International Journal of Innovative
Computing, Information and Control ICIC International ©)2015 ISSN 1349-4198
Volume 11, Number 2, April 2015 pp. 641-656

DESIGN AND IMPLEMENTATION OF ROUGH SET
CO-PROCESSOR ON FPGA

KANCHAN S. TiwARI"? AND ASHWIN G. KOTHARI'

'Electronics and Communication Engineering Department,
Visvesvaraya National Institute of Technology
South Ambazari Road, Nagpur, Maharashtra. Pin 440010, India
kanchan.s.tiwari@gmail.com; ashwinkothari@ece.vnit.ac.in

2E&TC Department
Modern Education Society’s College of Engineering
Pune, Maharashtra 411001, India

Received April 2014; revised August 2014

ABSTRACT. Rough set theory is a mathematical approach to process and interpret in-
complete information system. Several researchers have dealt with the problem of finding
reduct from the set of attributes, cores, and rules from databases using different soft-
ware deployed on multiprocessor system. Recently researchers have started using Field
Programmable Gate Array (FPGA) implementation as an alternate option. Software
approach is versatile but slow as compared to hardware implementation. The goal of this
work is to design an exemplary rough set co-processor based on rough set theory and
map it on FPGA. This paper gives an insight of a rough set co-processor’s modules.
The theory of dealing with large databases is studied. With the usage of dual port RAM
and pipelining in design, a considerable time is saved thus making it suitable for real
time applications. The application for rough set co-processor is explained with the case
study of a typical fault dictionary of a Very Large Scale Integrated (VLSI) chip. It can
be used as a Built-in-Self-Test controller for testing VLSI chip. Simulation results show
that proposed hardware is significantly faster than algorithms running on general-purpose
processor. The rough set co-processor can also be used as hardware classifier unit in per-
sonal computer.

Keywords: Rough set co-processor, Reduct, FPGA, Hardware accelerator, Discernibil-
ity matrix, Classification, Rules, HDL, Testability

1. Introduction. With the rapid growth in usage of Internet and cloud computing,
there is an exponential growth in the quantity of data collected. Data mining is the
process of extracting hidden patterns and discovering important rules from large amount
of data. Data mining techniques are becoming an important tool for converting data
into meaningful knowledge. Moreover, if data is incomplete or vague, the quality of rules
generated from the database during the knowledge discovery phase can be inferior or
incorrect. This has led to development of various data mining procedures for extracting
correct information from such large fields of data.

Rough set theory (RST) offers a viable solution for dealing with such kind of databases.
RST [1] is a new mathematical approach to intelligent data analysis and data mining.
It has become a very popular tool for managing uncertainty and vagueness arising in
databases, as the database used for data mining may contain imperfections, such as
noise, error due to inaccurate measuring instruments. It is used for discovering data
dependencies by reducing the number of attributes contained in a data set using the data
alone. It does not require any further additional information like degree of membership

641

642 K. S. TIWARI AND A. G. KOTHARI

as required in fuzzy or probability in probability theory [2]. It is successfully applied
in various fields including intelligent automation, fault diagnosis, pattern recognition,
artificial intelligence, machine learning, etc.

Since more than quarter century, researchers have developed several efficient algorithms
for reduct and rule generation and benchmarked their results using different software like
ROSE, RSES, WEKA, C, ROSETTA, and MATLAB [3-5]. The software provides flexibil-
ity but becomes slow while handling larger databases. Another approach that has gained
lots of interest amongst researchers in last decade is FPGA implementation of rough set
algorithms. The need for hardware implementation of RST arises from the vast compu-
tational complexity of problems that causes delay in the optimization process of software
implementations. In order to meet real-time requirements, power, and flexibility goals,
a combination of general CPU and reconfigurable fabrics like FPGAs, are a promising
solution leading to heterogeneous computing. In such systems, also called as hardware
accelerators, multicore CPU provides high computation rates while the reconfigurable
logic offers high performance per watt and adaptability to the application constraints.
The speed advantage of hardware and its ability to parallelize, offers great advantages to
rough set algorithms in overcoming the problems of speed-ups posed by purely software
routines. However, these implementations focus on solving one specific problem due to the
hardware resources constraints. These accelerators are dedicated fixed-function periph-
erals designed to perform a single computational intensive task repeatedly. They offload
the main processor, allowing it to do general-purpose tasks that have little regularity in
the structure. Using dedicated hardware offers a cost-effective way to increase the overall
computational power of a processor because the system designer gains the flexibility of a
general-purpose processor coupled with the computational advantage of dedicated hard-
ware. This is the main motivation behind using FPGA for implementation of rough set
algorithms in proposed work.

The literature survey shows hardware implementation of genetic, neural, and signal
processing algorithms [6-8] for classification purpose. However, there is no such generic
hardware classifier based on RST. In this paper, a design of rough set co-processor is
presented. All blocks of rough set co-processor are discussed in brief along with their
algorithms. This co-processor utilizes pipelining between discernibility and reduct block.

An application of testing Very Large Scale Integrated Circuit (VLSI) chip using the
proposed rough set co-processor is also elaborated. It extracts important test vectors
from database as a part of reduct generation activity and classifies chip as good or bad.
This eventually helps in deciding whether chip is fault-free or faulty. The results ob-
tained from FPGA mapping of rough set algorithms shows a significant acceleration of
the computation time in comparison to software implementation.

