cw(t), y(1))

+ pe M Qu(t — h(t)), z(t — h(t)))

+ pe (KT TKz(t — (1), z(t — r(t)))

+ e 20h /t_h z" (s)Ra(s)ds + e 2" /t_ (KTKz(s),2(s))ds.
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Next, taking derivative of Vi, k = 2,...,5, give
Va < (Qu(t), x(t)) — 28Vy — pe **™(Qux(t — h(t)), z(t — h(t)));

Vi = h{Tee(0),2(0)) 287 — e [ (Tea(s) (o))

Vi < (KTKz(t), 2(t) — 26V1 — /w’w;(KTKx(t —r(t), 2t — (1)) )

t
Ve = r(KTK(t), 2(t)) — 26V5 — e 2 / (KTKx(s), 2(s))ds.
t—r
From (7) and (8) we readily obtain
V(@) + 26V (x:) < (Fy(1), y(t)) + 2(Cw(t), y(1)), (9)
where 2 = A+ B+28P 4+ Q + hR+HD 'H" and
A=AyP+PA], H=[AP VhAP VI+rYT],
B=BY +YB" + ¥ (u'BB] +rByB;),
D = diag {,ue’%hQ, e 2R, Im} .

Let ' = A+ B+ 28P + Q + hR. Using properties P = Y7 &P, Q = >0 &Q;,
=>" &Riand Y7 & =1, we have

P p—1 p
' H 'y Hi [yi Hi 'y Hi
Bl Bl Xy e{ [T Bl [T )

i=1 j=i+1
D p—1
=) GMa+ Y Z & (M + M),
=1 =1 j=i+1

It follows from (3a) and (3b)

[F H] Z€S1+—Z 3 £,

i=1 j=i+1
<——[ —1 252—222&6]
p =1 j=i+1

Using the fact

po 1) zg B ST S ol

i=1 j=i+1 i=1 j=i+1

_7-;)] < 0 and, thus, by Lemma 2.1

we have [F
*
E=T+HD'HT <O0. (10)
Therefore, under conditions (3a)-(3b), from (9), (10) we have
V() + 28V (x) < 2(Cw(t),y(t)), t>0.
Let w(t) = 0 then V(z;) 4+ 28V (z;) < 0 which yields

Vizy) < V(xg)e’wt, t>0.
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Taking (6) into account we obtain

ot o)l <22l 120

This shows that the closed-loop system of (1) is S-exponentially stable. It remains to
show the H,, disturbance attenuation level, requirement (ii) in Definition 2.1, holds.
Note that

2{Cw(t),
and V' (z;) > 26(Py(t)

V()

y(t) < Vllw®)|® +1/*(CCTy(t),y(t), >0,
y(t)), it follows from (9)

< =28V (2,) + 1/4(CCTy(1), y(1)) + 7 [lw(t)]?
< ((=28P +1/7*CCTy(t), y (1)) + 2*lw(®)|*.
For any T" > 0,

| IO =] de < [ [l -2l + Ve e+ Vo

< / [l2(0) 2+ ((=28P + 1/22CCT) y(t), y()] dt
+ Azl
On the other hand,
l2(0)|I> = (EP + FY)(EP + FY)y(t), y(¢)),
and thus,

/0 )P — Allw(t)|2] dt < / (Ery (1), y(1))dt + Aol| 2,

where 2, = —23P + 1/y*CCT + (EP + FY)T(EP + FY). By the same arguments used
in deriving (10), from (3c)-(3d), it follows

—928P + 1/2CCT (EP+FY)T} .
sz"f‘ 625 M +N1)
|
<Ll [< -03¢-2% 3 ae s
=1 j=i+1

<0.

Applying Lemma 2.1 gives
=, = -26P+1/7*CCT + (EP+ FY)"(EP+FY) <0

T T )\2 )
/0 l2()I*dt < +* {/0 [l (t)|[*dt + 2l }

Let T — oo we finally obtain

which yields

00 2
TR,
colloP+ 7 D]

for all w € Ly([0,00),R*), w # 0, where ¢y = ?. This shows that the H., disturbance
attenuation level holds. The proof is completed. O

sup
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Remark 3.1. It can be seen in the proof of Theorem 3.1 that conditions (3a)-(3d) need
not to be strict LMIs. Moreover, matrices S1, Sy can be relaxed by taking S; = Sy = 0 to
get a simpler form for (3a)-(3d).

