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ABSTRACT. This paper discusses the linear quadratic (LQ) differential games for sto-
chastic systems with Markov jumps and multiplicative noise in infinite-time case. Firstly,
we consider zero-sum games for stochastic systems with multiplicative noise. Here the
state weighting matriz is allowed to be indefinite, and an important theorem is gained.
Further, we discuss the LQ differential games for stochastic systems with Markov jumps
and multiplicative noise. We introduce the important definition of stochastic detectabil-
ity, which has close relation to Lyapunov equation. Based on Lyapunov equation, we
obtain four-coupled generalized algebraic Riccati equations (GAREs), which are essential
on finding the optimal strategies (Nash equilibrium strategies) and the optimal cost values
for infinite stochastic differential games. Finally, the corresponding simulation examples
are presented to illustrate the main results.

Keywords: Stochastic differential games, Nash equilibrium, Markov jumps, Stochastic
detectability, Exact detectability, Generalized algebraic Riccati equations

1. Introduction. Stochastic control theory has made great progress in the engineering
and scientific fields for many years. Particularly, the stochastic control problems governed
by Ito-type linear differential equations can describe many practical systems. In recent
years, the study for stochastic Ito-type controlled linear systems has become one popular
research field of modern control theory, see [1-5].

To deal with military problems such as pursuit, battle and aiming games, Isaacs firstly
pioneered differential games [6], who extended the notions of the cost value, optimal
strategies, saddle point equilibrium, etc. In fact, many situations in industry, economies,
management and elsewhere are characterized by multiple decision makers and enduring
consequences of decisions which can be treated as dynamic games [7, 8]. Meanwhile,
stochastic differential games have attracted considerable research interest [9, 10]. There
is a special class of dynamic games, where the process can be modeled by a set of linear
differential equations and the performance index is formalized by quadratic cost functions.
They are the so-called LQ differential games. By solving the LQ control problems, players
can avoid most of the additional cost incurred by this perturbation [11]. Nonzero-sum
and zero-sum linear differential games with quadratic cost functions in deterministic case
have been also widely investigated in many literatures [11-14]. They mainly dealt with
the optimization behavior according to different performance criteria. Reference [11]
not only presented the theory on finding the Nash equilibria but also gave the solutions
based on the feedback Nash equilibrium algorithms. Moreover, an iterative algorithm to
solve a kind of state-perturbed stochastic algebraic Riccati equation in L.QQ zero-sum game
problems was proposed in [15]. In our previous work [16], we have considered nonzero-sum
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stochastic differential games in infinite-time horizon, where the diffusion term in dynamics
depends on both of the state and the control variables. By introducing stochastic exact
observability and stochastic exact detectability, the optimal strategies (Nash equilibrium
strategies) and the optimal cost values have been given.

In the paper, we further investigate zero-sum stochastic differential games with state
and controls dependent noises in infinite-time horizon. Here players do not cooperate.
The reason why the players do not cooperate may be caused by individual motivations or
for physical reasons. It is reasonable that all players will try to play actions individually
which are optimal for themselves [11]. For researching the work in an infinite-time case,
restraining the players to constant strategies is reasonable and prescribing linearity is
also natural in the linear-quadratic context. It should be pointed out that the state
weighting matrix can be indefinite in the zero-sum case, and this leads to an indefinite
game problem and brings considerable complications, but we believe that this generality
is natural, see [13]. We deal with zero-sum stochastic differential games in infinite-time
horizon in Section 2, which allow the state weighting matrix to be indefinite. A theorem
is obatined to show the optimal controls and the optimal cost values corresponding to the
Zero-sum case.