The current state of art shows few hardware implementations of rough set algorithms.
Pawlak described the idea of sample processor [9]. The processor generated decision rules
from decision tables. This idea, however, was not realized on programmable logic devices.
Lewis, Perkowski, and Jozwiak in 1999 presented architecture of rough sets processor
based on cellular networks described in [10]. They implemented basic rough set oper-
ation of basic category, upper approximation, and lower approximation, indispensable
and external comparison. In this paper, there is no discussion on time complexity, space
complexity and type of data. Kanasugi initially presented the design and architecture of
the RSP [11], [12] and then implemented his idea of computing reduct and generating
rules using Skowron’s discernibility matrix concept in 2001. They have dealt with binary
attributes, leaving discretization process, a task for future development. There is no dis-
cussion on time complexity and space complexity. However, their algorithm is based on
computing discernibility matrix and discernibility function, whose time complexity will

DESIGN AND IMPLEMENTATION OF ROUGH SET CO-PROCESSOR ON FPGA 643

no longer be less than O(JU[?|AJ?). Sun et al. in his paper [13] have implemented RST
algorithms on FPGA in 2011. Authors have provided a new and effective method for
hardware fault diagnosis and verified the effectiveness of method through simulation. He
made use of genetic algorithm along with RST and presented a case study of nonlinear
aircraft model. Grzes et al. in their paper [14] presented reduct and core generation algo-
rithm based on discernibility matrix. They have presented hardware solution architecture
for binary decision table. They have discussed architecture of discernibility and reduct
block. They used VHDL simulator and the development board equipped with an Altera
FPGA during the research. The reduct generation algorithm is simple and based on at-
tribute count frequency. The algorithm gives super reduct, however it does not discuss the
case of resolving the conflict between two attributes having same count value. Authors in
[15] presented a hardware approach for finding reduct using binary discernibility matrix.
This paper presents design of complete model and is refinement over previous version as
pipelining and dual port RAM is used. The algorithm used in this paper, is also based
on attribute count frequency but the tie is resolved if the attributes count frequency is
equal.

In this paper in Section 2, the basics of RST used in this paper are presented. Readers
can refer [16,17] for better understanding of other terminologies. In Section 3, features
of co-processor are discussed. In Section 4, rough set algorithms used for implementation
on FPGA are studied. Section 5 elaborates an application used for testing the proposed
co-processor followed by results and Section 6 concludes the paper.

2. Rough Set Preliminaries. RST is an effective tool for mining deterministic rules
from a database. The rough set philosophy is founded on the assumption that with
every object of the universe of discourse we associate some information, i.e., knowledge is
associated. The main motto of RST is “Let the Data Speak for themselves” [18].

Any set of all indiscernible (similar) objects is called an elementary set, and forms a
basic granule (atom) of knowledge about the universe. Any union of elementary sets is
referred to as a crisp (precise) set. A set, which is not crisp, is called rough (imprecise,
vague). Consequently, each rough set has boundary region cases, i.e., objects which can-
not with certainty be classified either as members of the set or of its complement. RST
is an effective tool for mining deterministic rules from a database. It offers mathematical
tools to discover patterns hidden in the data. It can be used for feature selection, feature
extraction, data reduction, decision rule generation, and pattern extraction (templates,
association rules), etc. It identifies partial or total dependencies in data, eliminates re-
dundant data, and gives approach to null values, missing data, dynamic data and others.
The terminologies of RST used in this paper are explained below.

2.1. Information system. The basic vehicle for data representation in the rough set
framework is an Information System (IS). An IS is a table listing attributes of objects.
Every column represents an attribute (also called a variable or feature or can be observa-
tion) that can be measured for each object. Formally, IS is defined as IS = (U, A) where
U is non-empty finite set of objects called as universe, i.e., U = {zy, 22, 23,...,2,}; and
A is a non-empty finite set of attributes such that a:U—V, for every a € A. The V, is
called as value set of a. In lots of applications, outcome of classification is known. This
a posteriori knowledge which is expressed by one distinguished attribute called decision
attribute. Such IS are called decision systems. A decision system is any IS of the form
IS = (U, C U {d}), where d ¢ A is the decision attribute. The elements of C are called
conditional attributes. Table 1 shows an example of a typical IS.

644 K. S. TIWARI AND A. G. KOTHARI

TABLE 1. An information system

Objects ¢ Co C3 Ca Cs Co cr C8 d
T 1 1 0 0 1 1 0 0 1
To 0 0 1 1 1 1 1 0 2
T3 1 0 1 1 1 1 0 0 3
74 1 0 0 0 1 1 1 1 7
T 1 1 1 1 0 0 0 1 2
Tg 1 0 1 0 0 1 1 1 3
T7 1 1 1 0 0 0 1 1 4
g 0 0 0 1 0 1 0 0 1

In an IS shown in Table 1, d column is decision attribute column and ¢, ¢, c3, ...,
cg are condition attributes of 8 objects. A decision system expresses all the knowledge
about the model.