Remark 3.2. The H,, performance index can be optimized by the following convex opti-
mization procedure

min +? subject to (3a)-(3d)
and the corresponding parameter-dependent H, controller gain (4) can be computed.

Remark 3.3. As discussed in [33], an important feature of Theorem 3.1 is that no matriz
variable needs to be fized for different vertices of the polytope €2, which can lead to less
conservative conditions for the Hy, stabilization of the system. Furthermore, the proposed
conditions in Theorem 3.1 also quarantee an exponential convergence of the closed-loop
system of (1) with explicit convergent rate which can be prescribed in practical applications.

Remark 3.4. In [35, 36], some delay-dependent conditions for Hy, stabilization of poly-
topic systems with time-varying delays in the state were derived in terms of LMIs with
a hard constraint that E] F; = 0 and F,'F; = I for any i € p. Furthermore, the trans-
formation proposed in [40] cannot be used for polytopic systems to achieve this condition.
Different from the aforementioned works, in this paper we derive LMIs conditions for the
H, control problem of polytopic systems with time-varying distributed delays in state and
input without using this technical constraint which makes our conditions less conservative.

Remark 3.5. It is worth mentioning that Theorem 3.1 in this paper encompasses Theorem
3 in [34] as a special case without imposing any condition. More precisely, for the (-
exponential stabilization of linear polytopic systems considered in [34], if we let Ag; = 0,
Bii = By; = 0,4 € p, and by fizing Y; = —%Bgi,i € p, then Theorem 3.1 recovers Theorem
3 in [34].

To further demonstrate the efficiency of this paper, let us consider some special cases
of (1). The first one is a class of linear polytopic systems with continuous discrete and
distributed delays

a(t) = Ag(§)x(t) + Ar(§)z(t — h(t)) + Az({f)/t o z(s)ds. (11)

The following corollary gives a criterion for S-exponential stability of (11).

Corollary 3.1. For given > 0, system (11) is [-exponentially stable if there exist
symmetric positive definite matrices P;, Q;, R; € R*™™, 1 € p, and semi-positive definite
matrices S1, Sy € R™*™ satisfy the following LMIs

M;i+8,<0, iep, (12a)
—
Mij+Mji— —8: <0, 1<i<jsp, (12b)
_ Ty PjAy; VhPiAy |
where Mz'j = A-II—ZP] —M€726th 0 , Fi]‘ = AS—ZP] + PjAgi + 2BP] + Qj + hR]
ALP; 0 —e TR,

Moreover, every solutzon z(t, o) of (11) satzsﬁes

||fvt¢>||<\/ ||¢>|| 1>,

where 5\1 — )\min(P)y 5\2 - )\max - max Q) + 2/Bh—ijf@wh1)\max(R)-
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Remark 3.6. A special class of (11), where Ay, = 0, i € p, was considered in the
existing works, for example, [33, 34]. It is worth pointing out that: (i) Corollary 3.1
covers Theorem 1 in [34] as a special case; and (ii) exponential stability condition given
in Corollary 3.1 is derived directly from the LKF without using any free-weighting matriz
as proposed in [33]. Although free-weighting matriz approach can lead to less conservative
stability conditions, it increases significantly the computational cost.

The second special class, when p = 1, (1) reduces to linear system with mixed time-
varying delays of the form

( t

#(t) = Aoz (t) + Avz(t — h(t)) + Ay / w(s)ds + Cu(t)

t—r(t)
+ Bou(t) + Biu(t — h(t)) + By u(s)ds, t>0, (13)
2(t) = Ex(t) + Fu(t),
\x(t) ¢(t)a te [_Ea O]a

where Ay, By, k =0,1,2, and C, E, F are known constant matrices.
The obtained result in Theorem 3.1 leads to conditions for the H,, stabilization of
system (13) as presented in the following corollary.

Corollary 3.2. For given f > 0, v > 0, system (13) is Ho, stabilizable if there exist

symmetric positive definite matrices P, ), R and a matriz Y satisfying the following
LMIs

AP VhAP T+7rYT
. 9Bh
* je Q 0 0
* * —e 20T R 0 =0, (142)
* * * -1,
. 2T T TT
26P +*1/'y cc' PFE j—[Y F <o, (14D)

q

where Il = AgP + PAJ + BoY + YT B] +e*" (1 'B1Bf +rB,B; ) +28P + Q + hR.
The H. stabilizing controller is given by

u(t) =Y P 'z(t), t>0.

Likewise, the H,, disturbance attenuation bound v can be optimized by the following
convex optimization procedure
min v* subject to (14a) and (14b).

