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ABSTRACT. For the mainstream relational database management systems, histograms
play important roles in cardinality estimate. The main histogram-based cardinality es-
timate approaches can be classified into two categories: the proactive approach and the
reactive approach. For the former, histograms are constructed and updated by periodical
data scans. Data updates can not be incorporated into a histogram in real time, so between
two data scans, large errors of cardinality estimate will occur. For the latter, data scans
are avoided, as an alternative, query feedback records (QFRs) are collected to construct
and update histograms. Although data updates can be incorporated into a histogram by
replacing stale QFRs in real time, the cost of time is very expensive. For each histogram
reconstruction, all buckets in the histogram will be recalculated and the large amount of
computation leads to the inefficiency of the reactive approach. In this paper, we propose
a novel QFR-based cardinality estimate approach which can balance the efficiency issue
and the data update issue: on the one hand, it can improve the efficiency of QFR-based
cardinality estimate to a practical level; on the other hand, it can incorporate data up-
dates into a histogram in real time to fully ensure the accuracy of cardinality estimate.
In our approach, a serial of small second-level histograms covering different parts of the
whole value range of an attribute will be constructed. These second-level histograms can
be updated independently over time to ensure the performance of the approach. As the
update of each second-level histogram, QFRs still play their important roles in incorpo-
rating data updates into the histogram in real time. Eztensive comparison experiments
fully demonstrate the advantages of our approach in performance and accuracy.
Keywords: Cardinality estimate, Proactive approach, Reactive approach, Histogram,
Query feedback record

1. Introduction. Cardinality estimate is an important problem in query optimizations.
The choices of query plans rely heavily on the accuracy of cardinality estimate. For the
mainstream relational database management systems, histograms play important roles in
cardinality estimate. The first approach using histograms to approximate data distribu-
tions within a database system is proposed in Kooi’s PhD thesis [1]. The histogram used
in [1] is called the equi-width histogram as the value range of an attribute over which
a histogram is constructed is partitioned into smaller sub ranges with equal widths. [2]
proposes the equi-depth histogram and its multi-dimensional form is presented in [3]. [4]
proposes the histogram with frequency as the sort parameter, which represents the first
departure from the value-based grouping of buckets. Several years later, it is improved
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with the forms of v-optimal histogram [5], maxdiff histogram, compressed histogram [6]
and entropy-based histogram [7]. All above approaches construct histograms through data
scans, so they can be uniformly called proactive approaches. For this kind of approaches,
data scans must be executed periodically to make histograms consistent with underlying
data, which lead to the following drawbacks:

e Data updates cannot be incorporated into a histogram in real time. Between two
reconstructions of a histogram, data updates may lead to large errors of cardinality
estimate.

e Periodical data scans aggravate the database overhead and affect the performance
of routine queries.

To avoid periodical data scans but incorporate data updates into histograms in real
time, people begin to use query feedback records (QFRs) to construct histograms [8].
QFRs can be gathered with relatively little overhead from query execution engines and
used to refine histograms. Hereafter, the similar approaches are proposed continuously
[9,10]. In this paper, we call this kind of approaches the reactive approach. For this
kind of approaches, data scans can be avoided, and data updates can be incorporated
into histograms by replacing outdated or invalid QFRs. However, some new deficiencies,
especially the efficiency issue, prevent the reactive approach being practical. We can
summarize the deficiencies of the representative reactive approach ISOMER [10] as follows:

e Although data scans are avoided, the whole histogram covering the complete domain
of an attribute will be recalculated in each histogram reconstruction, and the large
amount of computation becomes the most important reason of its inefficiency.

e Some time-consuming operations of ISOMER including replacing stale QFRs, drilling
holes or merging buckets, and executing the iterative scaling algorithm (ISA) [11]
also make the whole approach inefficient.

e Besides the poor performance, the ISA adopted by ISOMER is unstable and vulner-
able.

e The criteria of ISOMER deciding whether a QFR is outdated or invalid are unrea-
sonable. These criteria cannot ensure the accuracy of the retained QFRs and lead
to the errors of histogram recalculation.