2.2. Reducts and core. The decision table may contain unnecessarily large amount of
redundant and superfluous attributes. The same or indiscernible objects may be repre-
sented several times. Removal of such attributes cannot worsen the classification. The
RST provides us the tool to deal with this problem. Core and reduct are the two funda-
mental concepts of rough set. A reduct is the essential part of an IS, which can discern
all objects discernible by the original IS. A reduct is the minimal attribute set preserving
classification power of original dataset. Finding a reduct is similar to feature selection
problem. A reduct contains a subset of condition attributes that are sufficient to classify
the decision table. A reduct may not be unique. It has been shown that finding minimal
reduct or all reducts are both NP-hard problems. The core is contained in all the reduct
sets, and it is the necessity of the whole data.

2.3. Discernibility matrix. An IS can also be presented in terms of a discernibility ma-
trix [19]. A discernibility matrix is a square matrix in which rows and columns are objects,
and cells are attribute sets that discern objects. Two objects are considered discernible if
and only if they have different values for at least one attribute. The discernibility matrix,
denoted by M, for a decision table DT, of an IS is given as —

o — { o, fo(xi) = fD(iEj) (1)
K a € A; a(x;) # alx;), [fo(xi) # fo(x))

Using discernibility matrix, Skowron and Rauszer, proved several properties and con-
structed efficient algorithms related to reduct, core, dependencies from IS and decision
tables. Reducts obtained from above given definition of discernibility matrix is called as
decision relative reduct. A reduct is any minimal subset of condition features that discerns
all pairs with different decision values. It is complete if the deletion of any attribute of
a reduct makes at least one pair of objects with different decision attribute values indis-
cernible. The intersection of all reducts is called the core of the decision table. In Table
2 partial discernibility matrix for IS shown in Table 1 is tabulated.

2.4. Inconsistent decision table. A decision table is inconsistent if for a given pair of
object, all condition attributes are same but differ in decision attribute, i.e., it belongs
to two or more different classes [20]. Such cases are more prevalent in medical databases.
Table 3 presents a medical database for 10 patients having symptoms of conjunctivitis
disease. The symptoms of conjunctivitis disease forms condition attributes that includes
redness, swelling, watering, etc. The last column of decision attribute indicates whether

DESIGN AND IMPLEMENTATION OF ROUGH SET CO-PROCESSOR ON FPGA 645

TABLE 2. Partial binary discernibility matrix for the IS in Table 1

Objects 1 Co Cs3 Ca Cs Co cr C8
T14 0 1 0 0 0 0 1 1
T17 0 0 1 0 1 1 1 1

TABLE 3. Inconsistent decision table

U | Redness | Swelling | Watering | Photophobia | Itching | Headache | Pain | Discharge | Loss of vision | Conjunctivitis
1 1 0 0 0 1 0 0 1 0 0
2 0 0 1 1 1 1 0 1 0 0
3 1 0 1 1 0 1 1 1 1 1
4 1 1 0 0 1 1 0 0 1 1
) 0 0 1 1 0 1 1 1 0 1
6 1 0 0 0 1 0 1 1 0 0
7 0 1 0 0 1 0 0 0 1 1
8 0 1 0 0 0 1 1 1 0 0
9 1 1 1 1 1 1 1 1 1 1
10 0 1 0 0 1 0 0 0 1 0

the patient is suffering from conjunctivitis disease or not (1 or 0). In Table 3, objects 7
and 10 make database inconsistent.

3. Proposed Rough Set Co-Processor.

3.1. Features of proposed rough set co-processor. The proposed hardware accelera-
tor will run as co-processor in host computer sharing main memory. It will read attributes
stored in memory of FPGA. The decision table consists of binary attributes. Although
the rough set co-processor is generic, its basic specifications were frozen after studying
characteristics of several databases from UCI Machine learning repository [21].

e Attributes: 65

e Data objects (N): 256

e Memory size: 256 MB

e Internal data bus: 32 bits
e Address bus: 8 bit

e Clock frequency: 100 MHz

3.2. Rough set co-processor modules. The controller’s state diagram of the proposed
Rough Set Co-Processor is shown below in Figure 1. Its controller is a state machine that
is directed through various states viz: discern, discern_reduct, reduct and rule. The
first state of controller is discern. In this state formation of discernibility matrix takes
place. The next state is discern_reduct. It is an intermediate state in which the process of
discernibility matrix building and reduct computation operation is pipelined. A change of
state from discern to discern_reduct takes place after 80% of discernibility matrix is built.
The third state is reduct. In this state reduct computation operation is continued. In
reduct computation process, important features are extracted from discernibility matrix.
A reduct_flag used as a control signal decides the change of state from reduct to rule. The
controller stays in reduct state as long as the value of reduct_flag is zero and exits this
state when reduct_flag is one.

646 K. S. TIWARI AND A. G. KOTHARI

Cnt = 80% row size

discern

discern_
reduct

Cnt = row size

educt_flag=0
reduct_flag=1
reduct

FIGURE 1. State diagram of rough set hardware accelerator

=
Address + =
| Generator Condition Attributes Decision g
Block RAM RAM [y
a
]
%1 %2 rd1 rd2
vy vY o
) 72
XOR Block Comparator Block | O
-~
Z
v @
-
clk Counter >
> v 2
=
Discernibility Matrix RAM _
-~
v
Reduct Block _— Rule
> Generator —
P Block
< Rules

FIGURE 2. Rough set hardware accelerator block diagram

The block diagram of Rough Set Hardware Accelerator is shown in Figure 2. There are
five main modules in it.

