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ABSTRACT. After a disaster, a stock availability between relief inventory units is varying
significantly and some of them may lack of important items. Balancing the level of re-
lief inventory is challenging since the balancing operation may lead to further imbalanced
condition. We propose a spatial strategy to even out the inventory level through transship-
ment, and control the transshipment operations in the environment of low credible relief ’s
information. This information includes: number of evacuees, demand rate, logistic lead-
time, etc. Here, we compared three strateqy schemes: without lateral transshipment, with
fully lateral transshipment, and partial transshipment. The first two strategies are rep-
resenting selfish and altruistic behaviors, respectively. The later represents a moderate
behavior between selfish and altruistic. In our model, each unit of inventory interacts and
controls its action based on those strategies. To demonstrate applicability of our model,
we used data of one volcanic eruption occurring in North Sumatra Indonesia on No-
vember 2013. The result revealed that the best performance, measured by total inventory
cost and inventory’s health, was achieved by the partial transshipment with an updating
method called dynamic support. With this strategy, the average inventory level increased
about 50% and the frequency of transshipment operations reduced to 20%. These results,
however, can be achieved only on low onset type of disaster events and sufficient number
of logistic transporters is available. Based on the case study, we recommend a new way
of relief inventory operations, thus the government and disaster relief organizations can
get benefit from it.

Keywords: Relief inventory, Disaster response, Lateral transshipment, Volcanic erup-
tion, Spatial game theory

1. Introduction. Disaster relief is a mandatory operation after disaster that involves
several stake holders including: government, NGO, and donors. This operation is needed
since the disaster evacuees lose their ability to sustain their life in some period of time. The
goal of this operation is to save the life of disaster evacuees through some relief activities
such as evacuation, health care delivery, and inventory as well as logistic. The purpose
of relief logistic and inventory is to serve the evacuees with sufficient life support items,
e.g., food, water, medicine, tent. Acknowledging their importance, the relief operation
must be provided within the first hours after the disaster to increase the survival rate of
the disaster evacuees [1]. However, this is not an easy task since the size, magnitude, and
frequency of natural disaster are unpredictable. As a matter of fact, the occurrence of
natural disaster shows an increasing trend recently [2].
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Logistic and inventory are one of the major concerns in disaster relief operations. The
role of logistics is to deliver the life support items to the disaster victims even in remote
disaster areas and under difficult circumstances. Inventory plays an important role in
managing all the relief items and delivering those items to the victims in timely manner.
Logistic and inventory have to work collaboratively to achieve the best performance. The
formal role of logistic and inventory system for disaster relief is mentioned by Long and
Wood [3] with a description of the working environment.

The central problem of relief inventory is that the difference of stock level between
inventory units (located at the shelters) is large. Some of them have high amount of
inventory while the others do not. This is due to inaccurate information of actual demand,
number of evacuees, and logistic lead-time. Even some items are prepared before disaster,
the amount is not enough to even up the inventory level between units. This preparative
inventory is famous as pre-positioning inventory [4]. The aim is to decrease disaster
potential devastating effects [5].

To date, few researchers have addressed the problem of transshipment (redistribution)
in disaster relief. Most of the transshipment research in disaster relief assumes that the
information of demand is known with probabilistic nature, which is not applicable in
certain cases. Reyes et al. [6] used system dynamic to model transshipment activities in
relief inventory under probabilistic demand. Indeed, the best way to even up inventory
level is through transshipment. This activity allows a stock delivery within same level
and adjacent inventory units. The goals are to minimize number of inventory with a low
level of stock and help even out the level between them. These goals can only be achieved
if the number of vehicle for logistic operations is sufficient, and the shelters and central
warehouse are not destroyed by the disaster [7]. Paterson et al. [8] made a classification
of the transshipment research, highlighted the strength and weaknesses, and showed the
gaps. To make coherent understanding of transshipment in relief inventory, Figure 1
illustrates a transshipment system that consists of a single central warehouse (WH) and
four inventory units (SP).