The serious deficiencies in the proactive approach and the reactive approach prompt us
to find new notions to improve the accuracy and the performance of the histogram-based
cardinality estimate approach. In [10], the combination of ISOMER with proactive ap-
proach is mentioned. And it is possible to ameliorate the existing approaches by combining
their respective advantages. However, unfortunately, no specific form of the combination
is proposed in [10].

In this paper, we propose a specific combination form of the proactive approach and
the reactive approach for the first time. In our approach, data scan will be executed only
once to construct the initial first-level histogram. And then, within the value range of an
attribute covered by each bucket in the first-level histogram, a second-level histogram will
be constructed based on QFRs. The second-level histograms corresponding to all buckets
of the first-level histogram compose the second-level histogram set which will play main
roles in cardinality estimate. Therefore, we call our approach the Cardinality Estimate
approach based on Two Level Histograms (CETLH).

Example 1.1. Consider a relation orderInfo with attributes order_id, customer_id, prod-
uct_td, order_date and order_quantity. 200 thousand orders with 82 thousand distinct
order quantities are stored in the relation. The minimum and the maximum of the order
quantities are 1 and 99999 respectively. Parts of the data in the relation orderInfo are
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shown in Figure 1. The first-level histogram and the second-level histograms constructed
over the attribute order_quantity are shown in Figure 2.

order_id | customer_id | product_id | order_date | order_quantity
1 cl pl 20120115 100
2 cl p200 20120130 1
3 c2 p4 20120306 15,016
4 c2 p80 20120321 99,999
200,000‘ c2132 ‘ p35 ‘ 20130128 ‘ 23,000

FIGURE 1. Relation orderInfo
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In Example 1.1, the first-level histogram over the attribute order_quantity contains
100 buckets, so there exist also 100 second-level histograms totally. Each second-level
histogram contains 30 buckets. Compared with the proactive approach and the reactive
approach, the main improvements of CETLH can be summarized as:

e For each histogram reconstruction, only the buckets in one second-level histogram
will be recalculated, the computation will be decreased remarkably and the efficiency
of cardinality estimate can be fully ensured;

e The bucket number in each second-level histogram is fixed and no time-consuming
operations such as replacing stale QFRs, drilling holes or merging buckets are needed,
which also improve the efficiency of CETLH;

e A novel mechanism is proposed to locate the ranges of remarkable data updates
accurately and incorporate these updates into histograms in real time.

The rest of the paper is organized as follows. Section 2 gives the notations and pre-
liminary. Section 3 and Section 4 describe the details of the constructions of two level
histograms. The elaborated mechanism dealing with data update problem is analyzed in
Section 5. The results of extensive experiments are demonstrated in Section 6. Section 7
summarizes the paper and discusses future directions.

2. Notations and Preliminary. In this paper, without special explanations, the letters
r, a, p, h and their subscripted forms such as r,, a,, p;, h; are used to denote the common
concepts relation, attribute, predicate and histogram in a relational database. And the
letter b and its subscripted form denote the bucket of a histogram. The letter v and its
variations are usually used to denote values.

The value range of the attribute a is denoted by rg(a) and the number of values in
rg(a) is denoted by |rg(a)|. The value range of an attribute at which a predicate p is
true can be denoted by rg(p). The number of tuples which fall in a bucket b is de-
noted by v(b), and rg(b) denotes the value range of an attribute covered by a bucket
b. Based on rg(b) and v(b), a bucket b can be extended to a triple as necessary, i.e.,
b = (min(rg(b)), max(rg(b)),v(b)). In the paper, min(z) and max(x) are used to denote
the minimum and the maximum of the data set x.

