International Journal of Innovative
Computing, Information and Control ICIC International ©)2015 ISSN 1349-4198
Volume 11, Number 2, April 2015 pp. 719-731

MEASURING THE IMPORTANCE OF FUNCTIONS IN SOFTWARE
EXECUTION NETWORK BASED ON COMPLEX NETWORK

Hartao HE!?, JINXIANG WANG!H2* AND JIADONG REN!?

LCollege of Information Science and Engineering
Yanshan University
2The Key Laboratory for Computer Virtual Technology and System Integration of Hebei Province
No. 438, Hebei Ave., Qinhuangdao 066004, P. R. China
{ haitao; jdren }@ysu.edu.cn; *Corresponding author: jinxiangwang0522@163.com

Received May 2014; revised September 2014

ABSTRACT. Accurately measuring the importance of nodes in network to improve soft-
ware stability and robustness has important significance. Researchers generally define
function as a node, relationship of function calls as an edge. Times of function calls can
accurately reflect tightness between functions, however, it is being neglected. To consider
tightness between functions when software executing, this article proposes a novel method
for measuring the importance of functions in software network. We map relations of
function calls to software execution directed-weighted networks, and define node mea-
surement score (NMS) and relative node measurement score (RNMS) for measuring the
importance of functions. Node_Score algorithm is put forward for accurately calculating
NMS and RNMS. In order to guide developer to provide more targeted protection and
defence while they develop next version, we predict the importance of nodes in various
versions, and process of upgrading of software is tracked and distribution of RNMS in
each version is analyzed. FExperimental results demonstrate that Node_Score algorithm
can accurately measure the importance of each node in software network.

Keywords: Complex network, Measuring, Function calls, Important nodes

1. Introduction. With growing of complexity of computer software system, how to guar-
antee stable and secure execution of software has become more and more meaningful.
Many more important nodes exist in software network, if these nodes are suffered by de-
liberate attacks, it maybe occur cascading failure [1,2]. Therefore, accurately measuring
nodes’ importance to improve software stability and robustness is significance.

Mapping software structure to software complex network from different angles and gran-
ularity has become an effective analyzing method. Valverde and Sole [3] studied network
of software first. Software network was constructed by classes and interaction relationship
of classes, class was abstracted as node, and interaction relationship between classes was
abstracted as edge. Myers [4] adopted directed network to represent structure of software
system and analyzed characteristics of software execution network. Cai and Yin [5] de-
scribed processes of software execution as an evolving directed topological graph as well
as an evolving software mirror graph. Ma et al. [6] abstracted interaction relationship
between packages into a software network, and they defined functions in package as nodes
and dependencies among functions as edges. However, times of each component called in
process of software execution are not same, and tightness between components of software
cannot accurately reflect if times of component called are neglected.

Freeman [7] utilized betweenness to measure the importance of node, and nodes with
larger betweenness are considered as more important in network. Callaw et al. [8] used
node degree to measure the importance of nodes and considered larger degree of node as

719

720 H. HE, J. WANG AND J. REN

key node. Wang [9] proposed degree metric to measure the importance of node in net-
work, namely, if node has large in-degree, node is suggested that it undertakes important
task in network. Holme et al. [10] found that removals by the recalculated between-
ness and degrees centralities are often more harmful. These metrics strategies of node
importance do not take into account global network. Radicchi [11] developed a diffu-
sion algorithm based on recursive technique and tennis contact network was analyzed to
rank professional players. Kitsak et al. [12] believed that nodes importance is related to
its position in global network, and they adopted k-shell decomposition analysis to ob-
tain ranking index of node importance, and results are more accurate than degree and
betweenness. Masuda and Kori [13] extended Laplacian-based centrality and adopted
the idea of PageRank to introduce global connectivity between all pairs of nodes with
certain strength. Ugander et al. [14] found decisive factor which decides degree of im-
portance of nodes which is not absolute number of neighbor nodes but the number of
connected subgraphs between neighbor nodes. Bhattacharya et al. [15] defined a measure
called NodeRank that assigns a numerical weight to each node in a graph, to measure
relative importance of that node in software. Chen et al. [16] proposed a local rank-
ing algorithm ClusterRank, which takes into account not only the number of neighbors
and neighbors’ influences, but also clustering coefficient. Study of Xiao [17] showed that
incomplete global information has different impacts to an intentional attack in differ-
ent circumstances, while local information-based attacks can be actually highly efficient.
Abdel-Rahim et al. [18] modified Survivable System Analysis (SSA) that can be used to
assess security and survivability of critical infrastructure networks to analyze security and
survivability of critical infrastructure networks. Because software is composed by logical
units — functions and has the relationship of dependent between functions. These previous
studies are mainly social network, power network and traffic network. So far these studies,
as we know, just only degree, NodeRank method can be used to measure software network
nodes’ importance. So constructing software execution directed-weighted networks based
on granularity of function and considering times functions called is more significative.