Then, the corresponding H,, controller gain is defined by K = Y P~1.

4. Application Examples. In this section, we present some examples to demonstrate
the effectiveness of the results obtained in this paper. The first example is to verify
our conditions for general systems in the form of (1). The next few examples are some
applications of our results to practical systems. A comparative example is also provided.

Example 4.1. Consider a three vertices polytopic system (1), where,

—10 4 -9 1 —10 5 -1 0
A01:|: 1 _6:|;A02:|:2 _10:|7A03:|: 3 _11:|7A11:|:1 1:|7
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10 -1 0 -10 Lo Lo

2 6 12 1 0 0
BOI = _6:| ;BU2 = |:8:| ’BOS - |:2:| ’Bll - |:0:| ,BIZ - |:1:| ,BIS B |:1:| ’

1 0 1 0.1 0 0 0.1 0 0
P I R ot KO R A

11 0 1 10 1 1 0
El — |:1 1:| 7E2_ |:1 2:| 7E3 - |:0 0:| 7F1 — |:1:| 7F2 — |:2:| 7F3 - |:1:| )
and h(t) = sin?(0.5t), r(t) = cos?(0.5t), t > 0.
It should be noted that the matching conditions, E] F; =0, FJ F; =1,i=1,2,3, are not
satisfied. Therefore, the Hy, stabilization conditions proposed in [35, 36] are not applicable
to this system. In this case, we have h=r =1 and 6 =0.5. We take p =1, v =1, using

Matlab LMI toolboz, from (3a)-(3d) we obtain the following gain matrices for the feedback
controller (some other matrices are omitted here)

p _ [ 30516 —0.8463 p _ [ 53385 —1.6351
17 1-0.8463 2.8189 |’ "2~ |—1.6351 7.4512 |’

P - 1.6639 —0.7443
371 =0.7443  4.5751

Y, = [-0.8114 —5.6834], Y3 =[-0.4284 —1.6267].

] , Yp=[-1.4295 —3.1380],

Therefore, by Theorem 3.1, the system is H., stabilizable. To obtain the gain matriz,
K (&), we compute

3 3
_ p _ |P11 P12 - N
P_;ézljz— |:* p22:|7 Y_;ézx_[yl y2]7

where
P11 = 3.0516&; + 5.3385&5 + 1.6639&3,
P12 = —0.8463& — 1.6351&, — 0.7443&3,
y1 = —1.4295&; — 0.8114&5 — 0.4284&3,
Yo = —3.1380&; — 5.6834&5 — 1.6267&3,
and, thus

det(P) = 7.8859¢F + 37.1048£2 + 7.058563 + 35.01926,&5 + 17.3919€, &5 + 34.38826,&5.

The stabilizing feedback controller is given by

t L t
U( ) = det(P) [p22yl P12Y2  P11Y2 p12?J1] ﬁ( )
In addition, it can be found that the minimum guaranteed closed-loop H., performance
index Ymin ¢S 0.04561.

For p=0.5, v =1, the upper bounds hmax and rmax of h(t) and r(t) for different values
of 0 are given in Table 1 and Table 2, respectively.

In the next example, we consider a mechanical model to illustrate the applicability of
the theoretical results developed in this paper.



116 L. V. HIEN, T. D. TRAN AND H. M. TRINH

TABLE 1. Upper bounds of A(t) with 8 =0.5, vy =1,r=0.5

d 0 0.1 0.3 0.5 0.7 0.9
Pmax | 2.3768 | 2.3479 | 2.2712 | 2.1492 | 1.9110 | 0.9882

TABLE 2. Upper bounds of r(¢t) with 8 =0.5,y =1, h=0.5

5 0 0.1 0.3 0.5 0.7 0.9
s | 2.1395 | 2.1329 | 2.1081 | 2.0167 | 1.7890 | 0.9128

Example 4.2. Consider an inverted pendulum in Figure 1. The cart motor is travelling
on a plane under the force F' induced by a control. M and m denote the cart mass and
the blob mass, respectively; x s the distance traveled by the cart; 0 is the angle of the blob
from the vertical and ( is length of the massless rigid connector of the pendulum. The
equations of motion (EqM) are as follows

{mﬁ@ —mgsin® +micosf =0 (15)

(M 4 m)i + méf cos§ — mlf?sinf = F.

u(t)

Control

- - Delay -

FI1cure 1. Inverted pendulum control

A commonly used approach in analyzing behavior of practical systems is the linear
approzimation, see, for example, [15, 18]. An approzimation of (15), in regard to uncer-
tainties, can be described by the following system