DESIGN AND IMPLEMENTATION OF ROUGH SET CO-PROCESSOR ON FPGA 647

a. Address Generator Block: The address generator block operates on a clock
signal along with some control logic and generates two addresses. It is used for generating
addresses of dual port RAMs.

b. Read Block: This block consists of two dual ports RAM. These dual port RAMs are
used for storing condition and decision attributes. Read block reads content of selected
memory locations specified by addresses generated by address generator block. These
contents are named in block diagram as rx1, rx2, rdl, and rd2. The rx1, rx2, rd1l, and
rd2 are output data lines of dual port condition and decision RAM respectively.

c. Discernibility Block: Discernibility block generates discernibility matrix elements
from decision table stored in dual port RAMs. It uses comparator block for comparing
rd1 and rd2. If unequal, comparator block sends a signal to XOR block which performs
XORing operation on rx1 and rx2. This XORed data is stored in consecutive location
of discernibility matrix. A counter embedded in discernibility block itself generates the
address of discernibility matrix.

d. Reduct Block: This block is heart of rough set co-processor. It processes the
elements of discernibility matrix and uses the algorithm discussed in next section for
computing single reduct.

e. Rule Generator Block: This block classifies the given set of objects in different
classes. It uses reduct generated by reduct block for generating rules in if-then form.

4. Rough Set Algorithms Used for Implementation. The algorithm used for im-
plementation of blocks of rough set co-processor is discussed in this section.

4.1. Address generator block.
Algorithm 1: Address Generator Block
Input: clk, reset
Address generator block is invoked on changes in clk or reset. The reset value is set to
1 at the start and also when state changes to rule. The row_size is number of objects in
database.
Output: addr! and addr2
Algorithm:
if (reset == 1) then
addrl = 0;
addr?2 = addrl + 1;
elsif (addrl < row_size) then
if (addr2 >= row_size) then
addrl = addrl + 1;
addr? = addrl + 1;
elsif (addr2 < row_size) then
addr?2 = addr2 + 1;
end if;
end if;

4.2. Read block.
Algorithm 2: Read Block
Input: addri, addr2
Process of read block is invoked on changes in clk or addr1 or addr2.
Output: rd1, rd2, rzi1, rx2
Algorithm:
rd1 = read decision attribute value at row addrl;
rd2 = read decision attribute value at row addr2;

648 K. S. TIWARI AND A. G. KOTHARI

rel = read condition attribute value at row addri;
rz2 = read condition attribute value at row addr?2;

4.3. Discernibility block.
Algorithm 3: Simplified Discernibility Matrix building
Input: rd1, rd2, rxl, rz2
The process of discernibility block is invoked on changes in clk or rd1 or rd2. The code
is executed when state is either disern or disern_reduct. The disMatAddr is address of
RAM used for storing discernibility elements.
Output: Discernibility Matrix. The signal disMat values are stored in discernibility
matrix ram at address disMatAddr.
Algorithm:
if (rd1/= rd2) then
disMat = rxl XOR rz2;
disMatAddr = disMatAddr + 1;
end if;

4.4. Reduct block. Attribute reduction algorithms are based on positive region, dis-
cernibility matrix, heuristic, information entropy, genetic, fuzzy-rough, rough-neural,
granular computing, information view, etc. It can also be achieved by evaluating var-
ious attribute significant parameters like dependency, consistency, information gain, etc.
in case of heuristic based methods [22]. In this work, discernibility matrix concept is
used since literature survey shows popularity of discernibility matrix method amongst re-
searchers as the method is very simple and intuitive. The only drawback of discernibility
matrix method is requirement of huge memory and they tend to become slow while deal-
ing with large databases. With the recent growth in FPGA, all these issues are largely
resolved. The proposed reduct algorithm is based on attribute count frequency [23] of
all objects in discernibility matrix. In this algorithm, sum of elements of each column is
computed. A column whose sum is unique and maximum is marked as a part of reduct
vector. However, if the sum of more than one column is having same maximum value,
then the conflict is resolved by computing row length and it is multiplied with each col-
umn attribute value. All values are summed up to obtain a final significant factor. The
ratio of column sum with final significant factor is taken and whichever columns give
maximum value, it is marked as a part of reduct vector. This block is most critical block
in the entire system in terms of resources consumed and speed. An example showing the
computation of reduct from a sample discernibility matrix is illustrated below in Table 4.

In Step 1, significance of all attributes is computed by finding sum of each column
which gives, Fi(c;) = Fi(c2) = Fi(cq) = 3, where Fj represents first significant factor.