Due to failure of function may spread to other functions and lead to functions fault
through functions calls in software network, considering tightness between functions in
global software executing, in this paper, a novel method is proposed for measuring impor-
tance of functions in software network. We define node measurement score (NMS) and
relative node measurement score (RNMS) to measure quantitatively functions’ impor-
tance. To calculate NMS and RNMS, a novel Node_Score algorithm is put forward based
on recursive technique. We map the relations of function call in the process of software
gzip, tar, cflow executing to software execution directed-weighted network, and analyze
RNMS distribution of each version.

The remaining paper is organized as follows. Section 2 gives process of constructing
software execution directed-weighted networks. Dentitions and algorithm are given in
Section 3. Experiments in Section 4 show performances of algorithm and its applications.
Section 5 concludes the paper.

2. Constructing Software Execution Directed-Weighted Networks. In order to
accurately reflect properties of software topological structure and accurately measure im-
portant degree of node in software network, in this paper, we propose a model to construct
software execution directed-weighted network. The simplified overview of framework is
shown in Figure 1.

Under Linux environment, process of constructing software execution directed-weighted
adjacency matrix and network visualization is described in detail as follows.

MEASURING THE IMPORTANCE OF FUNCTIONS 721

| Visualization tool

|P_vrmce |
Y

———
frace.ixt graph.dot)

Source code Y > Y 5 K
L — TN

Conversion tool

| gcc + instrument.c

lest case library

A

|gr'aph,rrxr |—>| M |

FIGURE 1. Framework of constructing software directed-weighted adja-
cency matrix and network visualization

1) To generate trace.txt file which records addresses of functions, we use test source
(instrument.c) to track relationship of function calls when software executing.

2) Using tool of Putrace to analyze trace.tzt file and generate document of graph.dot,
which record relationship of function calls.

3) In order to display visualization of calls relationship between functions, we use visual
tools (Gephi).

4) To obtain graph.tzt, we develop a tool to convert graph.dot to graph.tzt. Tool named
as Conwversion tool which used java to realize development.

5) We analyze document of graph.tzt and construct software execution directed-weighted
adjacency matrix M. Formula as shown in (1), if times of function V; calls function V;
are n, weight is w;; = n, else w;; = 0, directed-weighted networks G(V, E, W) is built.

Directed-weighted adjacency matrix:

w11 W wiN
M = Wit wij W;N (1)
L le) wN]) wNN 1

N is the number of nodes in network, and w;; means times of node 7 calls node j.

Example 2.1. We use the framework of constructing software execution directed-weighted
network to construct directed-weighted network, for example, as shown in Figure 2.

Utilizing Conversion tool realizes process of converting graph.dot to graph.txt. The
graph.tzt represents information contents of Figure 2, as shown in Table 1. 7 is starting
point of edge, j is terminal, and w;; is the times ¢ calls j. Directed-weighted adjacency
matrix which is shown as Table 2 shows information of Figure 2.

3. Method of Measuring the Importance of Nodes. This paper creates directed-
weighted adjacency matrix M according to framework of constructing software execu-
tion directed-weighted network. Node measurement score (NMS), relative measurement
score (RNMS), critical node (CN) and key node (KN) are defined. We track the pro-
cess of software upgrading and analyze RNMS of nodes in various versions, then predict
the importance of nodes when software is updated.

722 H. HE, J. WANG AND J. REN

F1GURE 2. Directed-weighted network

TABLE 1. Graph.txt

.

Grd W W WD RN KN
DA AN DA W Y.

TABLE 2. Directed-weighted adjacency matrix

O /U0 TR

DTS I/
DD N
LI DVYO
S DD LN
LI R DD
SN Ny D

3.1. Definition. NMS and RNMS are defined to measure the importance of function in
software execution network. NMS is calculated by Formula (2) and RNMS by Formula

(3).