{Eé—g(1+p)9+:’c‘:0

. 16
(M + m)Z + mld — mlw = F, (16)

where w = 0%sinf denotes the disturbance input and p is a scalar parameter involving
errors. We choose the set of variables v = [x) 79 T3 74]"7 = [z & 0 0] then (16) can be
written as

i(t) = Ayx(t) + BF(t) + Cw(t), (17)
where
0 1 0 0 0 0
00 —Z1+p) O L | ome
4 =10 0 0 | B=1 0| =10
0 0 @Ema 4 p) o — —m

Couple with (17) we consider the output z(t) = E,x(t), where E,= [1+p 0 14p 0].
For illustrative purpose, we consider the following two cases of delayed signal force
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(I) F(t) =0.7(1 + p)u(t) + 0.3(1 + p)u (t — h) and
(IT) F(t) = 0.7(1 + p)u(t) + 0.3(1 + p) [ u(s)ds.

Let |p| < p. We present (17) in the form of two-vertices polytopic system which was
shown to be better than a norm-bounded representation [30, 32] as follows

{:’U(t) = Ao(&)z(t) + Bo(©)ult) + Bi(&u(t — h) + Ba(€) [;, u(s)ds + C(&)w(t), 18)
2(t) = E(§)x(t),

where
0 1 0 0 0 1 0 0
4 00 —f1-p) o 00 —HH1+p) 0
=10 0 0 1> 22~ 10 ¢ 0 1
0 0 Yman 7 o 0 0 Yma 4z 0
By =[0 Y2 o 2o g _[p 00 o _onmT

Ci=C,=C, Et=[1—-p 0 1=p 0], Ex=[l+p 0 1+7p 0],

and BH = 3/7B01, 812 = 3/7B02, Bgl = 822 =0 fO?” case (I), BH = 812 = 0, 821 =
3/7B01, 822 = 3/7B02 fO’f' case (II)
In the simulation, some parameters are listed in Table 3.

TABLE 3. Parameters in the simulation

g 4 m | M | p|B
98m/s?[05m|0.1kg|2kg|0.1]0.1

Note that Ag(§) = & Ao + Ao = Ay, where p= (§&—&1)p, §1,6 >0, & +& =1. By
direct computation, det(Ay — A,) = A2 [)\2 M(1 + p) Forp<1, then14+p>0
for all |p| < p. Therefore,

MA,) = {0, 0, —\/%(lﬁLp), \/%(Hp)}.

This shows that the open system of (18) is unstable. It is worth noting that, for both
two cases (1) and (IT), apply the proposed controller design in this paper, it is found that
system (18) is Hy, stabilizable with exponential convergence.

Case (I): For h = 1, it can be found that the minimum guaranteed closed-loop Hy,
performance index Ymin s 0.3781. Solving (3a)-(3d) gives

[ 0.4171 —0.1769 —0.2718 0.3898 ]
pr_ |~0-1769  0.1546  0.1828  —0.3301
L= |—0.2718 0.1828  0.3733 —0.5340|"

0.3898 —0.3301 —0.5340 0.8690

[ 0.2461 —0.1619 —0.2334  0.3677 |
pi_ 01619 01661  0.1696 —0.3423
27 [-0.2334 0.1696 0.3434 —0.5093] °

0.3677 —0.3423 —0.5093 0.8841

v/ = [—0.1702 —0.1645 0.3263 0.1479] Y] = [—0.0564 —0.2743 0.1515 0.4336] .

The H., stabilizing controller with disturbance attenuation Vmin = 0.3781 is given by

u(t) = K1(€)x(t), where
K'(&) = (&Y + &) (6P] +§2P2])_1, 20,620, +86&=1.
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Case (I1): For r = 1, it is found that the minimum guaranteed closed-loop Ho, perfor-
mance iNdex Ymin 5 0.6368. In this case we have

[ 0.3361 —0.1083 —0.1664 0.2356 |
prr_ |—0.1083 00739 0.1057 —0.1730
L 7 | —0.1664 0.1057 0.2437 —0.3422|°

0.2356 —0.1730 —0.3422 0.5168

[ 0.1089 —0.1005 —0.1542 0.2389 |
pir _ |—0.1005 00834 0.1097  —0.1940
2 7 | —0.1542 0.1097  0.2461 —0.3614]|"

0.2389 —0.1940 —0.3614 0.5748

V' = [-0.1220 —0.0548 0.2517 —0.0449],
V)" =[-0.0583 —0.1097 0.1508 0.1068] .