TABLE 4. Reduct computation from partial discernibility matrix

cl Co C3 Cy4 Row_sum

T12 0 1 0 0 1

13 1 1 0 1 3

T14 0 0 0 1 1

T23 1 0 1 1 3

T34 1 1 0 0 2

F 3 3 1 3

E 0.375 0.5 - 0.428

DESIGN AND IMPLEMENTATION OF ROUGH SET CO-PROCESSOR ON FPGA 649

Since there is tie between three attributes, hence second significant factor F; is computed
for finding reduct as given below:

The initial value of reduct vector = 0000

F(e1) = 1%043%14+1%04+3%1+2x1 =8, F(c3) =1434+2=6, F(cy) =3+14+3=T;

FQ(Cl) = Fl(Cl)/F(Cl) = 3/8 = 0.375.

Similarly, Fy(c2) = 3/6 = 0.5, and Fy(cq) = 3/7 = 0.428.

In this case, the maximum value is of ¢o; hence, it is chosen as a member of reduct set.
Hence, the reduct vector becomes 0100. However, while performing division, since the
numerator is same (for conflicting attributes), hence division operation is skipped. Instead
of choosing maximum values amongst F; of conflicting attributes, minimum value of F' is
chosen. This further saves hardware required and computation time. In next iteration,
reduct vector is ANDed with discernibility matrix and if the result of ANDing is zero,
that row in discernibility matrix is retained. However, if the result is nonzero, that row is
eliminated. This process ensures removal of attribute marked as a member of reduct set
before start of next iteration. This results in creation of a modified discernibility matrix.
The process of computing F} and F; is repeated until discernibility matrix becomes empty.
The algorithm is described below:

Algorithm: Reduct Block
Input: discern_mat, disMat_addr

Process of reduct block is invoked on changes in clk or disMat_addr. The code is

executed when the state is either disern_reduct or reduct.

Output: reduct.

Algorithm:

Step 1: Initialize reduct with 0. Initialize valid_row array with 1 (1 represents valid row
and 0 represents invalid row).

Step 2: Calculating column significance value

Step 2.1: Mark invalid rows

if (discern-mat == ZERO or (discern-mat AND reduct)/= ZERO)) then

valid_row(disMat_addr) = 0
Step 2.2: For valid rows calculate significance value

for iin 0 to COL_SIZE —1 loop

if (discern_mat(i) == 1) then
row_sum_arr(disMat_addr) = row_sum_arr(disMat_addr) + 1;
col_sum_arr(i) = col_sum_arr(i) + 1;
end if;
end loop;
for i in 0 to COL.SIZE —1 loop
if (discern-mat(i) == 1) then
sin_col_dnr_arr(i) = sin_col_dnr_arr(i) + row_sum_arr(disMat_addr);
end if;

end loop;

Step 3: Setting bit corresponding to highest significant attribute to 1 in reduct
maz_col_sum = mazx(col_sum_arr);

min_val = ROW_SIZE;//Initialize with any random high number

for i in 0 to COL.SIZE —1 loop

if maz_col_sum == col_sum_arr(i) then
//if more than one column has max value then decision is made on the basis of
min value of sin_col_dnr_arr
if (min_val > sin_col_dnr_arr(i)) then
min_val = sin_col_dnr_arr(i);

650 K. S. TIWARI AND A. G. KOTHARI

reduct_col_inder = 1;
end if;
end if;

end loop;

reduct(reduct_col_index) = 1;

The time complexity of building binary discernibility matrix under worst condition is
O(JA]|UJ?). In Step 1 of reduct generation algorithm time complexity is not more than
O(]JA]|UJ?), these steps are again repeated R times, hence its time complexity modifies to
O(|R||A]|UJ?). Reduct computation is a critical task, as this block consumes most of the
processing time. In order to speed up the process of reduct computation, not only dual
port RAM is used for storing discernibility matrix elements but also pipelining is used
between discernibility and reduct block.

4.5. Rule generator block. The reduct generated by the reduct block are used for
creating valid meaningful rules using the algorithm given below:

Algorithm: Rule Generator Block Algorithm

Input: rdi1, rd2, rxl, rz2, addrl, addr2, and reduct

The process of rule generator block is invoked on changes in clk. The code is executed
when state is rule.
Output: rules
Algorithm:

duplicate_row; // duplicate_row is array with size = row_size. Its elements are initialized
with 0.

if (duplicate_row(addrl) == 0) then

relM = rxl AND reduct;

if (reIM /= ZEROQO) then
rule_out = re1M;

end if ;

r-z2M = rx2 and reduct;

if ((rdl == rd2) AND (rziM == rz2M)) then
duplicate_row(addrl) = 1;

end if;

end if;

Condition attributes and reduct Vector are ANDed together. This gives modified deci-
sion table consisting of important rules. In the modified decision table, objects belonging
to same decision class are merged together if they have similar condition attributes; to
form a rule otherwise the rows are kept unchanged. This step is repeated till no merging
is possible. Each entry in the new reduced table corresponds to a rule, which can be
expressed in conventional if-then form.

For example, if the reduct vector is taken as 000101001, ANDing it with condition
attributes modifies decision table, in which only values of 3 condition attribute columns
are preserved. They are c4, cg, cg and rest of the values become 0. The modified decision
table is shown in Table 5.

Rule extraction consists of merging identical pair objects belonging to same decision
class that further reduces the decision table as shown in Table 6.