Definition 3.1. Node Measurement Score

NMS (i) = (1 —d) + (NMS XN:C) 2)

In Formula (2), C (j) = ;Z}m
J#i

MEASURING THE IMPORTANCE OF FUNCTIONS 723

Definition 3.2. Relative Node Measurement Score

RNMS (i) = MM

>, NMS(j)

=1

Definition 3.3. Critical Node (CN) is node which RNMS equals to median of RNMS of
all nodes in global network.

(3)

The median in statistics can avoid extreme data and represent data overall moderate
conditions.

Definition 3.4. Key Node (KN) is a node which RNMS is greater than RNMS of CN
n software network.

NMS(7) is measurement score of node i. C'(j) equals to dividing times node 7 calls node
J by total number node ¢ called all nodes in network. w;; means times node 7 calls node j.
Many functions in software do not call other functions, for example, in cflow1.0 software,
function register_output, parse_re, clear_active. These functions are named Dead Ends.
When we construct node measurement score spreading matrix, the Dead Ends can lead
to denominator zero, so we assume these functions calls one of them one time. RNMS(7)
can highlight relative importance of nodes in software network. In order to quantify key
nodes, we define KN that RNMS is greater than CN in network. Decay factor is denoted
as d with same meaning in PageRank algorithm and its values are ranged from 0 to 1.

Example 3.1. NMS of each node in Figure 2 is as follows.
NMS (a) =1-—d.

NMS () = (1—d)+d (% . NMS (a)) |
NMS (¢) = (1—d)+d G-NMS (a)) |

NMS(d)=(1—d)+d G-NMS (b)+> . NMS (c)> |

U = W

NMS (e) = (1—d)+d<%-NMS(a)+ -NMS(c)> :

NMS (f) = (1—d)+d<%-NMS(b)+%-NMS(c)+NMS(d)+NMS(e)> .

3.2. Measuring quantitatively the importance of nodes. The importance of nodes
is closely related to other nodes in global network. To calculate node relative measurement
score values (RNMS), a novel Node_Score algorithm is put forward based on recursive tech-
nique. Primary principle of algorithm is to assign a random value which is ranged from
0 to 1 to each node. With spreading of node measurement score, each node gets NMS,
but temporary NMS is constantly updated with constantly spread. When node of NMS
is equal or similar before and after recursion, recursion terminates. In process of recursive
calculation, each node allocates its current NMS to other nodes according to tightness of
nodes, so that, each node obtains corresponding to NMS. For highlighting relative im-
portance of nodes in software executing network, we normalize node measurement score
(NMS) to obtain relative node measurement score (RNMS). Node_Score algorithm realizes
calculation of RNMS.

724 H. HE, J. WANG AND J. REN

Algorithm. Node_Score
Input: directed-weighted adjacency matrix M
Output: RNMS
1)fori=1:N
if sum(P(:,7))=0// 1f these functions which do not call other functions
then sum(P(:, 7)) =

end
end
2)fori=1:N
forj=1:N
P = M % (w;j/sum(P(i,:))) // construct NMS spreading matrix
end
end
3) initialize NMS;,,;; // assign a random NMS which is ranged from 0 to 1 to each
node

4) Define matrix; A=dx P'+ (1 —d) xex¢e' /N // NMS computational formula
6) where (JA-NMS| >temp)
NMS = A*NMS;,.;¢
NS = NMS;
end
7) RNMS(i) = NS(i)/sum(NS)

In Node_Score algorithm, P’ is transpose matrix of NMS matrix, e is a column vector,
and whose elements are all 1, Zemp is a tiny convergence threshold. Table 3 lists results of
important node sorting in Figure 2 under ranking strategy of In-degree, Node-Rank and
Node_Score respectively. Node-Rank algorithm calculates node NR value and Node_Score
algorithm calculates RNMS. In this article, we set parameters of convergence threshold
temp = 0.001 and decay factor d = 0.85.