Mulyono and Ishida [9] proposed a method based on probabilistic cellular automata
to model transshipment system with the purpose of finding a parameter’s threshold of
successful transshipment. This model was inspired by the cooperative work of immune
cells in immunity based system theory [10]. However, this model does not involve a control
aspect of transshipment operations. In this model, each unit had a mandatory task of
supporting its neighbors without considering own and neighbor conditions.

Controlling a system is critical toward its performance. Without firm control of delivery
operations in transshipment, stock items may deliver to the units that do not actually
need support. Moreover, the helper unit may fall into trouble (low inventory level) af-
ter transshipment operations. Those conditions lead to adverse effect of transshipment
system.

This paper aims to extend the work of Mulyono and Ishida [9] with an intention to
control the transshipment process using spatial strategy and use more comprehensive
performance measures namely number of healthy inventories and inventory related cost.
Mulyono and Ishida [9] model assumes information about status of inventory is unavailable
and transshipment operation is controlled with uniform strategy. However, in present
model neighbor’s information is required and transshipment operation is controlled with
spatial strategy. In spatial strategy, each inventory unit has a freedom to support or not
support based on own information and neighbor information. In other words, the unit of
inventory has more control of their own actions. However, concerns have arisen an issue
about how to get the information of the neighbors condition. Here, we combined the
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information from a logistic transporter, which has certain level of cooperation, and the
past history of the inventory unit’s actions.

Our model used a well-known spatial version of game theory to model an interaction
of inventory units in each shelter. We propose three transshipment’s strategies based on
spatial strategy [11]: without transshipment, with fully transshipment, and with partial
transshipment. The first two strategies do not have an updating method, while the
later has three types of updating strategies namely maximum payoff, static support, and
dynamic support.

Our model is appropriate to be used in low onset type of disaster since evacuation shelter
and central warehouse are not totally struck in that disaster’s type. Moreover, sufficient
number of logistic vehicle was mandatory to support transshipment operations [7]. To
clarify the applicability of our model, we developed the transshipment of ‘ready to use
food’ item for volcanic eruption evacuees. We used a volcanic eruption case of Sinabung
Mountain, North Sumatra Indonesia, in 2013. We addressed the following questions in
detail: (i) how do the strategies improve the performance of relief inventory? (ii) what is
the best strategy and under which circumstance that strategy works well?

Our paper is organized as follows. Section 2 introduces the recent literatures about relief
inventory model and spatial game theory. Next, we present the transshipment strategies
and their work flow. Section 4 explains the case study in detail. In Section 5, a model
implementation using case study is discussed to find out the best strategy. Section 6 con-
cludes by highlighting the findings, future directions and operational recommendations.

2. Related Work. Since natural disaster showed an increasing trend recently, there has
been much interest in improving the relief operations [12]. The effectiveness of the relief
operations relied on the speed and quantity with which life support items can be procured,
transported and managed at the disaster location [13]. Indeed, the relief logistics and
inventory contributed most to a disaster relief operation, estimated to account for at least
80% of the operating expenses [14].

A few decades ago, the classical inventory model had been developed and had been
using widely now. On the other hand, the disaster-relief inventory model was still young
and under development. There are slight differences between those two models. The
differences are on the environment and characteristics of disaster-relief inventories in the
areas of acquisition through storage and distribution [15]. Nevertheless, the fundamental
principle of the classical inventory model can be used to build the relief inventory model.

Due to rapid development of information technologies, information systems for disas-
ter relief have improved greatly, leading to better coordination among each organization
involved [8]. Better communication, coordination, evacuation procedures, inventory and
logistics systems, and rescue equipment have all helped in reducing the impact of disasters.
However, accurate information about the number of evacuees, supplies, and demands was
difficult to acquire after disaster. Even the accurate information was scarce; there was a
method to help the disaster evacuees by sharing an inventory items [8].

Sharing items between inventory units in each evacuation shelters is one alternative way
to reduce the shortage of necessary items and improve the effectiveness of disaster-relief
inventory. In classical inventory theory, this practice was called transshipment. Formally,
transshipment in an inventory system means the movement of stock between unit sat the
same level [16]. In disaster response, periodic stock movement was better rather than
volume based ones [7]. The recent research regarding transshipment had been classified
according to system characteristic, ordering method, and delivery characteristic [7].