For a histogram h, all of its buckets compose a bucket set which can be denoted by B(h).
The number of buckets in B(h) is denoted by |B(h)|. The value range of an attribute
covered by a histogram h is denoted by rg(h). rg(h) = |J rg(b). For an equi-depth

beB(h)
histogram h, the number of tuples which fall in each bucket b; € B(h) is equal and we
call this number the depth of h and denote it by d(h). For any b € B(h), d(h) = v(b).
For an equi-width histogram A, the value range of an attribute covered by each bucket
b € B(h) is equal and we call this value range the width of h and denote it by w(h). For
any b € B(h), w(h) = max(rg(b)) — min(rg(b)).

In this paper, a histogram may be a first-level histogram, or a second-level histogram,
which can be marked as h/ and h* respectively. A h'/ constructed over the attribute a
can be marked as h!. For a h® constructed at the value range of the attribute a covered
by the bucket b € B(h[), h* can be marked as h5 ,.

For a predicate p, the statistical information obtained from a query execution engine
which records the number of tuples satisfying p is called the Query Feedback Record
(QFR) of the predicate p and can be denoted by ¢fr(p). Hereinafter, a predicate p can
be extended to a two-tuple as necessary, i.e., p = (min(rg(p)), max(rg(p))), and a QFR
qfr(p) can be extended to a triple ¢fr(p) = (min(rg(p)), max(rg(p)),v(¢fr(p))) where
v(qfr(p)) denotes the actual number of tuples satisfying p which is obtained from a query
execution engine.
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If a predicate p and a bucket b € B(h{) satisfy rg(p) C rg(b), the QFR ¢fr(p) is called
an inner QFR of b and can be marked as ¢fr®(p). ¢fr®(p) can be used to calculate the
second-level histogram hg ,. One or more inner QFRs can compose an inner QFR set.
All of the inner QFRs which are being used to calculate a second-level histogram h; ,
compose the currently used inner QFR set of b or h .

It is necessary to emphasize that non-inner QFRs can be transformed into inner QFRs
as follows. Given a predicate p and ¢ adjacent buckets b,,...,bpii—1 € B (h{;) which
satisfy rg(p) ¢ rg(b;) and rg(p) Nrg(b;) # @ for i = m,...,m +t — 1. The predicate

p can be partitioned into ¢ mutually disjoint sub-predicates p,y,, ..., pmit—1 Which satisfy
m+t—1
U rg(p:) =rg(p) and rg(p;) C rg(b;) for j =m,...,m+t— 1. And then, we can get
i=m

m—+t—1
vigfr(p)) = X2 v(qfr¥(p;)). In this formula, only two end values v(qfr’(p,,)) and

v(qfr’+=1(pmys 1)) are unknown, and all medial values can be get as v(qfrb(p;)) = v(b;)
fori =m+1,...,m+1t— 2. Therefore, if the second-level histogram A, is known, we
can calculate v(qfr® (p,,)). And the non-inner QFR ¢fr(p) can be transformed into the
inner QFR ¢ fr’+-1(p,, 14 1) to calculate Wby, and vice versa. Sometimes, both hg
and by, may be unknown. In this case, if we want to calculate by, .., we use v(by,)
and the traditional uniformity assumption to calculate the approximate v(qfr®(p,,)) and
vice versa. Although the approximation will deteriorate the accuracy of the calculation
of second-level histograms, it can improve the utilization of QFRs and the calculation
accuracy of second-level histograms can be ameliorated rapidly with the increase of the
number of the calculated second-level histograms.

3. Construction of First-Level Histogram. In our approach, data scans need to be
executed only once to construct the initial first-level equi-depth histogram. The main
purpose of constructing a first-level histogram is not to estimate the cardinalities of pred-
icates, but to play the following two auxiliary roles.

Firstly, before the construction of second-level histograms, a first-level histogram can
be used to coarsely estimate the cardinality of a predicate. The uniformity assumption is
applied within each bucket of a first-level histogram. Therefore, for a predicate p and a
bucket b satisfying rg(p) N rg(b) # &, the number of tuples fall in the bucket b for which
p is true can be estimated as:

vol(rg(p) Nrg(b))
vol(rg (D))

where vol(R) denotes the usual Euclidean volume of the region R when the data is real-
valued; for discrete data, vol(R) denotes the number of discrete points that lie in R.