As is well known, there are some significant applications for linear stochastic systems
with Markov jumps. In practice, a lot of physical systems have variable structures subject
to random changes. These changes may result from abrupt phenomena such as random
failures and repairs of the components, changes in the interconnections of subsystems, and
sudden environment changes. As one of the most basic dynamics models, systems with
Markov jumps can be used to represent these random failure processes in manufacturing
and some investment portfolio models. The stochastic systems with Markov jumps are
special class of hybrid systems and have been widely investigated, see [17-26]. Researchers
mainly focus on the analysis and synthesis of Markovian jump system, including stabil-
ity analysis, observability, detectability, state feedback and output feedback controller
design, filter design, etc. Detectability and observability are crucial concepts in linear de-
terministic control theory and have been extended to stochastic case. The relevant issues
are introduced in [18-21], respectively. Spectral technique, stability, exact observability
and exact detectability are mainly discussed for stochastic Markov jump systems in [18].
Some criteria and interesting properties for both W-observability and W-detectability are
obtained in [21]. Recently, filtering design makes new progress in [22-25]. [22] considers
the exponential H, filter design for a class of continuous-time singular Markovian jump
systems with mixed mode-dependent time-varying delay. In [23], the problem of robust
fuzzy H filtering is investigated for a class of uncertain nonlinear discrete-time Markov
jump systems with nonhomogeneous jump transition probabilities. [24] is concerned with
the H,, filtering problem for a class of discrete-time systems with stochastic incomplete
measurement and mixed random delays. And sufficient conditions for the existence of
the admissible filter are derived. In [25], it discusses the problem of asynchronous ly-ly
filtering for discrete-time stochastic Markov jump systems with sensor nonlinearity. A
sufficient condition is first given such that the resultant filtering error system and the
existence criterion of the desired asynchronous filter with piecewise homogeneous Markov
chain is proposed.

In [3], based on stabilization and exact observability or exact detectability, it is in-
dicated that the optimal control law and the optimal cost value exist for the problem
of stochastic linear quadratic regulator. In the meanwhile, the solutions of the GAREs
are also considered. However, up to now, there have been few attentions on stochas-
tic differential games for infinite horizon LQ stochastic systems with Markov jumps and
multiplicative noise. The problems of stochastic differential games with Markov jumps
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and state and controls dependent noises are mainly researched in the nonzero-sum cases.
Unlike most previous researchers, stochastic differential games in the nonzero-sum cases
are dealt by means of the stochastic detectability in Section 3, which extends Theorem
4.1 in [16] to the stochastic version with Markov jumps and is more in-depth study of
the conference article [26]. Finally, some important theorems that have extensive applica-
tion value in the economy, military and intelligent robots are obtained and an simulation
example shows its efficiency.

For convenience, we adopt the following notations. It uses R” to denote the linear space
of all n-dimensional real vectors. R™*" is the set of all m x n matrices. S™ denotes the
set of all n x n symmetric matrices. A’ represents the transpose of matrix A. xq; is the
indicator function of a set A. P > (>) 0 means P is a semi-positive (positive) definite
symmetric matrix. £5(0,00) is the space of the RF-valued functions that are quadratically
integrable on (0,00). E(-) represents the mathematical expectation and C denotes the
complex plane.

2. Infinite-time Stochastic Differential Games with Multiplicative Noise.

2.1. Main results. In many applications, state changes that are beneficial to one player
may be harmful to another player. In the section, we consider the problem of infinite-time
zero-sum stochastic differential games and we only treat with (x, v)-dependent noise for
the sake of simplicity. And we allow the state weighting matrix to be indefinite, allowing
it brings considerable technical complications, but we believe this generality is natural.
Consider the problem of infinite-time zero-sum stochastic differential games described by
the following linear stochastic differential equation:

dz(t) = [A1z(t) + Byu(t) + Cho(t)]dt + [Asx(t) + Cov(t)]dw(t),
z(0)=x9 € R*, t>0.

(1)

Here x(t) € R is the system state. wu(t) € L£5"(0,00) and v(t) € L£5"(0,00) represent
the system control inputs. A;, A, By, C;, Cy are constant matrices with appropriate
dimension. System (1) is defined on the filtered probability space (Q,F,P;F;). w(t)
is a one-dimensional Wiener process with w(0) = 0. F; denotes the smallest o-algebra
generated by process w(s), 0 < s <t ie., Fy =oc{w(s) |0<s <t} CF.