Information is the key success factor in relief inventory and logistic operations. How-
ever, previous work assumed availability of information regarding inventory and logistic
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parameters that was actually difficult to meet in a disaster environment. For instance,
Reyes et al. [6] developed a plausible work of transshipment model using system dynamic
approach. To the best of our knowledge, few researchers have addressed the issue of
unavailability of information. Moreover, we need a robust modeling tool as a basis of
developing relief inventory model under unavailability of accurate information.

Game theory has been used widely in many fields of application. Here, the action of
sharing can be represented as cooperation in a cooperative game, where each player de-
cides the quantity and the moment of sharing. In the field of computer science, similar
action of sharing was extensively studied. The self-repair network (SRN) model pro-
posed a methodology of cleaning up network by mutual copying [17]. The development of
this model was inspired by the immunity-based system, which was characterized as self-
maintaining and adaptive [10]. In this model, sharing actions has side effects of spreading
contamination. In relief inventory, transshipment also had a side effect of reducing the
service level of the sender and elevates the resources consumption [9]. The game theoret-
ical approach is appropriate to use for controlling these side effects. Each agent in game
selects a strategy that optimizes its performance.

3. Model Development. The design of our transshipment model is based on spatial
version of Prisoner’s Dilemma in game theory. A dilemma occurs when the inventory
units have to decide whether to support or not support their neighbors. If they decide
to support by sharing their stocks, they reduce own stock availability. Oppositely, if they
do not support, they reduce a survival chance of others inventory units that lack of stock
at that time.

Transshipment system in relief inventory consists of three entities: inventory units, cen-
tral warehouse, and logistic transporters (Figure 1). The inventory units located at each
shelter are players of this spatial strategy. They try to maximize benefits by changing
their strategy, dynamically. The second entity, central warehouse, plays an important
role as a main supplier of all items delivered to each inventory unit. However, central
warehouse is not considered as a player in our model. The central warehouse receives
all items from donors, pools the items and distributes them to each inventory unit peri-
odically. The last entity, logistic transporter, has a main task in delivery activities. In

e
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FIGURE 1. A simple illustration of transshipment system. Central ware-
house supplies four inventory units (SP1 to SP4) regularly. Each of them
tries to help their neighbors.
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addition, they also play a critical role to convey information about the inventory level and
cooperative actions of the visited inventory units. Of course, some of logistic transporters
are cooperative in conveying the information and the others are not. Therefore, we attach
a cooperative parameter to each transporter representing its level of cooperation.

In transshipment system, the way of managing inventory specifies the behavior of the
transshipment’s entities. From the viewpoint of classical inventory theory [18], periodic
delivery is the easiest option for relief inventory, since a delivery frequency (from the
central warehouse to inventory unit) is previously determined and constant throughout
the disaster response period. The amount of delivery for each inventory unit (see Equation
(1)) depends on its demand rate (d), delivery period (RP), delivery lead-time (LT), and
safety stock (S9S5). Referring to Equation (1), the amount of each delivery is directly
affected by dynamic change of demand rate. Since the exact value of demand rate is
almost impossible to obtain in disaster response, we used the expected demand of each
inventory unit that is equal to the maximum capacity of the shelter multiply with a
consumption rate of each evacuee in the shelter.

The amount of delivery is influenced by capability of central warehouse that is changing
over a disaster response period. This is due to the facts that the items owned by central
warehouse are coming from government and NGOs donation. At the beginning of the
disaster response period, those items are still limited in number and thus central warehouse
could not fulfill all the demand. Here, the capability of central warehouse to fulfill the
demand, called sourcing capacity (SC), increases exponentially following a logistic growth
function [19]. According to that function, the sourcing capacity in time ¢ depends on its
previous value in ¢ — 1, rate of increase (IR) and maximum capacity (MC). The sourcing
capacity of the central warehouse is denoted in Equation (2).