Secondly, the buckets of a first-level equi-depth histogram can partition the whole
value range of an attribute into several smaller sub ranges which are used as the borders
of second-level histograms.

m(p) = v(b) * (1)

4. Construction of Second-Level Histograms. The construction of second-level his-
tograms can reduce the value range applying the uniformity assumption and remarkably
improve the application effect of the uniformity assumption. Before describing the details
of the construction of second-level histograms, the core algorithm of the construction,
Minimum-norm Least-squares Algorithm (MLA), will be introduced firstly.
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4.1. Minimum-norm least-squares algorithm. The main function of MLA is to cal-
culate a second-level histogram based on a currently used inner QFR set of it. We conceive
that a second-level histogram h® with k buckets by, ..., b;, and the inner QFR set of h*
with ¢ inner QFRs qfr(p1),...,qfr(p:) can compose the following linear system:

N, (P1) + 1, (p1) + - -+ 1, (01) = v(@fr(p1))
N, (D2) + 1, (P2) + - - + 1, (P2) = v(@fr(p2))

(2)

N, (Dt) + 1, (Pe) + - - -+ 1, (pe) = v(gfr(pe))

Applying Formula (1), Formula (2) can be transformed as a linear system about the
numbers of tuples which fall in the buckets by, ..., b, i.e., v(by),. .., v(b).

MLA [12] is capable of solving underdetermined, determined and overdetermined linear
system. Therefore, we can use MLA to solve the linear system about v(by),. .., v(b;) and
the solution is a second-level histogram consistent with all currently used inner QFRs.
The detail of MLA is omitted and can be found in [12].

4.2. Steps of construction. For a relation r(ay, ..., a,) and a first-level histogram A/ ,
1<i<n,B(h{)={bi,...,bn}. At the value range of a; covered by a bucket b; € B(h{),
1 < 7 < m, the second-level histogram hZi,b]- can be constructed as follows:

(1) Set |B(hg, )|, the number of buckets in B(hg_, ).

(2) Apply the uniformity assumption on first-level histogram and create the initial second-
level histogram hfli’bj. To distinguish with the initial second-level histograms, the
second-level histograms calculated by MLA are called the normal second-level his-
tograms hereinafter.

(3) Allocate an array arr to store the inner QFRs of b;.

(4) Collect inner QFRs from the query execution engine and store them into arr

(5) Set |arr® |y, the minimum number of inner QFRs stored in arr® which can trigger
the call of MLA. Once |arr%| = |arr® |pm, the newly arrived inner QFRs are still
stored into arr’ and MLA will be called to calculate Do,

bj

4.3. Cardinality estimate. For a relation r(ai,...,a,) and a first-level histogram h{ ,
1 <i<n, B(hﬁi) = {by,...,bn}. Given that for a predicate p, there exist ¢ adjacent
buckets by, ..., bori—1 € B(h{ ) which satisfy rg(boi;) Nrg(p) # @ for 1 <o < m, j =
0,...,t—1. For any bucket b; € {b,, ..., boss1—1},if hg, 5, 18 an initial second-level histogram,
ny,; (p) can be calculated using Formula (1). Otherwise, a more accurate result can be
calculated using Formula (3) based on the bucket set B(hg ;) = {bj1,. .., bj}:

k

m, (p) =D v(bjg) * vol(;g@gfg;;()%)) o

q=1

And the cardinality of p can be estimated as:

n(p) = m, (p) (4)

5. Automatically Incorporation of Data Updates. In CETLH, we use the newly
arrived inner QFRs to locate the remarkable data updates. The core of our thought
is trying to find the value ranges of an attribute with remarkable data updates and
reconstruct the buckets located in these value ranges. In the mechanism, the update of a
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first-level histogram is based on the update of the corresponding second-level histograms,
so we will describe the update of second-level histograms firstly.