Throughout this section, the cost function is determined by

J(u,v) =E /Oo(:z:'Q:E + u'Ru — v'Sv)dt. (2)
0

Here R € S"and S € S™ R and S are positive definite and the matrix () can be indefinite.
It is obvious that strategy u is to be chosen to minimize and v is chosen to maximize the
function. Hence, the problem is to find the optimal strategies u*(¢) and v*(¢) such that

J(u* v) < J(u*,v*) < J(u,v%). (3)
We restrain the admissible control set to be the constant linear feedback strategies, so

we take the controls as u(t) = Kjxz(t), and v(t) = Kyx(t), where K;, K, are constant
matrices with appropriate dimension, and (K, K3) belong to the admissible set

K :={K = (K1, Ky) | system (1) can be stabilized with u(t) = K z(t), v(t) = Kyz(t)}.

The stabilization constrain is imposed to ensure the finiteness of the infinite-time cost
function integrals.

In what follows, we focus on finding the optimal strategies (u*, v*), which are called
the saddle point strategies. In order to guarantee the unique global game solutions in (3),
both the players are only allowed to take constant feedback controls.
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Definition 2.1. [1] The following stochastic system
dz(t) = [Az(t) + Bu(t)]dt + [Cxz(t) + Du(t)]dw(t), x(0) = z,

is called stabilizable (in the mean square sense), if there exists a feedback control u(t) =
Kx(t), such that the closed-loop system

dz(t) = (A+ BK)z(t)dt + (C + DK)x(t)dw(t), x(0) = zo,

is asymptotically mean-square stable for any xy € R*, i.e., limy_,o E || 2(¢)
K is a constant matriz.

|?= 0, where

Theorem 2.1. Assume u(t) and v(t) are both the stabilizing controls such that system
(1) is stabilizable, i.e., (Ky, Ks) € K. Suppose the following GARE

A{P+ PA, + AyPAy, — PBiR™'B{P + (C{P + C{PA;) M~ (C{P + C}PAy) + Q = 0,
M=S5-CiPCy > 0,
has a solution P > 0. Furthermore, assume that there exists a real symmetric matriz Y
satisfying the following inequality
AY + YA + ALY Ay~ YBR'B)Y +Q > 0. (4)

Then, for zero-sum stochastic differential games problem (3), the saddle point (u*(t),
v*(t)) is determined by

u(t) = Kjz(t) = —R'BiPx(t), v*(t) = M '(C1P + CyPAy)i(t),
where T(t) is generated by
di(t) = [(A; — BiR™'B|P)%(t) + Civ(t)|dt + (Axi(t) + Cov(t))dw(t), Z(0) = .
Moreover, the optimal cost value J(u*,v*) = x{Pxy.

Proof: According to the assumption on u(¢) and v(¢), they make system (1) stabi-
lizable. And by Definition 2.1, we have lim; ,, E||2'(¢)||]* = lim; o E[z'(t)Px(t)] = 0.
Thus, E [[°d[z'(t)Pz(t)] = limy_ s Elz'(t) Pz (t)] — 2'(0)Pz(0) = —2'(0)Pz(0). Setting
u(t) = Kyxz(t), where K is a matrix with appropriate dimension, then taking a scalar
function 2'(t) Px(t) and completing the squares, we have

J(u,v) = E/o (2'Qx + u'Ru — v'Sv)dt + E/o d[z'(t)Pz(t)] + 2'(0) Pz(0)
= 1yPxo + E/ 2'[(K; + R™'B,P)R(K, + R™' B} P)|xdt
0

—E/ [v — MY (CP + CyPAy)z] Mv — M (O} P + CyP Ay)z]dt.

0

So it follows that u*(t) = —R™' B} Pz(t) denoted by u*(t) = K;z(t) and

J(u*,v) = xyPry — E/ [v — M™YCIP + CYPAY) T M[v — M~ (C} P + CyP Ay)7]dt
0

< zyPxo.
Hence, v*(t) = MY (C{P + C4PAy)x(t), J(u*,v*) = xy Py, and J(u*,v) < J(u*,v*) for
aul\quéz., we show J(u*,v*) < J(u,v*). Let &(t) and Z(t) be generated by
dz(t) = [(A + B1Kq)2(t) + Cro*(t)]dt + [Ax2(t) + Cov™ (t)]dw(t), £(0) = o,
and
dz(t) = [(A1 + B1K7)Z(t) + C1o*(t)]dt + [Asz(t) + Cov™(t)]dw(t), z(0) = xy,
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respectively. Defining
I(t) = (KT — K1)i(t), n(t) =v"(t) = MTH(CIP + C3PAg)i(t),
we have
J(u,v*) — J(u*,v*) = E/oo(ﬁ'Rﬁ —n'Mn)dt.
0