Now one can get the control rules from Table 6 and deduce inferences from it as follows:

elfcy=1land¢g=1and ¢cg =1 thend=1.

e If c; =1and ¢g =1/0 and ¢g = 1/0 then d = 2.
e If g =1and ¢g =0 and ¢, = 0/1 then d = 3.
e If ¢, =0and ¢g = 1/0 and ¢g = 0/1 then d = 4.

DESIGN AND IMPLEMENTATION OF ROUGH SET CO-PROCESSOR ON FPGA 651

5. Application and Results.

5.1. Application. RST has been widely used in variety of fields. In this paper, the appli-
cation related to testing of VLSI chips is discussed. There has been a continuous pressure
on VLSI chip manufacturing industry to increase the manufacturing yield. Integrated cir-
cuit (IC) manufacturers are constantly trying to decrease the number of faulty parts they
produce. The reliability of System on Chips must be ensured to a certain extent since a
single fault is likely to make the whole chip useless. VLSI testing is the backbone of manu-
facturing reliable IC. Therefore, fault diagnosis and fault repairing techniques are gaining
importance these days. A manufacturer may be able to improve the circuit design or the
manufacturing process by analyzing the parts that fail production tests and determining
the cause of failure for each part. During the design as well as manufacturing, several
faults may creep in. Therefore, there is a need to test the VLSI chips at the design level as
well as after manufacturing. Detection of fault and the type of fault present in a circuit is
known as fault diagnosis. With increase in the complexity of the integrated circuits, the
effort to detect and diagnose the fault is becoming time consuming and demanding more
and more resources. Built in Self-test (BIST) is nowadays gaining more popularity as it
reduces the cost of using Automatic Test Equipment (ATE). Such dedicated rough set
co-processor can effectively work as BIST controller. RST philosophy can be applied in
detecting a set test vectors, which can model more than 90% faults. This theory is applied
in diagnosis of faulty VLSI chips by making use of fault dictionary [24]. A fault dictionary
is defined as a database of faults that can be used by a simulator to help determine the
fault coverage. A fault dictionary may also be used by diagnostic system to help analyse
faults when trying to diagnose problems. A typical fault dictionary is shown in Table 7.
Each fault (single stuck at fault, stuck open, stuck short, bridging fault, etc.) for a chip
(or system) is listed down the left side of the table and the test vectors that activate and
propagate the faults are listed along the top. It is a 2 class system, which gives decision as
whether chip is faulty or fault free. If not, an unnecessary amount of faults will share the
same test syndrome (described below). The test vectors typically consist of a complete
test set for the chip if one is known. The matrix of ones and zeros in the fault dictionary
relate the faults to the tests that detect each fault. For matrix element [i, j], a “1” means
that the particular test set, Testj, detected the fault, Faultsz. A “0” means Test; did
not detect Fault:. Fault dictionary consists of huge number of test sets. The count will
depend on number of inputs and the relationship is 27, where ‘I’ is the number of inputs.
In that case, a 16 input chip will have 65,536 test sets. Few from these test sets can give
more than 90% of fault coverage while rests of them are redundant. These redundant test
vectors can be identified and removed with the help of reduct generation algorithm.

TABLE 5. Modified decision table

)
(S48
)
o
&)
=
)
0
)
©

T
T2
T3
Ty
Ts
Te
Ty

¥ | % || % | % |*x]|*
¥ | % || % | % |*x]|*
¥ | % || x| % |*x]|*
TR N RS N N N R
¥ | % || % | % |*x]|*
DN DN NN~
¥ | % || x| % |*x]|*
¥ | % || x| % |*x]|*
NI D DD~
P Lo DO Lo| Do ~| .

652 K. S. TIWARI AND A. G. KOTHARI

TABLE 6. Merged decision table

Ca Ce Coy d
1 1 1 1
1 1 0 2
1 0 1 2
1 1 0 3
0 1 0 3
0 1 0 4
0 0 1 4

TABLE 7. Fault dictionary

Testl | Test2 | Test3 | Test4 | Tests | Test6 | Test7
Fault1 0 1 0 0 0 1 0
Fault2| 1 0 0 0 0 0 0
Fault3| 1 0 0 0 0 0 0
Fault3| 0 1 0 1 0 0 0
Fault/ 0 0 0 1 0 0 0
Fault5| 0 0 1 0 0 0 0
Fault6| 0 0 0 0 0 1 1

5.2. Experimental results. The modules of rough set co-processor are tested and veri-
fied on Xilinx 14.5 platform using ISIM simulator. A random database is used for testing.
The device used for implementation is Virtex 5. The simulation waveforms are shown in
Figure 5. The clock frequency used for simulation is 100 MHz. For benchmarking timing
results of hardware, all above-mentioned algorithms are implemented in C. C language
is used for implementation as its compiler produces machine code that can run nearly as
fast as machine language. The environment used is Windows 7, RAM 4 GB, Processor
i5 2.54 GHz. Table 10 presents the results of the time elapsed for software and hardware
solutions while calculating rules for varying size of database. Figure 4 shows a signifi-
cant decrease in the execution time as algorithm mapping is changed from software to
hardware. Logarithmic scale is used for time plotted on Y-axis. The time required for
computing discernibility matrix, reduct, and rules is less as compared to [14]. In [14],
authors have shown the time required for computing only reduct and cores.