To measure the performance of transshipment system in relief inventory, we employed
two performance measures: number of healthy inventory and inventory related costs.
The inventory unit is said to be healthy if its level is above healthy threshold. Aside
from the healthy parameter, the inventory unit has to consume considerably low cost
for the better performance. Normally, there are four types of inventory related costs
such as procurement, transportation, holding, and “stock out” cost [18]. Procurement
cost, or buying cost, is triggered on the items purchasing activities (see Equation (3)).
Furthermore, the transportation and the holding cost areca used by activities: items
deliveries (from the central warehouse to inventory units and between units), and items
storages, respectively (see Equations (4) and (5)). Lastly, “stock out” cost is raised when
the items are depleted (see Equation (6)). In disaster response phase, the “stock out”
condition is associated with suffer that the disaster evacuees have to be accepted due
to depletion of the necessity items. The imbalance level of inventory between units of
inventory also contributes to high “stock out” cost. In some inventory theories, the cost
of acquiring information is taken into consideration, but in our model we assume this cost
is free.

TargetDelivery = d,(RP + LT) + SS (1)
B SCis
SCt = SCt_1+IR*SCt_1 <]_ MC > (2)

ProcurementCost = SetupCost + NumberO f BoughtItems x Price Eachltem
TransportationCost = NumberO fTrip x CostEachTrip
HoldingCost = NumberO fStoredltems x HoldingRate
StockOutCost = NumberO f StockOutOccurence x StockOutCost EachOccurence
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In our research, the transshipment strategy taken by each inventory unit is based on
spatial strategy. Each inventory unit decides whether to become supportive (C) and not
supportive (D) based on its neighbors’ supportive actions. The information of neighbors’
supportive action is coming from the logistic transporters and the past action of each
inventory unit.

Our proposed model of the transshipment system in relief inventory works as follows:

1. Everyday each unit of inventory distributes their stocks to disaster evacuees. Based
on current levels of inventory in each unit, we calculate holding cost and “stock out”
cost.

2. Each delivery period (RP), central warehouse calculates their sourcing capacity (SC)
and decides the amount of delivery (7D). If the amount of delivery exceeds sourcing
capacity, the amount of delivery is made equal with the sourcing capacity. At this
step, we calculate procurement and transportation cost.

3. After receiving the items from central warehouse, each unit of inventory determines
the amount to share with its neighbors based on its strategy. It may happen that
sharing is not possible for some inventory unit due to their current inventory level.
At this step, we calculate the performance of each strategy (without transshipment,
with full transshipment, and partial transshipment).

4. The central warehouse may revise the amount of delivery for the next period based
on the information through the logistic transporter (see Equations (7) and (8)). The
information received is the demand condition of each inventory unit whether it is
increasing, decreasing or same with the previous period. The content of information
is highly affected by the cooperative action of each transporter. Here, we need to
evaluate whether the transporter is cooperative (I'r = 1) or not (I'r = 0). The
value of cooperation parameter below 0.5 means not cooperative, and vice versa
(see Equation (7)). Knowing this situation, we make adjustments to the amount of
delivery (TD) for the next period with some percentage (Adj). This adjustment is
based on the reported demand condition (d;) by the logistic transporter (see Equation

(8))-
0|R < 0.5
Tr:{ 1IR§0.5 (7)

TD, =4 (dy(RP + L)+ SS) (1 + Adj + Tr)|d;, > dy_, (8)
(dt(RP + L) + SS)|dt = dt—l

In our research, we limit the number of neighbors into four (Von Neumann neighbor-
hood) as shown in Figure 2. To represent a strategy, a bit sequence of 5 elements is used
whose [-th element is C/D if the action C/D is taken when the number of D of the neigh-
borsis! (I =0,1,...,4). The kD strategy [20] means the inventory units should take D if
the [ > k and C otherwise. For example strategy 3D means that the maximum number
of D in the neighborhood is 3. If we apply the 3D strategy to the neighborhood condition
shown in Figure 2, the inventory located in the center should take C since number of D
is less than equal 3.