Introducing &(t) = z(t) — Z(t), then d&(t) = [(A1 + B1K{)E(t) + Bio(t)]dt + A& (t)dw(t)
with £(0) = 0 and n(t) = MY (C]P + C4PA,)E(t). Again, from the assumption on wu(t)
and v(t), we have E [~ d[¢'(t) PE(t)] = im0 [ (£) PE(E)] — €'(0) PE(0) = 0. Hence,

J(u,v*) = J(u*,v")
—F / (' Bad) — of Mu)dt + F / alE' (1) PE(1)]
—F / {(0 — R™'B,P¢)R(Y — R™'B,P&) — €'[A\ P + PA, + A,PA,
0
—PB\R7'BP + (C|P + C,PAy)) M~ (C| P + C,PAy)|E}dt
_E / (0 4+ KTV R + K7€) + £QEdt. (5)
0

Next, defining 0(t) = 9(t) + K;&(t) = Kiz(t) — K12(t), we have d&(t) = [A1&(t) +
B0(t)]dt + Ax¢(t)dw(t). Since £(0) = 0 and limy,[¢'(t)YE(E)] = 0, we also have
E [[°d[g'(t)YE(t)] = 0. Hence,

Huor) = I = B [ @R+ €Q9n+ B [ dignvew)
0 0
_ E/ 0+ R 'BYER(O+ R "B YE)dt
0
+E /OO EAYY + YA + AY Ay — YB R'B)YY + Q)&dt.
0

Since (4) holds, we have J(u,v*) > J(u*,v*) which ends the proof of Theorem 2.1.

Remark 2.1. If the state weighting matriz @ is assumed to be positive semidefinite,
then Theorem 2.1 still holds without the assumption on (4) which is consistent with (5).
Theorem 2.1 extends Theorem 3.1 in [13] and Theorem 9.8 in [11] from the deterministic
case to a stochastic version.

2.2. Simulation. Next, a numerical example is given to show the efficiency of our main
results. Theorem 2.1 indicates that once the condition is met, it is easy to obtain the
saddle point (u*(t), v*(¢)) for zero-sum stochastic differential games problem. We take

that
10 2 0 0.8 0.7 0.5
Al:{o 2]’A2:[0 3]’31:{0.5}’01:{0.6}’02:{0.8]’

2 0 1
0=[2 %] =[] n=1 5= esu

in(1) and (2). By calculating, there are some matrices Y satisfying the inequality (4). We
only choice one of them, which is allowed:

148421 0 10
P‘[ 0 0.7495]’Y_{0 2]'
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And the optimal control inputs and optimal cost value are as follows:

w*(t) = Kia(t) = —R'B|Px(t) = [~11.8737 — 0.3748]z(t),
vH(t) = M™(CLP + CLPAL)F(t) = [1.9789 0.1764]%(t),
J(u*,v*) = 2y Pxy = 26.8341.

3. Infinite-time Stochastic Differential Games with Markov Jumps and Mul-
tiplicative Noise.

3.1. Models. In the section, we further consider the problem of infinite-time nonzero-
sum stochastic differential games described by the following linear stochastic differential
equation with Markov jumps and multiplicative noise:

dz(t) = [AY(ry)z(t) + B' (ry)u(t) + C*(ry)v(t)]dt
+[A%(ry)z(t) + B*(ro)u(t) + C?(ry)v(t)]dw(t), (6)
l‘(O) =xy€R", t>0.

Here, for each player, the measurement outputs are y7 (k) = Q" (r;)x(k), 7 = 1,2. And
y(k) € R™. z(0) = zy is a deterministic vector. System (6) is defined on the filtered
probability space (2, F,P;F;). There exists a right continuous homogeneous Markov
chain {r;; ¢ > 0} with state space D = {1,2,---, N}. w(t) is a one-dimensional Wiener
process with w(0) = 0. F; stands for the smallest o-algebra generated by process w(s)
and rg, 0 < s < ¢, ie., Fy = o{w(s), rs | 0 < s <t} C F. We assume that r; is
independent of w(¢) and has the following transition probability:

VTAVE VAV i # 7,

P{Tt+At:j/rt:i}:{1+q--At+o(At) i=j

where A = [g;;] is the stationary transition rate matrix of r, with ¢;; > 0 for 7 # j. The
notation o(4A;) denotes an infinitesimal of higher order than A;.