5.1. Update of second-level histograms. For a relation r(ay,...,a,) and a first-level
histogram hf, 1 <i < n, B(hl) = {b1,...,bn}. At the value range of a; covered by a
bucket b; € B (hafi), 1 < j < m, the second-level histogram hy_, contains k buckets which
compose the bucket set B(h;, , ) = {bj1,...,bjx}. When the data at the value range of
a; covered by the bucket b; change remarkably, the update of hfzi,b]- can be completed as
follows:

(1) Set ng, the number of progressively arrived new inner QFRs of b; which can be used
to update hfli’bj together.

(2) Allocate an array arrzfgw with ng storage spaces to temporarily store the accumulated
new inner QFRs of b;.

(3) Collect ng new inner QFRs of b; from the query execution engine and store them into
arroe.

(4) For each new inner QFR ¢fr% (p,), 1 < w < nq of b; stored in arriiw, find the bucket
set {bjs,, - - - bje, } © B(hg,,,) which satisfy rg(bj,) Nrg(pw) # 9, sw <z < ey

(5) Set an error threshold ##; and calculate ny, (p,) using Formula (3).

(6) If abs(ny, (pw) —v(qfr% (pw))) < thy, all bjy, s, < & < e, will be marked as unchanged.
If abs(ny, (Pw) — v(qfr¥ (py))) > thy, the unmarked b;y, s,, < x < €,, will be marked
as changed. The remarkable data updates can be located inside the value ranges of
a; covered by the b, € B(hg, ) with change state.

(7) Clear arrb.

(8) Reconstruct the currently used inner QFR set of b;.

(9) Call MLA to reconstruct the second-level histogram h;i’bj based on the reconstructed
currently used inner QFR set of b;.

5.2. Update of first-level histogram. For a relation r(ay, ..., a,) and a first-level his-
togram hf , 1 < i <n, B(hl) = {bi,...,by}. At the value range of a; covered by a bucket
b; € B(hl), 1 < j < m, the second-level histogram hg,p, contains k buckets which can
be denoted by B(h; ,.) = {bj1,...,bjx}. When the data change remarkably at the value
range of a; covered by the bucket b;, the first-level histogram h{:i and its corresponding
second-level histograms will be updated as follows:

(1) Recalculate the number of tuples which fall in b; € B(h!), 1 < j < m as v(b;) =

U v(bjz), where each v(bj;), 1 <z < k has been recalculated with the steps
bis€B(hS, ;)
described in Section 5.1.
(2) Set an error threshold thy and update v(bj)max O ¥(b;)min, the maximum and the

minimum of all v(b;) for j =1,...,m if necessary.
(3) If v(b;)max—v(b;)min > ths, recalculate a new depth of hf asd(hl) = Lx 3 wv(b;).
bjeB(h]))
(4) Adjust the borders of all second-level histograms h;_, ,...,h; , to ensure each new

second-level histogram hy;_, ,1 < j < m satisfying U v(bjs) = d(hl).
bjweB(hZi,bj)
(5) The buckets in each second-level histogram will be reconstructed as w(hg, ;) =
max(rg(hfli,bj))—min(rg(hfli,b]_))
B, ]
which is set in the first step of Section 4.2.

, where |B(h;,_ , )| remains unchanged and equals the value
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(6) Corresponding to the new borders of each second-level histogram, adjust the borders
of the buckets of the corresponding first-level histogram.

(7) Allocate an array arry, ¢ to temporarily store the newly transformed inner QFRs which
can be used to calculate the number of tuples which fall in each bucket of the new
ha., Obtained in Step 5.

(8) Transform the buckets of the old second-level histograms hj_, ..., h5
QFRs and stored them into arry,s.

(9) Call MLA to calculate the number of tuples which fall in each bucket of the new
second-level histograms Z“bj for j = 1,...,m based on the inner QFRs stored in
arry.f.

p. into inner
m

6. Experiments. The experiments are performed on a 3.2GHz Intel CPU machine run-
ning Windows XP sp3, with 4GB memory and 1TB hard disk.