We use three types of transshipment strategy: without transshipment, with fully trans-
shipment, and with partial transshipment. The strategy of without transshipment is sim-
ilar to the traditional operation of inventory where transshipment option is eliminated.
Thus, each inventory unit interacts only with the central ware house by receiving neces-
sary items regularly for its own usage. The performance of this strategy becomes basis of
comparison for the other strategies.
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FIGURE 2. The inventory unit’s choice of action (C or D)

The opposite strategy of without transshipment is fully transshipment strategy. Here,
each inventory unit tries to help its neighbors all the time without considering own in-
ventory level and neighbors’ supportive action.

The strategy that lies in between the previous two strategies is called partial trans-
shipment strategy. The term “partial” means that each inventory unit does not have
to support its neighbors all the time nor ignore all the time. The inventory units may
support whenever needed based on several factors such as their current level of inventory,
their neighbors’ action, and tendency of helping (Pr). This strategy consists of three
updating methods: maximum payoff, static support, and dynamic support.

e In mazimum payoff updating, each inventory unit calculates its payoff (reward) after
transshipment. The payoff is determined from the inventory level. In every r period,
each inventory unit is allowed to change its strategy to the one having the highest
payoff among neighbors. For instance, consider the case where four neighbors have
different payoff and the highest one is owned by the neighbor positioned on right side
with strategy 2D. According to this updating, the center inventory unit will change
its strategy into 2D.

e In static support updating, the inventory units are assumed to have a constant ten-
dency of helping (Pr). Low Pr means that inventory unit is easy to shift to defection
(D) in the neighborhood. For instance, if the current strategy is 2D and Pr = 0,
in the next delivery period that the strategy will change into 3D. This means that
number of D in the neighborhood increases by one. Extremely, in case of Pr =0, at
the end of the disaster response period all inventory units’ strategy will become 5D
and all units choose defection (D). Opposite case also is applied when Pr = 1.

e The dynamic support updating has similar workflow to the static support updating
in the usability of tendency of helping (Pr). The main difference is that Pr in
this updating method is changed based on the level of inventory. The higher the
inventory level, the higher also the value of Pr. This means that the higher the level
of inventory, the higher also frequency of helping (C).

The static support and dynamic support updating rely heavily on the self-information
while the mazimum payoff updating method uses the payoff information of the neighbors
to change strategy. From the viewpoint of practical implementation, the static support and
dynamic support updating are more applicable in disaster relief operation since they do
not require complex information of neighbors’ action that might be difficult to acquire.
However, the mazimum payoff updating method is still possible to be used under the
condition that the past action of each inventory unit is well recorded and is strengthen by
the information through logistic transporters. Even several differences have been notified,
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Max. Payoff Static Support Dynamic Support
Define Initial Define Initial Define Initial
Strategy Strategy Strategy

y y
—» Define Action (C/D) Define Action (C/D) |<- | Define Action (C/D) |<-
v v v
Calculate Payoff Define Pr Calculate Inventary
Level
A 4 A 4 A 4

Define Pr based on

Find Max. Payoff Change Strategy Inventory Level
Change Strategy
based on Max. Payoff Change Strategy

FicUure 3. The workflow of each updating

the three updatings shared similarity in their way of deciding action based on strategy
(see Figure 3).

Between all strategies, fully transshipment is the strongest candidate to reach the max-
imum performance with an excess of highest inventory cost. To evaluate the performance
of each strategy in our model, we use a simple case of transshipment system by 9 inven-
tory units. Evaluation is done under two conditions: low variability environment and high
variability environment. In low variability environment, the maximum difference of de-
mand rate between inventory units is 10% while in the high variability environment is up
to 100%. Furthermore, the average standard deviation of demand rate in high variability
environment is 10 times higher than the low variability environment. Three variables were
used to evaluate the performance such as: number of normal unit, frequency of travel,
and total inventory cost.