The coefficients matrices of system (6) are constant real matrices with appropriate
dimension, A™(ry), B7(r¢), C7(ry) are assigned as A" (ry):=A7, B"(r;):=B], C"(r;):=C7,
forry =1,7€ D, 7 =1,2, and they are associated to “sth” mode.

Throughout this section, each player has a quadratic cost function, respectively,

J(u,v) = E/Uoo[x'QT(rt)'QT(rt)x + W' R (ry)u +v'S"(r)v]dt, T=1,2. (7)

Q(ry) = QF > 0. R (ry) = RIe S™ and S7(r;) = ST€ S™ are real positive definite
matrices.
Let the optimality be defined by the inequalities:

T, vt) < Tt ), JAut ") < TP u,e), (8)

where u*(t) € £5(0,00), v*(t) € L5(0, 00).

The optimal strategies u* and v* determined by (8) are also called the Nash equilibrium
strategies (u*, v*). In order to guarantee the unique global Nash equilibrium solutions in
(8), both the players are only allowed to take constant feedback controls. So we take the
controls as u(t) = Tlz(t), and v(t) = T?z(t), where T}!, T? are constant matrices with
appropriate dimension, and (T}, T?) belong to

T = {T = (T}, T?) | system (6) can be stabilized

with u(t) = Tix(t), v(t) = Trx(t)}.

In what follows, we focus on finding the Nash equilibrium strategies (u*, v*).
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3.2. Definitions and preliminaries. For the purpose of finding the optimal strategies,
we give some useful definitions and lemmas as follows:

Definition 3.1. [18] The following stochastic system
dx(t) = [A' (r)x(t) + B (ry)u(t)]dt
+[A2%(r)2(t) + B*(ry)u(t)]dw(t), z(0) = xo, 9)
is called stochastic stabilizable (in mean-square sense), if there ezists a feedback control
u(t) = Y, K (i)x(t) X {r,=iy (t) with K(1),K(2),---,K(l) being constant matrices, such
that for any initial state x(0) = o, 1o = i, the closed-loop system (9) is asymptotically
mean-square stable, i.e., limy o E[x(t)z'(t)] = 0.

Here, system output equation is y(t) = Q;z(t). We briefly denote system (9) as
[(A}, B}), (A2, B?) | Q;]. If u(t) = 0, this system is denoted as [A], A? | Q;].
Definition 3.2. System [A}, A? | Q;] is said to be exactly detectable if
y(t) =0, a.s., t€[0,T], VI > 0= tlirn E | xz(t) |*=
—00
Definition 3.3. [18] [A}, A? | Q;] is called stochastically detectable, if there exists a set of

gain matrices H; which is constant for each value of ry = i € D, such that [A} + H;Q;, A?]
is mean-square stable, i.e., for any x(0) = xg, ro = i, limy o0 E || z(t) [|?=

The following lemma generalizes PBH Criterion from complete detectability of deter-
ministic linear systems to exact detectability of [A}, A? | Q;].

Lemma 3.1. [20] [A}, A? | Q;] is exactly detectable if and only if
(@1X1, Q2 X, -+, QnXN) #0

for every eigenvector X; of the linear operator L, v € D, corresponding to some eigenvalue

A with Re(\) > 0.

Meanwhile, according to the reference [20], we can know that if [A}, A? | Q;] is stochasti-
cally detectable, then it is also exactly detectable, which indicates that exact detectability
is weaker than stochastic detectability.

Define

{@i(w = B(wayly—y), i € D,
W(t) = (@1 (1), a(t), - - -, D (1)),

and the linear operators:
Li(V) = ALD; + DAY + A20,47 + 37| 4;:®;,
L(T) = (L2(9), Lo(T), - - -, Ln(T)).