The H,, stabilizing controller with disturbance attenuation vymiy, = 0.6368 s given by
u(t) = K"(&)x(t), where

K¢ = (V" + &Y (6P +§2P2H)_1, §&120,6 >0, +& =1

In the following example, we are interested in applying our theoretical results to a crane
model as considered in [15].

Example 4.3. Consider a hanging crane structure as in Figure 2. The cart motor and
the hoist motor are powerful to drive the cart to the destination and keep the payload angle
steady. M and m denote the cart mass and the payload mass, respectively; x is the distance
traveled by the cart; 0 is the angle of the payload from the vertical;, F' is a force to pull the
cart; the massless rigid connector has length . The right is the positive direction of the
force and the displacement. We choose the set of variables x =[xy xo x3 74]" = [z 0 & 0]T.

FIGURE 2. Crane structure

The state equations of the crane system are as follows, see [15] for details

(1) = Aa() + Bult) + Cu(?), (19)
where
0 0 1 0 0 0
0 0 0 1 0 0
A= |p —ﬁgf] —% of, B= Ra(AZI:‘t2+J) = 0.05
0 (M+m)yr2+7)g g, 0 Ra(]\;féJrJ)l 0.1

(Mr2+J)¢ Ro(Mr2+4J)¢
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The following parameters are borrowed from [15]: Motor load J = 0.0001kgm?, back-
EMF coefficient K, = 0.4758Vs, armature resistance R, = 13.5€), moment coefficient
K, = 0.0491kgm/A, radius of the transport wheel r = 0.0227m, m = 0.3kg, M = 0.4kg
and ¢ = 0.205m. Then we have

0 0 1 0 0
0 0 0 1 0
A= 0 —4.9575 —=5.6330 0]’ B= 0.2695
0 —T71.9877 —-27.4781 O 1.3144
. 1000
The output variables are x and 0, and thus, z(t) = Fx(t), where E = 01 0 ol

In [15], using the network-based output feedback approach, an observer-based controller
was designed to ensure that system (19) under stochastic disturbance is robustly asymp-
totically stable in the mean square with an H., disturbance attenuation level . It was
found that the minimum guaranteed H,, performance index is v* = 0.4510.

We let $ = 0.1 (the exponential convergence rate of the closed-loop system), and apply
the proposed controller design in Corollary 3.2. System (19) is Hy, stablizable with a
minimum guaranteed Ho, performance index ymin = 0.2644. For v = Ymin, by Corollary
3.2, we obtain

0.0904  0.0524 —0.3205 —0.4318
0.0524  0.1750 —0.2196 —0.3472
—0.3205 —-0.2196 1.3630  2.5935 |’
—0.4318 —0.3472 2.5935 14.3937

Y = [-0.0074 —0.0076 —0.2362 —1.2253],
and thus, the gain matrix controller is given by
K=YP'!= [—0.0074 —0.0076 —0.2362 —1.2253] .

pP=

The last example is to compare H,, stabilization conditions proposed in this paper to
those reported in [36].

Example 4.4. Consider the following three vertices polytopic system with state delay

{ﬂﬂZAdQﬂﬂ+&@M@—h®%+m0Mﬂ+C@W@%

2(t) = E(§)=(t) + F(§)u(t), (20)

where

We take B = 0.5, v = 1. Table 4 shows a comparison of the upper bound hmax in terms
of the feasibility obtained by the method proposed in [36] and by our method.

It can be seen that the upper bounds hmay of h(t) obtained in this paper are larger than
those in [36]. This shows that our conditions are less conservative than those in [36).
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TABLE 4. Upper bounds of A(t) with 8 =0.5, y =1

d 0 0.1 0.3 0.5 0.7 0.9 0.95 0.99
Our method | 2.3095 | 2.2415 | 2.0818 | 1.8740 | 1.5718 | 0.9783 | 0.6554 | 0.0384
[36] 1.5971 | 1.4918 | 1.2405 | 0.9040 | 0.3932 - - -

5. Conclusion. In this paper, the problem of H., control for a class of linear systems
with polytopic uncertainties and time-varying discrete and distributed delays in state
and input has been studied. By using an improved parameter-dependent Lyapunov-
Krasovskii functional, new delay-dependent conditions have been derived for designing a
state feedback controller guaranteeing the robust exponential stabilization of the system
with an H,, performance. Some practical and comparative examples have been presented
to show the effectiveness and applicability of the theoretical results obtained in this paper.
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