In Figure 5 complete simulation result for database of size 8 by 8 is shown in two parts.
A small database is used as it makes waveforms more readable. In first part, current_state
signal shows three distinct states of controller. In discern state discernibility matrix is
built; its value is shown by signal dismat and address by dismataddr. Discernibility matrix
completes when current_state changes to reduct. The value of reduct is shown through
signal reduct. Its value is ‘U’ until reduct is completely formed. In Figure 5 reduct state
starts at 290 ns and completes at 630 ns. At this instant, current_state is changed to rule
state. The rule signal is the set of final rules generated by rough set co-processor. The
rule signal when clubbed with decision specifies the rule vector generated for a specific
decision class. In above figure, e.g., when rule is 12 and decision is 3, it implies that for
a rule vector of “00001100”; decision class is 3.

DESIGN AND IMPLEMENTATION OF ROUGH SET CO-PROCESSOR ON FPGA

TABLE 8. A typical IS

653

Patient Headache Muscle-pain Temperature Flu

D1 No Yes High Yes

D2 Yes No High Yes

D3 Yes Yes Very high Yes

D4 No Yes Normal No

Ds Yes No High No

De No Yes Very high Yes

D7 Yes No Extremely high Yes

TABLE 9. A binarised IS
Patient Headache Muscle-pain Temperature Flu

D1 0 1 0 1 1
D2 1 0 0 1 1
D3 1 1 1 0 1
jn 0 1 0 0 0
Ds 1 0 0 1 0
D6 0 1 1 0 1
7 1 0 1 1 1

TABLE 10. Comparison of execution time for calculating rules

Sr.No. Object size Software (us) Hardware (us)

1 4 X 4 13076.67 0.51
2 8§ x8 15296 .67 0.95
3 12 x 12 23100 2.2

4 16 x 16 30183.53 3.6

5 32 x 32 96743.33 14.86
6 64 x 64 291400 63.85
7 128 x 128 1091667 257.2

5.3. Handling symbolic attributes and larger databases.

5.3.1. Symbolic attributes. The proposed co-processor is designed for handling 64 con-
dition attributes and 1 decision attribute. It can deal with 256 objects. It can handle
inconsistent attributes as well. A database consisting of nominal values is discretized to
binary values. For example in an IS shown below in Table 8, yes or no value of attribute
can be coded as 1 or 0. However, for coding normal, high and, very high 2 bits is required.
Hence temperature attribute is coded by 2 bits; normal —00, high —01, very high —10
and extremely high —11. The corresponding discretized values are shown in Table 9.

5.3.2. Larger databases. For a larger database, modular approach based on divide and
conquer technique is used. The larger database is divided into smaller IS consisting of
256 objects each and the reduct is calculated from each independently. From these set
of reducts, a final reduct is calculated using union operator (logical OR). The approach
used for generating reduct (as shown in Figure 3) starts with checking objects size of
IS; where objects size (N) corresponds to total number of objects present in given IS.
If N of given IS is greater than allowed size of 256, then divide and conquer strategy is

654 K. S. TIWARI AND A. G. KOTHARI

Read Information system

Is Size of YES
IS>N l
NO Divide & Conquer
strategy
Apply Reduct Algorithm

Generate Classification
Rules

FiGure 3. Flow chart for classification using rough set philosophy

1

0.1

0.01

0.001

0.0001 i ~ Ena®

: —@—VHDL
0.00001 /

0.0000001

FiGURrE 4. Comparison of execution time for software and hardware

used. It is divided in small IS where size of each IS will be 256. These IS are treated
in parallel and independently for getting partial reducts and final reduct is generated by
applying union operator on all generated reducts. The maximum conditional attributes it
can treat at a time is 64, however if given IS attributes exceeds mentioned capacity, then
IS is segregated column wise of size 256 by 64 and treated independently. In this case,
the final reduct vector is obtained by appending all partially generated reduct vectors.
These reduct subsequently gives classification rules.

DESIGN AND IMPLEMENTATION OF ROUGH SET CO-PROCESSOR ON FPGA 655

ons 50 ns 100 ns 150 ns 200 ns [250ns 300 ns 350 ns (400 ns 450 ns
disern ¥ disern_reduct reduct
T0 w12 s3awsyeuT s 9 W10y 11 12y 13 {14yISKI6KI7)18 19 420 21
I S CT) 25 W87 232 40 433 334 191 8

Luuuuuuu

» M dismataddriao] |z
» B dismat[:0]
B B reductio:?]
» B ruleo)

» B decision7:0]

» B dismataddri:0] | 2
» B dismat[7:0]
» B redudn7]
b B rulelr0]

» B dedision[7:0]

(LT YV 0101100
u 12 8 32 54 £
u 3 4 4 2

FIGURE 5. Simulation result for database of size 8 by 8

6. Conclusion and Future Work. Hardware implementation of rough set algorithms
and their usage in real life will gain more importance in due course of time. In this paper,
design and architecture of rough set co-processor on FPGA is presented. It is a hard-
ware accelerator, which will perform a certain set of operations like discernibility matrix
computation, reduct as well as rule generation. A comparative study of hardware and
software simulation time shows a vast time difference. An analytical reasoning show that
time complexity of proposed algorithm (O|R||A||UJ?) is less than existing ones. Divide
conquer strategy along with parallel processing is used for dealing with larger databases.
A dedicated hardware for approximate reasoning will offload main processor from compu-
tational overhead, thereby increasing the speed of the operation. Simulation results are
shown using Xilinx software. Our future work includes handling continuous attributes
and discretization of continuous attributes.