The spectrum of £ is the set defined by o(L;) = {\ € C|L;(¥) = A\D;,D; € S", D; #
0,7 € D}. Tt is easily seen that £ are a bounded linear operator on the Hilbert space with
the inner product defined as < A, B >= ZZN Tr(A;B;), and its adjoint operators are

Li(V) = BAL+ AV @ + AZ D A2+ 3| 4P,
We refer the reader to [20], and it is easy to know that:
d¥(t)
dt

(10)

— £(W(1)).
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Next, some results relevant to the exact detectability and stochastic detectability are
presented as follows.

For convenience, we write the system (6) in another way because it is not brief enough
to convey some definitions and lemmas. The form can be described as follows:

z(0) =zp € R, (11)

{dx(t) = Mz(t)dt + Nyz(t)dw(t),
where M; stands for A} + B} T} + C}T?, N; stands for A? + B2T} + C*T?.
Proposition 3.1. If [Al, A? | Q,] is exactly detectable, then so is [Mi, N; | ..], where
> = QQi + T/ RT} + T S,T;.

Proof: Suppose [M;, N; | 21] is not exactly detectable, then according to PBH criterion
in Lemma 3.1, there exists an eigenvector X; of £ such that

> Xi= (ZIXI,X;XQ,--- ,ZNXN> =0, i€ D.

So, by pre-multiplying X;" on the both sides of above equation, we can get that

X{(QiQi+ T R{T} + T $T7)X; =0, i€D.
Because Q; > 0, R; > 0, S; > 0 and X; # 0, it follows that

T'X; =0, T’X; =0, @Q:X;,=0, i€ D.
Thus for any i = 1,2,--+, N, according to (10) and the spectrum of £ we get

AX; = (A} + BIT! + CIT?)X, + Xi(A} + BIT} + C/T7)
+(A] + BT + CPT) Xi(A} + BIT! + CJT7) + XNj e

j=1
N
= AIX; + Xi(AD) + AZX(AD) + g5 X
j=1

Therefore, [A}, A? | Q;] is not exactly detectable, which contradicts our assumption.
In order to obtain the main results, we give the very useful lemmas as follows.

Lemma 3.2. For system [A}, A? | Q;], if it is stochastically detectable, then so is [M;, N |
o, where 35, = QiQ; + T RiT}! + T7 S;T7.

Proof: Since system [A}, A? | Q;] is stochastically detectable, then by Definition 3.3,
we know that @; is of full row-rank. And due to @; > 0,R; > 0,5; > 0, consequently,

3. = QiQi+TY R TM+T? S, T? is of full row-rank. Therefore, we can obtain the conclusion
that [M;, N; | Y_.] is stochastically detectable.

Lemma 3.3. [18] If system [A}, A? | Q] is stochastically detectable, then [A}, A?] is
asymptotically mean-square stable if and only if the following Lyapunov-type equation:

N
Li(P):= PAI + Al P+ AT BAT + ) qii P+ QiQi =0

j=1

has a unique set of positive semi-definite solution P; > 0 € S", 1 € D.
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3.3. Main results. Under the condition of stochastic detectability, we give the following
theorems, which generalize the results of Theorem 4.1 in [16] to stochastic system with
Markov jumps.

Theorem 3.1. For system (6) or (11), assume the following coupled equations
(A + BIT!) P! + P/(A} + BIT!) + (A} + BYT}') P (A} + BIT})
VTR - QYQL— (O P+ CF B4 + BT

/ ’ ! 12

X(S! 4+ CEPIC2)[CY PY 4 CF PM(A2 4 BIT)] 4 ., P! =0, 12)
Sl +C?P\C? >0,

T} = —(R} + B P!B?)'[B} P} + B? P}(A? + CIT?)), (13)
(A} + C}T?) P? + PHA} + CIT?) + (A? + CIT?) PH(A? + CIT7)
+T? S?T? + Q7 Q? — [B P} + BY P(A? + C?T7)] (14)
x (R? + BY P?B?)\[BY P? + BY P}(A? + C?T?)| + Y1, q;;P? =0,
R? + BYP?B? > 0,

T? = —(S} + C} P'C?)~'[C}' P! + C¥ P} (A? + BIT))), (15)

admit the solution (P!, P?;T) T?) with P} > 0, P? > 0. If [A}, A? | Q7] (7 = 1,2) is
stochastically detectable, then

() (T}, T?) € T.