Table 3 illustrates that the importance of node pairs d, e and b, ¢ cannot be distinguished
if we only consider in-degree of node but ignore its called times and other nodes connected
with it. Node-Rank algorithm does not consider called times of node. Then, we cannot
distinguish the importance between node b and node ¢. Based on directed-weighted
network Node_Score algorithm calculates NMS of each node in Figure 2. RNMS(a) =
0.0478, RNMS(b) = 0.0866, RNMS(c) = 0.0672, RNMS(d) = 0.1485, RNMS(e) = 0.0890,
RNMS(f) = 0.5609. NMS of node f is the highest. It shows that node f is most important
in network. Figure 2 can also illustrate the importance of node f, namely nodes b, ¢, d,
e, f directly call it. In-degree of node d is same as e, node d is called by node ¢ for 3
times and node d is called by node e for only 1 time. It means that relative measurement

TABLE 3. Node importance ranking

In-degree Node ~ NR Node RNMS Node

7 F 05530 f 0.5609 f
2 d 0.1439 d 0.1/85 d
2 e 0.1111 e 0.0890 e
1 ¢ 0.0724 ¢ 0.0866 b
1 b 0.0724 b 0.0672 ¢
0 a 0.0072 a 0.0{78 a

MEASURING THE IMPORTANCE OF FUNCTIONS 725

score of node d is greater than one of node e. Because times that node b calls node
a is different from that of node ¢, so NRMS of these nodes are different. Accordingly,
Node_Score algorithm considers connection between nodes and also their called times. It
can accurately measure the importance of each node in software execution network.

4. Experiment and Analysis.

4.1. Measuring the importance of nodes in software network. In our experiment,
we choose software in open source software library (http://sourceforge.net/) and down-
load their five versions of program package. There are software gzip (for Linux system
file compression), tar (for Linux file decompression) and cflow (for static analysis of C
language code) respectively. To obtain relation of function calls when each versions exe-
cuting, we track process of software executing and map relationship of function calls to
software execution directed-weighted networks. Figure 3 shows relationship of function
calls in cflow-1.4 software.

As shown in Figure 3, software execution directed-weighted network covers information
of relationship of function calls and function calls times when software executing. We
build directed-weighted adjacency matrix based on software execution directed-weighted
network, which is a good job for using Node_Score algorithm to measure the importance
of node in software network.

On the basis of software execution directed-weighted network, we utilize three kinds of
ranking strategy of In-degree, Node-Rank and Node_Score respectively. Table 4, Table 5
and Table 6 list top ten important functions after accomplishing a task. When computing
RNMS of functions, we assume convergence threshold temp = 0.001, decay factor d =

tenfp SpSRET ISR
yy, flex_freg-'- X
yy_deleté | i0..F

1 cyll

294s3]ls

save_token

FIGURE 3. Part of relationship of function calls of cflow-1.4 software

726 H. HE, J. WANG AND J. REN

0.85. Table 4 shows the detail ranking result of the importance of functions when software
gzip-1.5 executing.

Node_Score algorithm can accurately measure relative importance of functions in soft-
ware gzip execution directed-weighted networks. In our study, we find an important
function pgdownheap in process of software executing. The function pgdownheap com-
bined repeatedly with at least two frequent nodes to build Huffman tree. Nevertheless,
previous ranking strategy cannot discover this function. Node_Score algorithm also can
improve accuracy. For example, function read_buffer in global network is more impor-
tant than function write_buffer, (RNMS(read_buffer)>RNMS (write_buffer)), but former
measurement strategy cannot distinguish the importance of these two functions. In fact,
functions read_buffer and write_buffer respectively undertake important task to read and
write cache, what is more, functions g¢zip, deflate, fill_window, Im_init and updoc indi-
rectly call function read_buffer 1 time, function file_read directly calls function read_buffer
2 times. The function read_buffer is called by function g¢zip, flush_outbuf and write_buf 1
time. Figure 4 shows that part of function calls of package gzip 1.5 executing.

We also use Node_Score algorithm to evaluate the importance of functions in process
of package tar-1.27 and cflow-1.4 executing. As shown in Table 5 and Table 6, we can
find some important functions. Function checkpoint_run is called 391 times by function
_gnu_flush_read in software tar. Function sparse_select_optab is called 890 times by function
Tar_sparse_init. We can also obtain the importance of function lookup in software cflow
which is called by functions parse_function_declaration (calls 40 times), get_symb (calls
1034 times) and ident (calls 1941 times) when software executing. Therefore, Node_Score