Comparing both conditions, the performance of fully transshipment strategy leads the
other strategies in number of normal units but consumes the highest inventory cost (Tables
1 and 2). The partial transshipment strategy with dynamic support updating has almost
similar number of normal units, and has significantly low cost and frequency of travel
than the fully transshipment strategy. The number of normal unit fluctuation along 90
days for both strategies is showing a stable trend (Figures 4 and 5).

TABLE 1. Inventory performance under low variability environment. 1:
Without transshipment, 2: with fully transshipment, 3: partial transship-
ment (maximum payoff updating), 4: partial transshipment (static support
updating), 5: partial transshipment (dynamic support updating).

1 2 3 4 5
Number of Normal Unit 1277 1594 1304 1520 1575
Frequency of travel 162 671 360 503 617

Total Cost 3151000 4979000 3518000 4618000 4387000
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TABLE 2. Inventory performance under high variability environment. 1:
Without transshipment, 2: with fully transshipment, 3: partial transship-
ment (maximum payoff updating), 4: partial transshipment (static support
updating), 5: partial transshipment (dynamic support updating).

1 2 3 4 5
Number of Normal Unit 1280 1589 1497 1562 1574
Frequency of travel 162 674 479 514 596
Total Cost 2779000 4933000 4262000 5018000 4173000

TABLE 3. Distribution of evacuees in each shelter [21]

Shelter Name Mean Deviation Shelter Name Mean Deviation

1 Losd Tiga Binanga 2671 160 16  Paroki G. Katolik 226 10
2  Losd Tanjung Pulo 717 2 17  Serba guna KNPI 543 29
3  Losd Kaisar Ds. S. Baru 295 9 18 GBKP Sp. Katepul 231 12
4  GBKP Payung 314 1 19  Losd Katepul 213 11
5  Masjid Payung 111 1 20 Masjid Agung Kabanjahe 676 62
6  Gudang Jeruk 447 29 21 Uka K. Jahe 1 1831 100
7 GPDI D.Siroga Sp.IV 184 5 22 UkaK. Jahe 2 1054 51
8 Klasis GBKP K jahe 350 13 23 Islamik Center 356

9 GBKP Kota Kabanjahe 956 73 24 Oraet Labora B. Tagi 204

10  Zentrum Kabanjahe 421 1 25 KWK B. Tagi 541 27
11 GBKP Asr Kodim K jahe 207 2 26 Klasis GBKP B. Tagi 335 69
12 Kantor Asap Kabanjahe 55 3 27 GBKP Kota B. Tagi 138 20
13 Paroki G. Khatolik K.Jahe 1043 50 28 Masjid Istihrar Berastagi 474 1
14 GBKP JLN. Kota Cane 655 26 29 Losd Ds. Sempajaya 1464 33
15 GBKP Simp.VI 461 26 30 LosdDesa Telaga 339 63

4. Case Study. To clarify the applicability of our model in real situation, we used a
real data of disaster events. This event has to be categorized as a slow onset disaster or
rapid onset disaster with predictable occurrence in order to get the maximum benefits of
our methods. Moreover, sufficient number of logistic transporters is necessary to make
successful of transshipment operations.

Here, we used the data of volcanic eruption on Sinabung Mountain (Indonesia) [21]. In
September 2013, this mountain had erupted causing many thousand inhabitants in radius
10 km left their homes. They lived in an evacuation shelter provided by local government,
NGO, and other stake holders (Table 3). Since the eruption is constantly occurring, the
evacuees have to stay at the shelters for about 5 months.

Relief inventory consists of several life support items, such as food, clothes, water,
medicine, blanket. In case of food, the delivery of a ready to eat therapeutic food items
(RUTF) was widely used, for instance plumpy soy [22]. This relief inventory was served
as long as the duration of disaster response which is usually last up to 90 days [23]. In
some cases, as if Sinabung Mountain eruption, the disaster response’s period exceeding
90 days.