(17) The problem of infinite-time stochastic differential games admits a pair of solutions

(w (t), v* (1)) with u*(t) = T (t), v*(t) = TPx(t).
(i73) The optimal cost functions incurred by playing strategies (u*(t), v*(t)) are J7 (u*,v*) =
zyPlxy (1 =1,2).

Proof: For system (11), we give the Lyapunov-type equations as follows:

(PH(A} + BT} + C}T?) + (A} + BIT}! + C}T?) P}

+Q Qi+ TV RIT + TP SITP + 30 03 Py (16)
+(A? + BT} + C7T7) P (A} + BT} + C}T}) =0,

(i +CIPICE >0,

( P2(A} + BT} + C}T?) + (A} + BT} + C}'T?) P}

+QF QP+ TV RIT + T SPT? + 5L 0P an
+(A? + BIT} + CIT?) P?(A? + BT + C}T?) =0,

| R? + B2 P?B? > 0.

Then for (16), we can get

(PI(A]+ BIT)) + PICIT? + (Al + BIT)) P!

HOIT?) P+ QL+ TY RITY + T )T

{ +(AF + BIT!) P (A} + BIT}) + (A} + BIT}') P! CPT?
+(CPT?) PHAT + BIT)) + (CPT?) P CETE) + £ 0 P} =0,
(S} +CZPIC? > 0.
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Next, we can obtain the following equation:
PICIT? + (C{T?) P} + T S}T? + (CYTY) P/ CYT?
+(Af + BIT)) PICIT} + (CPT?) P}(A} + BIT})
= T (S} + CY PIC)TY + T7[CF P! + CF P (A7
+BIT])] + [P} + (A7 + BIT) P )T}
= {T? + (S + CF' P/C}) 'O Pl + CF P (A} + BIT))]} (S} + CF PG
x{T}? + (S} + Cf P'C})'[C} P! + CF PMA} + BITH]}
—[C P+ CF PI(AY + BIT)) (S} + CF PICH)T'CY P! + CF PHAT + BIT))).
Let
T2 = (8} + CZPICH VICY P + CY P2 + BT
As a result, we can get (12) and (15). Similarly, by rearranging (17), let
T! = (R} + B P'B})'[B}' P + B} P}(A} + CIT})],

we can get (13) and (14). If [A}, A? | Q7] (7 = 1,2) is stochastically detectable, then we
can get [M;, N; | ZZ] is also stochastically detectable by Lemma 3.2. And we assume
that (12)-(15) admit the solution (P}, P T;', T?) with P} > 0, P? > 0, i.e., (16) and

(17) have the solution P! > 0 and P? > 0, respectively. Then, the system [M;, N; | 2:]
satisfies Lemma 3.3. Therefore, system (11) is asymptotically mean-square stable, i.e.,
system (11) can be stabilized with u(t) = T}'z(t), v(t) = T?z(t). Since we have found the
feedback control (T}, T?) € T, then (i) is proved.
To prove (i) and (4i1), we note that u*(t) = T}'z(¢), and by substituting u*(¢) into (6),

we can obtain the following system:

dx(t) = [(A} + BT )x(t) + Clo()]dt + [(A7 + BYT} ) (t) + CRo(t)]dw(t),

z(0) = zp € R".
Then considering the scalar function V (¢, z(t)):=z'(t) P!z (t), and by applying I't6 formula
to V (¢, z(t)), we have

d[V(t,z(t))]
= d(2'Plx)
= {+'[(A] + B/T})'P] + P!(A] + B{T}) + (A} + B/T}) P (A} + B/T})]z
+0'[C}' P! + C7 P/(A] + BTz
+2'[C}' P! + C} P/ (A} + B}T})] v +'C} P/ C}v}dt
+{'[(A2 4+ B2T}) P! + PY(A? 4+ B2TH|z +v'C? Pla + o/ P C?v}dw(¢).