TABLE 4. Important function of gzip-1.5 package executing

In-degree Function Name NR Function Name RNMS Function Name

4 send_bits 0.0810 send_bits 0.0752 read_buffer
2 gzip_base_name 0.0699 bi_reverse 0.0737 write_buffer
2 get_stat_mtime 0.0634 updere 0.0728 send_bits
2 gen_codes 0.0607 read_buffer 0.0714 striwr

2 bi_reverse 0.0607 write_buffer 0.0496 bi_reverse
2 updcre 0.0590 striwr 0.0485 file_read

2 init_block 0.0550 file_read 0.0482 pgdownheap
2 file_read 0.0288 gen_codes 0.0449 updere

1 write_buffer — 0.0275 write_buf 0.0316 ct_tally

1 read_buffer 0.0266 open_and_stat 0.0316 write_buf

TABLE 5. Important function of tar-1.27 package executing network

In-degree Function Name NR Function Name RNMS Function Name

6 from_header 0.0821 _gnu_flush-read 0.1275 checkpoint_run

4 assign_string 0.0745 represent_uintmazr 0.0806 _gnu_flush_read

3 tar_stat_destroy 0.0724 checkpoint_run 0.0724 represent_uintmazx
3 find_next_block 0.0724 short_read 0.0458 gnu_flush_read

3 set_next_block_after 0.0468 gnu_flush_-read 0.0410 from_header

3 zheader_zattr_free 0.0423 from_header 0.0253 flush_read

3 sparse_member_p 0.0259 flush_read 0.022) assign_string

3 chdir_do 0.0203 tar_sparse_init 0.0209 sparse_select_optab
3 mu_size_left 0.0203 ptr_align 0.0201 ptr_align

3

set_stat 0.0201 assign_string 0.0189 zattrs_print

MEASURING THE IMPORTANCE OF FUNCTIONS 727

TABLE 6. Important function of cflow-1.4 package executing network

In-degree Function Name NR Function Name RNC Function Name

13 nexttoken 0.0459 deref_linked_list ~ 0.0580 lookup
8 putback 0.0428 print_symbol 0.0550 hash_symbol_compare
6 linked_list_append 0.0391 static_free 0.0411 hash_symbol_hasher
5 lookup 0.0346 linked_list_append 0.0407 print_symbol
5 gnu_output_handler 0.0324 yy-load_buffer_state 0.037/ ident
4 mark 0.0318 gnu_output_handler 0.0845 deref_linked_list
3 install 0.0305 unlink_symbol 0.0318 static_free
3 yy_load_buffer_state 0.0292 linked_list_destroy 0.0299 gnu_output_handler
3 tokpush 0.0253 delete_symbol 0.0279 nexttoken
3 restore 0.0228 yylex 0.0276 yylex

flate

write_buf

1 file_rea fill_window

write_huffe

updcre read_buffer

FicUure 4. Part of function calls for gzip-1.5 package executing

algorithm can measure important node more accurately, it can be applied to improve
software robustness and anti-destroying.

4.2. Applications based on measurement of the importance of node. In our
study, we track the process of different versions of software gzip, tar, cflow executing,
and map those processes to software execution directed-weighted network. RNMS of
each node in network is calculated. We analyze RNMS distribution of each version and
compare RNMS to other versions. Results are shown in Figure 5 and Figure 6 and Figure
7.

From Figure 5, Figure 6 and Figure 7, RNMS mostly distributes in small score area
and less nodes have high RNMS. We can find that RNMS distribution varies but little
in process of software upgrading.

Changes of the number of key nodes in different versions of software gzip, tar and cflow
are shown in Figure 8. From Figure 8, we find the phenomenon that the number of key
nodes in different versions is less and the number varies within a small range. The less
key nodes may be to ensure better maintain software.

Table 7 and Table 8 list RNMS of functions in software gzip and cflow. Table 7 shows
that RNMS of function write_buffer is greater than function write_buf. Developer defines
a new function write_buffer in gzip-1.3.14 version. Function write_buffer calls function
write_buf and indirectly calls some functions which are called by function write_buf. Be-
cause RNMS of functions read_buffer and pgdownheap are bigger in every version of soft-
ware network, we can predict that these functions also play more important role in update
of versions in the future.