With the data on demand trend, which is extracted from the number of evacuees, and
ideal number of RUTF per person per day, we were able to estimate the initial inventory
level (Table 4). Moreover, the inventory related costs, e.g., procurement, holding, and
stock out, could be estimated from the selling price of the food item (Table 5). Not
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TABLE 4. Initial inventory level

1 53954 11 4192 21 36986
2 14483 12 121 22 21291
3 5959 13 21069 23 7201
4 6343 14 13231 24 4121
5 2242 15 9322 25 10928
6 9029 16 4565 26 6777
7 3707 17 10969 27 2788
8 7070 18 4666 28 9565
9 19321 19 4313 29 29573
10 8514 20 13665 30 6848

TABLE 5. Input parameter for simulation

Time interval 1 day Price/item 6.96
Warehouse capacity increase rate 0.8 Cost/trip 0.1468
Warehouse initial processing capacity/day 3000 Holding cost/item/day 0.0048
Warehouse maximum processing capacity/day |10000 Cost/stockout 27.84
Delivery period (RP) 5 days Normality (healthy) threshold above 0.5
Safety stock 10% of max. level |Proportion shared by normal unit 0.2

Lead time 1 day Proportion shared by abnormal unit 0.1

Setup cost 100 Probability of help (static support strategy) [0.5

to mention, the transportation cost was acquired from the average cost of delivery in
Indonesia.

Beside the inventory related cost, the performance of transshipment system was de-
termined by the health of inventory. Thus, a certain threshold of inventory level has to
establish as a boundary between healthy (normal) inventory level and unhealthy (abnor-
mal) ones. The healthy inventory will certainly have larger proportion of sharing in the
transshipment, rather than unhealthy ones (Table 5).

Several factors govern the health of inventory such as central warehouse processing
capacity, demand rate, and logistic capability. In the beginning of disaster response
period, the number of processing capacity in central warehouse was low due to limited
amount of items, limited number of relief inventory’s operators, and low collaborative
actions between relief operation’s stakeholders. Over time, the processing capacity of
central warehouse increases exponentially following logistic growth function (Equation
(2) and Table 5).

5. Results and Discussion. The most surprising result to emerge from the simulation of
transshipment system was that the fully transshipment strategy and partial transshipment
strategy (dynamic support updating) had a similar level of performance (Table 6 and
Figure 6). This result is coherent with our simple case of transshipment system in Section
3. The total number of healthy (normal) inventories (Table 6) and their ranges of value
(Figure 6) show the best performance. Moreover, the inventory cost of both systems is
almost similar, even though the number of trip is different for about 20% (Table 6, Figures
7 and 8). The number of trips in the partial transshipment system, with dynamic support
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updating, is certainly lower since each unit of inventory transships its items whenever the
inventory level is sufficient.

We expected that the fully transshipment strategy contributed to the best performance
of relief inventory with the consequence of highest inventory cost. In fully transshipment
strategy, each unit has always supported their neighbor by transshipping some of the
items. Contrary to the expectation, partial transshipment (dynamic support updating)
was able to reach that level of performance. This is due to the fact that each unit
of inventory in partial transshipment strategy transships its items whenever in healthy
(normal) level.

The performance of relief inventory without transshipment placed on the bottom line of
all transshipment models (Figure 6). This result is consistent with the work of Mulyono
and Ishida [9] and Reyes et al. [6]. Full or partial transshipment made the performance
of relief inventory better than without transshipment. Static support updating in partial

TABLE 6. Number of normal unit, frequency of travel, and accumulated
cost of relief inventory. 1: Without transshipment, 2: with fully transship-
ment, 3: partial transshipment (maximum payoff), 4: partial transshipment
(static support updating), 5: partial transshipment (dynamic support up-

dating).
1 2 3 4 3
Number of Normal Unit 1661 2569 1727 2160 2440
Frequency of travel 540 2715 1289 1834 2369
Total Cost 9338000 9927000 8910000 9475000 8821000
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FIGURE 6. Performance of relief inventory measured by number of
healthy /normal unit
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transshipment also leads to high performance level even though not as high as the dynamic
support updating. The only exception is the partial transshipment with a maximum payoff
updating. Its performance is considerably low and almost similar to the performance of
relief inventory without transshipment.