Acknowledgment. We hereby acknowledge the funding support by Center of Excellence
(CoE), Commbedded System-hybridization of Communication and Embedded System
under TEQIP 1.2.1, VNIT, Nagpur. This work is also partially supported by Board of
College and University Development, Pune. The authors also gratefully acknowledge the
helpful comments and suggestions of the reviewers, which have improved the presentation.

REFERENCES

[1] Z. Pawlak and A. Skowron, Rudiments of rough sets, Information Sciences, vol.177, pp.3-27, 2007.

[2] Z. Pawlak, Rough sets, International Journal of Computer and Information Sciences, vol.11, pp.341-
356, 1982.

[3] B. Predki et al., ROSE — Software Implementation of the Rough Set Theory, Rough Sets and Current
Trends in Computing, Springer-Verlag, Berlin Heidelberg, 1998.

[4] A. Skowron et al., Logic Group, Institute of Mathematics, Warsaw University, Poland, http://
logic. mimuw. edu.pl/~rses/, 2010.

[5] M. Kierczak et al., ROSETTA Development Team, http://www.lch.uu.se/tools/rosetta/, 2010.

[6] S. D. Scott, A. Samal and S. Seth, HGA: A hardware-based genetic algorithm, ACM the 3rd Inter-
national Symposium on Field-Programmable Gate Arrays, New York, USA, pp.53-59, 1995.

[7] P. Moerland and E. Fiesler, Neural network adaptations to hardware implementations, Handbook of
Neural Computation, vol.1, no.2, 1997.

[8] A. E. Nelson, Implementation of Image Processing Algorithms on FPGA Hardware, Master Thesis,
Vanderbilt University, 2000.

[9] Z. Pawlak, Elementary rough set granules: Toward a rough set processor, Rough-Neural Computing
Cognitive Technologies, pp.5-13, 2004.

656 K. S. TIWARI AND A. G. KOTHARI

[10] T. Lewis, M. Perkowski and L. Jozwiak, Learning in hardware: Architecture and implementation of
an FPGA — Based rough set machine, Proc. of the 25th IEEE EUROMICRO Conference, pp.326-334,
1999.

[11] A. Kanasugi, A design of architecture for rough set processor, Proc. of the Joint JSAI 2001 Workshop
on New Frontiers in Artificial Intelligence, vol.2253, pp.406-410, 2001.

[12] A. Kanasugi and M. Matsumoto, Design and implementation of rough rules generation from logical
rules on FPGA board, Rough Sets and Intelligent Systems Paradigms, LNCS, vol.4585, pp.594-602,
2007.

[13] G. Sun, X. Qi and Y. Zhang, A FPGA-based implementation of rough set theory, Control and
Decision Conference, pp.2561-2564, 2011.

[14] T. Grzes, M. Kopczynski and J. Stepaniuk, FPGA in rough set based core and reduct computation,
RSKT, pp.263-270, 2013.

[15] K. S. Tiwari, A. G. Kothari and A. G. Keskar, Reduct generation from binary discernibility matrix:
An hardware approach, International Journal of Future Computer and Communication, pp.270-272,
2012.

[16] Z. Pawlak, Rough Sets: Theoretical Aspects of Reasoning about Data, Kluwer Academic Publishers,
Dordrecht, Boston, London, 1991.

[17] Z. Pawlak, Rough sets and intelligent data analysis, Information Sciences, vol.147, nos.1-4, pp.1-12,
2002.

[18] Rough set theory: A true landmark in data analysis, in Studies in Computational Intelligence, A.
Abraham et al. (eds.), Berlin Heidelberg, Springer-Verlag, 2009.

[19] A. Skowron and C. Rauszer, The discernibility matrices and functions in information systems, Intel-
ligent Decision Support: Handbook of Applications and Advances of the Rough Sets Theory, vol.11,
pp.331-362, 1992.

[20] D. Q. Miao et al., Relative reducts in consistent and inconsistent decision tables of the Pawlak rough
set model, Information Sciences, vol.179, no.24, pp.4140-4150, 2009.

[21] K. Bache and M. Lichman, UCI Machine Learning Repository, http://archive.ics.uci.edu/ml, Irvine,
University of California, School of Information and Computer Science, 2013.

[22] K. Thangavel and A. Pethalakshmi, Dimensionality reduction based on rough set theory: A review,
Applied Soft Computing, vol.9, no.1, pp.1-12, 2009.

[23] P. Yang, J. Li and Y. Huang, An attribute reduction algorithm by rough set based on binary
discernibility matrix, IEEFE the 5th Int. Conf. Fuzzy Systems and Knowledge Discovery, pp.276-280,
2008.

[24] A. Ray, Fault Diagnosis Using Fault Dictionaries and Probability, VLSI Testing, Auburn University,
2005.