728

H. HE, J. WANG AND J. REN

RMMS(nzip) Probability Distribution

300 T T T T T T T T I
* gzip-1.33
* gzip-1.3.13
280~ + gzip-1.4 -
& & gzip-1.5
W ogzip-1.6
E 200 -
o
=
k=l
5 150G -
5 +
= .
— 100 —
*o
I I
0.4 0.45 05

Ficure 5. RNMS distribution of different versions of gzip

RMMZ(tar) Probability Distribution

120 T T T T T T T T
$ + tar1.12
¥ #* tar-1.13
100 - + tar-1.20|
v & tarl.21
W tar1.27
g a0l —
=
=]
[y
h=]
g BOF . -
£
=
=
[1h)
2 o * . 4
N
20 B
0

FIGURE 6. RNMS distribution of different versions of tar

TABLE 7. Function of software executing network of each gzip version im-
portance ranking

gzip-1.8.8 gzip-1.53.14 gzip-1.4 gzip-1.5 gzip-1.6

1 bi_reverse streat bi_reverse read_buffer read_buffer
2 pgdownheap forint_off write_buffer write_buffer copy_block
3 send_bits 2ip pgdownheap send_bits write_buffer
4 build_tree inflate_dynamic send_bits striwr pgdownheap
5 do_stat init_block clear_bufs bi_reverse bi_reverse
6 file_read inflate read_buffer file_read display_ratio
7 flush_block inflate_block build_tree pgdownheap file_read

8 write_buf set_file_type write_buf updere ct_tally

9 scan_tree updcre flush_block ct_tally write_buf
10 gen_codes scan_tree scan_tree write_buf updcre

MEASURING THE IMPORTANCE OF FUNCTIONS 729

RMMS(cflow) Probability Distribution
100 T T T T T T T T I

+ cflow-1.0
o + cflow-1.1 | 7
+ cflow-1.2
B0 & eflow-1.3 | 7
LV 7o ocflow-1.4] |
o
=
S G0 =
5
F S0 -
g
= v -
a1}
i
£
b o4 -
W
el -
ok 4w v 0w |
TV W VT v
] i '&ﬁ%ﬁ%' Lol — Lo o oL o4 H #
0 ooz DDk 06 008 01 012 014 0.15 0.18 02

RMMNS

FiGUurE 7. RNMS distribution of different versions of cflow

]

_é 3 & & & —0—gzip
= - v cflow
el

1

Version
F1GURE 8. The number of key nodes in different versions

Table 8 shows that change of functions’ importance is within a small range in each ver-
sion. Function scan_tree calls itself for 36028 times in cflow-1.3, after code is optimized,
in cflow-1.4, function scan_tree does not call itself, so the importance of function scan_tree
in network relatively drops in cflow-1.4. RNMS of functions lookup, print_symbol, ident,
gnu_output_handler and nexttoken is bigger in every version. Therefore, we can predict
that the importance of these functions will remain in updating of versions. In order to
improve software stability and robustness, developer should provide more targeted pro-
tection and defence to these important functions during the process of that they develop
next version.

5. Conclusions. In order to accurately reflect relationship of function calls when soft-
ware executing, this paper proposed a novel method to measure the importance of func-
tions in software executing network. We map process of software executing to software
execution directed-weighted network. Functions are defined as nodes, relationships of
calls between functions are abstracted as edges, and times of function calls are set to
weight. Considering tightness between functions, we build directed-weighted adjacency
matrix M and define node measurement score (NMS) and node relative score (RNMS).
Node_score algorithm is presented to calculate RNMS of each node in software execut-
ing network, and then important node will be found. Experimental results demonstrate

730 H. HE, J. WANG AND J. REN

TABLE 8. Function of software executing network of each cflow version
importance ranking

cflow-1.0 cflow-1.1 cflow-1.2 cflow-1.3 cflow-1.4
1 scan_tree scan_tree scan_tree scan_tree lookup
2 lookup lookup lookup lookup hash_symbol_compare
3 print_symbol hash_symbol_compare hash_symbol_compare print_symbol hash_symbol_hasher
4 nexttoken print_symbol print_symbol hash_symbol_compare print_symbol
5 hash_symbol_compare nezttoken nezttoken nexttoken ident
6 gnu_output_handler hash_symbol_hasher gnu_output_handler gnu_output_handler deref_linked_list
7 hash_symbol_hasher gnu_output_handler hash_symbol_hasher hash_symbol_hasher static_free
8 ident ident ident ident gnu_output_handler
9 include_symbol unlink_symbol unlink_symbol deref_linked_list nexttoken
10 alloc_cons_from_bucket include_symbol include_symbol static_free yylex

that Node_Score algorithm this article proposed can accurately measure the importance
of each node in software network. By calculating RNMS of each node in every version of
software, we analyze distributions and changes of nodes RNMS in various versions and
in order to guide developer provide more targeted protection and defence to the more
important nodes, we predict the important nodes in the network in the process of version
upgrade.