6.1. Experimental settings.

6.1.1. Data sets.

Real data set (denoted by c¢): A relation census_1990_raw is created in the commer-
cial relation database Oracle [13] to store the USCensus1990raw [14] data which consists of
2,458,285 tuples. A 1-dimensional equi-depth histogram with 100 buckets is constructed
over the attribute incomel with |rg(incomel)| = 55,088, min(rg(incomel)) = 0 and
max(rg(incomel)) = 197,927. All experiments are carried out over the attribute in-
comel.

Synthetic data set I (denoted by gz): A relation gauss_zip with a single attribute
data is created in the commercial relation database Oracle to store this data set which
consists of 500,000 tuples sampled from 30 Gaussians [15] with the same standard devia-
tion 25 of different peak values selected uniformly at random from 0 to 5000. The total
number of tuples contained in each Gaussian bell follows the Zipfian distribution [15] with
the skew parameter z = 1.

Synthetic data set II (denoted by gu): A relation gauss_uniform with a single
attribute data is created in the commercial relation database Oracle to store this data
set. which consists of 500,000 tuples which are sampled from 30 Gaussians with the same
standard deviation 25 of different peak values selected uniformly at random from 0 to
5000. The total number of tuples contained in each Gaussian bell is selected uniformly at
random.

6.1.2. Workloads. For each workload model, the predicate centers are generated based on
a certain center distribution firstly, and then, each predicate is expanded from a predicate
center to its neighborhood with a certain range.

Data-dependent predicate model (denoted by d): In this model, predicate cen-
ters are sampled from the underlying data distribution. And then, each predicate is
expanded from a predicate center to its neighborhood with the range at most 20 percent
of the whole value range of an experimental attribute. The total number of predicates
around each predicate center follows the Zipfian distribution with the skew parameter
z=1.

Uniform predicate model (denoted by wu): In this model, predicate centers are
sampled uniformly at random from the whole value set of an experimental attribute. And
then, each predicate is expanded from a predicate center to its neighborhood with the
range at most 20 percent of the whole value range of the experimental attribute. The total
number of predicates around each predicate center also follows the random distribution.
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6.1.3. Metrics. Firstly, we can define the relative error, re(p), of a predicate p using
Formula (5):
_ abs(n(p) —v(qfr(p)))
re(p) = (5)
v(gfr(p))
And then, we define the relative accuracy rate, rar(ce), of a cardinality estimate approach
ce as the criterion to measure the accuracy of ce:

cng(ce)
- (6)
tn(ce)
where cng(ce) denotes the number of validation predicates whose relative errors are less
than s, and ¢n(ce) denotes the total number of validation predicates. In our experiments,

we set s = 0.2 and consider a predicate whose relative error is less than 0.2 as a correctly
estimated predicate.

rar(ce) =

6.1.4. Programs. In the experiments, the comparison approaches of cardinality estimates
include the approach proposed in this paper, the representative reactive approach ISO-
MER and the one adopted by the query optimizer of Oracle, which are denoted by CETLH,

ISOMER and Optimizer respectively. All cardinality approaches are realized under JDK
1.6.0_10.

6.2. Accuracy experiments.

6.2.1. Static data. Static data means there are no data updates during the constructions
of histograms and the executions of predicates. The relative accuracy rates of cardinality
estimates of different approaches obtained by running the workloads d and u over the
datasets ¢, gz and gu are shown in Figure 3(a) to Figure 3(f) respectively.

It is easy to see that the CETLH approach has the highest accuracy and stability in
all cases. For each combination of data set and workload, the relative accuracy rate of
CETLH shows a stable improvement tendency with the increase of the number of training
predicates. Without second-level histograms, the relative accuracy rate of the Optimizer
always wanders at a relatively low level. The tendency of the relative accuracy rate of
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ISOMER is very different from the ones of CETLH and Optimizer, and smooth changes
are replaced by the frequent and significant fluctuations, which testify the mentioned
instability and vulnerability of ISOMER.