This finding is distinguishable from the work of Ishida [17] in self-repair network of
computer system. Maximum payoff is the best way of computer network to control the
repairing activities and clean the contamination inside the network. The repairing process
in self-repair network is by mutual copying of data between computers in the network.
The activity of repairing in self-repair network is similar to the transshipment operations
of relief inventory. However, a substantial difference between them is suspected to be a
rationale of the differences. Transshipment system consumes resources (in term of labors,
goods, logistics) while self-repair network is not. Hence, following the strategy of the
wealthy neighbors (having high payoff) is not appropriate to implement into transship-
ment system.

All of those results were achieved by simulating 30 units of inventories (one unit for each
shelter) for 90 days of disaster response [23]. To suppress the effect of random number, 100
similar trials were employed in our simulation. At the initial condition of the simulation,
all unit of inventory was in healthy condition (Table 4), and had random strategies (1D,
2D, 3D, 4D, or 4D). During the simulation, the condition of each unit might change into
unhealthy/abnormal (value = 0) or remain healthy /normal (value = 1).

The major activities of transshipment system in relief inventory are delivery from the
central warehouse to each unit of inventory, and transshipment delivery from each unit
of inventory to its neighbors. Central warehouse delivers necessity items to the disaster
evacuees on a regular basis. At the same time either, each unit of inventory transships
those items to its neighbors. The decision whether the units will transship their items
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FIGURE 8. Total cost of relief inventory in 10* scales

or not, is different for each model. Mulyono and Ishida [9] used probability of helping
in cellular automata, Reyes et al. [6] used real demand data collected from the disaster
area, and we used spatial strategy. Reyes et al. assumes that information of demand
was available after disaster struck and this information was possible to obtain. This,
however, contradicted with our assumption about the availability of accurate information
after disaster.

Due to the classification of transshipment model by Paterson et al. [8], our model
is categorized as single item, single echelon, many un-identical depots (inventory units),
period order timing with specific policies, proactive transshipment, complete pooling, and
decentralized decision making. One downside of our model is that we are not considering
the possibility of inventory units destroyed or inaccessible by the subsequent arrival of
disaster. For instance, volcano is erupting again after the evacuees gather at the shelters.
This subsequent arrival of disaster may come since we choose the slow onset disaster
type. Reyes et al. [6] included this possibility into their transshipment model using system
dynamics. He loaded tentative disaster data into simulation and drew conclusions from
it.

As expected, our simulation with real disaster data is able to illustrate the behavior
of transshipment system in relief inventory. The results are coherent with the previous
literatures [6,7,9] with some new findings. These findings highlighted the usefulness of
spatial strategy of relief inventory in the environment of inaccurate information. The best
strategy was partial transshipment with the dynamic support updating. Not only high
performance (in a number of healthy units) but also having a lower frequency of trans-
portation (number of trips) compared with the full transshipment strategy. This, in the
end, made logistic activities easier and cheaper. Moreover, this strategy consumes slightly
lower cost, about 10%, compared with the baseline strategy (without transshipment). The
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fact about this best strategy proves that neither the strategy of without transshipment nor
the strategy of fully transshipment contribute to the best performance, but the strategy
in between of them (partial transshipment).

6. Conclusions. We conclude that transshipment has positive impacts on the perfor-
mance of relief inventory in a low onset type of disaster. Even though, the environment of
disaster response had been characterized as having inaccurate inventory’s information or
even unavailable, the transshipment operations contribute to the performance elevation
of relief inventory. We got a solution for increasing performance of transshipment in re-
lief inventory and controlling transshipment’s operation using spatial strategy. Here, the
best strategy is the partial transshipment with dynamic support updating. This strategy
increased the performance of relief inventory by 50% and reduced a logistic frequency by
20% in slow onset disaster condition.

This study enhances our understanding of the transshipment operation in relief inven-
tory and logistic under an environment of inaccurate inventory’s information. We believe
our work could be the basis for future development considering the more dynamic nature
of disaster response. Further studies, which use transshipment in relief inventory and
logistics, should involve robust planning of relief operations in disaster mitigation phase.
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