Acknowledgment. This work is supported by the National Natural Science Founda-
tion of China under Grant No. 61170190, and the Natural Science Foundation of Hebei
Province P. R. China under Grant No. F2012203062, No. F2013203324 and No. F20142031
52. Authors also gratefully acknowledge the helpful comments and suggestions of review-
ers, which have improved the presentation.

REFERENCES

[1] E. Zio, L. R. Golea and G. Sansavini, Optimizing protections against cascades in network systems:
A modified binary differential evolution algorithm, Reliability Engineering € System Safety, vol.103,
pp.72-83, 2012.

[2] S. M. Chen, X. Q. Zou, H. Lv and Q. G. Xu, Research on robustness of interdependent network for
suppressing cascading failure, Acta Phys. Sin., vol.63, no.2, 2014.

[3] S. Valverde and R. V. Sole, Hierarehieal small worlds in software architecture, Working Paper of
Santa Fe Institute, SF1/03-07-44, 2003.

[4] C. Myers, Software systems as complex network: Structure, functions, and evolvability of software
collaboration graphs, Physical Review FE, vol.68, no.4, 2003.

[5] K.Y. Cai and B. B. Yin, Software execution processes as an evolving complex network, Information
Sciences, vol.179, no.12, pp.1903-1928, 2009.

[6] J.Ma, D. Zeng and H. Zhao, Modeling the growth of complex software function dependency networks,
Information Systems Frontiers, vol.14, no.2, pp.301-315, 2012.

[7] L. C. Freeman, Centrality in social network: Conceptual clarification, Social Networks, vol.1, no.3,
pp-225-239, 1979.

[8] D. S. Callaw, M. E. J. Newman and S. H. Strogatez, Network robustness and fragility: Percolation
on random graphs, Physical Review Letters, vol.85, n0.25, pp-5468-5471, 2000.

[9] X. F. Wang, Complex network: Topology, dynamics and synchronization, International Journal of
Bifurcation and Chaos, vol.12, no.5, pp.885-916, 2002.

[10] P. Holme, B. J. Kim, C. N. Yoon et al., Attack vulnerability of complex networks, Physical Review
E, vol.65, no.5, 2002.

[11] F. Radicchi, Who is the best player ever? A complex network analysis of the history of professional
tennis, PLoS One, vol.6, no.2, 2011.

[12] M. Kitsak, L. K. Gallos, S. Havlin, F. Liljeros, L. Muchnik, H. E. Stanley and H. A. Makse, Identi-
fication of influential spreaders in complex network, Nat. Phys., vol.6, no.11, pp.888-893, 2010.

[13] N. Masuda and H. Kori, Dynamics-based centrality for directed networks, Physical Review E —
Statistical, Nonlinear, and Soft Matter Physics, vol.82, no.5, 2010.

[14]

[15]
[16]
[17]

[18]

MEASURING THE IMPORTANCE OF FUNCTIONS 731

J. Ugander, L. Backstrom, C. Marlow and J. Kleinberg, Structural diversity in social contagion, Proc.
of the National Academy of Sciences of the United States of America, vol.109, no.16, pp.5962-5966,
2012.

P. Bhattacharya, M. Iliofotou, I. Neamtiu and M. Faloutsos, Graph-based analysis and prediction
for software evolution, Proc. of International Conference on Software Engineering, pp.419-429, 2012.
D.-B. Chen, H. Gao, L. Lv and T. Zhou, Identifying influential nodes in large-scale directed networks:
The role of clustering, PLoS One, vol.8, no.10, 2013.

S. Xiao and G. Xiao, On intentional attacks and protections in complex communication networks,
Global Telecommunications Conference, pp.1-5, 2006.

A.S. Abdel-Rahim, B. M. Aly Ahmed and Y. Ochoa-Huaman, A qualitative approach to analyze the
security and survivability of critical infrastructure networks, International Journal of Engineering
and Technology, vol.6, no.1, pp.60-64, 2014.