6.2.2. Dynamic data. Dynamic data means there are data updates during the construc-
tions of histograms and the executions of predicates. Because the Optimizer approach
cannot deal with data update in real time, we only compare CETLH with ISOMER in
the accuracy experiments on dynamic data and the whole experimental results are shown
in Figure 4.

The process of the accuracy experiments on dynamic data can be described as follows:
(i) for the data set ¢, and the workloads d or w with 200 or 500 training predicates, an
initial relative accuracy rate is calculated and is shown as a value of ordinate in Figure
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FI1GURE 4. Relative accuracy rates of dynamic data
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4 with the value of abscissa as 0; (ii) 50 source sub ranges and 50 target sub ranges
are selected uniformly at random from the whole value ranges of the attribute incomel.
Each sub range has a uniform width of 400. The data in each source sub range will be
updated into a corresponding target sub range by executing an SQL update statement;
(iii) Execute 800 new validation predicates totally and record a relative accuracy rate
every 100 validation predicates which is shown as a value of ordinate in Figure 4 with
the values of abscissa as 1 to 8; (iv) Repeat steps (ii) and (iii) twice again to make the
experimental results more objective.

From the figure, we can see that after each data update, the relative accuracy rates of
the first 100 validation predicates decrease a little in most cases. And they will restore
to the normal level little by little. However, it is obvious that CETLH can better adapt
to data updates than ISOMER, which can be reflected from the following three aspects.
Firstly, the speed of the amelioration of CETLH is faster than ISOMER; secondly, in
most cases, the relative accuracy rates of CETLH are higher than the corresponding ones
of ISOMER under data updates; thirdly, CETLH shows higher stability than ISOMER
and the overall fluctuations of the relative accuracy rates of CETLH are smaller than the
ones of ISOMER, which is relevant to the iterative scaling algorithm.

6.3. Performance experiments. We compare the performances of CETLH and ISO-
MER in the following experiments. The space budget of ISOMER in these experiments
is 200. The construction and the update of the histograms used in CETLH and ISOMER
rely on QFRs. As the new QFRs arriving continuously, histograms will be reconstructed
frequently. Therefore, when we consider the performances of CETLH and ISOMER, ex-
cept the cost of the cardinality calculation of a predicate, the time of the construction
and the update of histograms cannot be ignored. In fact, the latter composes the main
part of the whole cost of a QFR-based cardinality estimate approach and is shown as the
ordinate in Figure 5. In the figure, logarithmic ordinates are adopted because of the huge
differences of performance between CETLH and ISOMER. For CETLH, the arrival of a
predicate can only lead to the call of MLA once to reconstruct one second-level histogram
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with only 30 buckets. And the follow-up adjustment of two level histograms is very effi-
cient and can be finished within 200 milliseconds in general for the data sets ¢, gz and gu.
Compared with CETLH, ISOMER has a very poor performance. Each time constructing
a histogram with 200 buckets using ISOMER, approach, it spends more than 14 seconds
and the longest time is even up to 109 seconds. And it is impossible to use a cardinality
estimate approach with such a performance in an actual commercial database.

7. Conclusion. In this paper, we attempt to ameliorate the effect of cardinality esti-
mate by combining the proactive approach with QFRs. To improve the performance of
histogram update, the whole value range of an attribute is divided into smaller sub ranges
with relatively uniform data distribution according to a first-level histogram. Within each
sub range, a second-level histogram is constructed according to inner QFRs. And in each
moment, only one second-level histogram is possible to be constructed or updated, which
can bring two great improvements: (i) the computation of each histogram update will be
decreased remarkably and the efficiency of cardinality estimate can be fully ensured; (ii)
data updates can be incorporated into histograms by inner QFRs in real time to make
histograms always consistent with underlying data. Extensive comparison experiments
have shown that our approach is satisfactory in the accuracy and the performance of car-
dinality estimate. In the future, we will introduce the v-optimal histogram, the maxdiff
histogram and the compressed histogram into the proposed framework to find an optimal
solution.
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