Due to
E/ d(z'P'z) = lim 2/ (t) P!z (t) — 2, P! zy = —a( P} xo,
0

t—o00

and by (12) and completing the squares, (7) can be derived that
o) = B [ 1(@FQ+ T RIT e+ vSsiuldi
0

+E/ d(z'P'x) + 2y P}z
0
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= E/ (v —T2x) (S} + C¥ PLC?) (v — T2x)dt + ) Plag
0

> x4 Ply.

Then by (8), it follows that v*(t) = T2z(t) and J'(u*,v*) = z{Plzy < J'(u*,v). Next,
by substituting v*(t) = T?z(t) into (6) and following the same procedures as before, we
have u*(t) = T)'z(t) and J?(u*,v*) = 2y P?xy < J?(u,v*). So this ends the proof.

Since Lemma 3.3 presents a necessary and sufficient condition of asymptotically mean-

square stability under the condition of stochastic detectability, the following result still
holds.

Theorem 3.2. For system (6) or (11), assume (12)-(15) admit the solution (P}, P?; T},
T?) with (T}, T?) € T, if [A}, A2 | Q7] (7 = 1,2) is stochastically detectable, then

()P >0, P25 0.

(1) The problem of infinite-time stochastic differential games admits a pair of solutions
(u*(t), v*(t)) with u*(t) = T}z (t), v*(t) = T?x(t).

(i73) The optimal cost functions incurred by playing strategies (u*(t), v*(t)) are J7 (u*,v*) =
zyPlxy (1 =1,2).

Proof: Theorem 3.2 can be proved following the similar way in the proof of Theorem
3.1 and thus the proof is omitted.

3.4. Simulation. A numerical example is presented to demonstrate the efficiency of our
main results in the section. Theorem 3.1 shows that the infinite-time Nash equilibrium
can be obtained by solving the coupled equations. It is hard to solve (12)-(15), so we
take system (6) as one dimensional system. For convenience, let A} = A? = Q! = Q? =
RI =R =S5'=8=1,B =C} =-1,B=C?=0,r,=1¢€ D = {1,2},
Q11 = Q12 = Go1 = q22 = 0.5, £(0) = zo = 2, respectively. w(t) is Gaussian white noise.
When i = 1 and 2, by (12)-(15), the coupled equations are obtained respectively as follows:

) Tt = P2,
2P2(1 = TE) + P2+ (T3)?> — (P})? + 0.5P? + 0.5P} + 1 =0,
T2 _ Pl
\ "1 — “1»

and
(2P}(1 = T)) + P} + (T)? — (P})?2 + 0.5P) +0.5P) +1 =0,

T} = P2,
2P} (1 —T2) + P} + (13)* — (P3)* + 05P + 0.5PF +1 =0,
T2 _ Pl
\ "2 — * 2"

By calculations, we have P! = P? = Py = P} = 22247 > 0, T} =T =T} =T} =
22247, x*(t) — 2673.9494t+w(t), U/*(t) — 4.4494673.9494t+w(t), 'U*(t) — 4.4494673.9494t+w(t).
And it is easy to verify system (6) is stochastically detectable, then (T}',T?) € T.

J7(u*,v*) = Pla? = 8.8988, 7 = 1, 2. System state and control inputs optimal trajectory
are shown in Figure 1. The simulation results are reasonable and effective.

4. Conclusions. In this paper, we have dealt with zero-sum and nonzero-sum LQ sto-
chastic differential games in infinite-time case, which is the further research of our pre-
vious results [16, 26]. Firstly, we have focused on zero-sum LQ stochastic differential
games with multiplicative noise, where the state weighting matrix is allowed to be in-
definite. An interesting result is obtained, which extends the results in the deterministic
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system trajectory
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FIGURE 1. System state x(t), optimal control inputs v*(t) and v*(¢)

case. Secondly, by means of some important definitions relevant to stochastic detectabil-
ity, we have presented two important theorems on finding the Nash equilibrium strategies
of LQ differential games for stochastic systems with Markov jumps and multiplicative
noise. It has indicated that the Nash equilibrium strategies have close relation to the
solution of four coupled GARESs, and the four coupled GARESs have been obtained on the
basis of stochastic detectability. At the end of each section, the corresponding simulation
examples have been presented to illustrate the main results. We believe that zero-sum
LQ stochastic differential games with Markov jumps and multiplicative noise still have
essential applications, and further studies on such kind of case should be continued.
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