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Abstract. Control systems are a tool of major potential in the environmental field, and
among them, the most widely used type is the Proportional Integral Derivative (PID) con-
troller. However, its operation depends on parameters (Kc, τI , and τD), which usually
may be adjusted by trial and error, in an expensive process. The objective of this study
was to use the experimental design methodology, through a Central Composite Rotational
Design (CCRD), to tune the parameters of a PID controller, while applying the control
system to an absorption column for biogas purification, simulated through a mathemat-
ical model. The regulatory problem was addressed through a feedback controller, whose
performance was evaluated by the ITAE criterion (Integral of Time weighted by the Ab-
solute Error). The experimental design matrix consisted of 23 factorial runs, six runs
in the axial points and three repetitions at the central point. The response variable was
the ITAE criterion, and the factors were the controller parameters. The quadratic model
fitted for ITAE response was proven valid and predictive for the study range, through
an analysis of variance. The optimal values of controller parameters, found through the
CCRD, made the controller able to keep the system stable, even with the insertion of
various disturbances.
Keywords: Biogas purification, Biomethane, Experimental design

1. Introduction. The use of control systems has numerous applications in the environ-
mental field and may prove to be very useful in situations such as pollutant minimization
and increase of process efficiency. Among the controller types, the most widely used is
the PID controller (Proportional Integral Derivative), because of its proven effectiveness
as well as the relative simplicity required for its operation [1].

The design of these controllers requires the determination of three parameters: propor-
tional gain (Kc), integral gain (τI) and derivative gain (τD), which are adjusted in each
case in a process called tuning [2]. Finding satisfactory values for these parameters is not
an easy task without a systematic procedure [3]. Several studies have been published in
recent decades which present methodologies for the tuning of PID parameters, such as
methods based on mathematical models, with highlights to the works of Ziegler-Nichols
[4], Cohen and Coon [5] and López et al. [6], as appointed by [7].

Such methods, however, only provide an initial estimate of the parameters, requiring a
further fine-tuning commonly done by trial and error, thus spending time and resources
[2,8-10]. Several strategies have been proposed in recent years to replace the traditional
models, such as automatic tuning, artificial neural networks, FOPTD (First Order Plus
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Time Delay), and EVRFT (Enhanced Virtual Reference Feedback Tuning) [1,11], and as
such, the search for alternative tuning techniques is a promising research field.

It is desirable for industrial processes control systems to be able to meet servo and
regulatory problems; however, each of these applications will have an optimal set of values
for the parameters, requiring a global optimum solution [12,13].

Single-input single-output PID controllers have been used for Multiple-Input Multiple-
Output (MIMO) plants for many years. For MIMO plants that are already reasonably
well-decoupled, multi-loop SISO PID design can work well. An alternative to multi-loop
SISO PID control is to design one MIMO PID controller, which uses matrix coefficients, all
at once. The challenge is in tuning MIMO PID controllers, which require the specification
of three matrices, each with a number of entries equal to the number of plant inputs times
the number of plant outputs [14].

In this sense, the controller parameters tuning becomes an even more complex task,
which reinforces the applicability of experimental planning methodologies as tools for PID
controller tuning process.

Empirical modeling can be used to analyze systems or processes when multiple variables
(factors) may exert significant effects on their responses. For that, it is increasingly
common to make use of experimental design, a tool that allows to obtain optimal results
while requiring less runs.

The Central Composite Rotational Design (CCRD) is one of the most useful experi-
mental planning methodologies when there are two or three factors. In this way, CCRD
may be used to evaluate the optimal values for a set of controller parameters (Kc, τD

and τI), which provide the best result to a performance criterion, such as the integral of
time-weighted absolute error – ITAE. This method can also be applied to a simultaneous
optimization process, i.e., when searching for optimal values of controller parameters for
both regulatory and servo problem. Therefore, another process response would be added:
ITAE for regulatory problem and ITAE for servo one.

In order to test the experimental design methodology CCRD as a tool to optimize
the PID controller parameter tuning process, a study case in the environmental field is
presented, in which a tray absorption column aimed at removing CO2 from biogas was
simulated through a mathematical model. A PID controller was implemented and its
parameter tuning was made by CCRD.

A diversification in the global energy matrix is needed and biogas is one of the most
promising alternative sources. It is a gas mixture consisting primarily of Methane (CH4),
Carbon Dioxide (CO2) and Hydrogen Sulfide (H2S), produced from the anaerobic digestion
of organic matter from waste treatment processes (urban, agricultural, etc.) – another
environmental benefit. It may be used in various ways depending on its composition and
purity [15].

Several studies have been done regarding H2S removal from biogas, due to its corrosive
characteristics. However, removal of CO2 also presents great advantages, since once the
other gases are removed, it is possible to obtain biomethane, a product with very similar
characteristics to natural gas and that can replace it. To be considered biomethane, ac-
cording to recommendations of the National Petroleum Agency of Brazil (ANP Resolution
N◦8 01.30.2015) biogas should have a carbon dioxide concentration of 3% maximum.

One of the technologies that can be used to remove CO2 from biogas is a tray absorption
column. The basic operation of this equipment consists in the contact between a liquid
stream, which by concentration gradient will absorb a particular pollutant present in a
counter-current flow of gas stream. In this study, a pressurized column was chosen, to
increase the efficiency of CO2 removal, and the liquid stream was water.
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The required liquid flow depends on several factors, such as solute concentration in the
two phases, solute equilibrium between the two phases, and inlet CO2 concentration. The
non-compatibility of these two parameters (water flow and CO2 concentration in biogas)
impairs the system’s operation, leading to waste of liquid stream in one case, or to reduc-
tion in treatment efficiency in the other. Both situations provide loss of environmental
quality, hence explaining the importance of the use of a PID controller in this system.

This paper is organized according to the following aspects: (1) An experimental de-
sign methodology, Central Composite Rotational Design, was used to provide an efficient
PID controller tuning with fewer runs; (2) The applicability of this tuning methodology
was tested in a study case in the environmental field; (3) A tray absorption column is
supposed to make feasible the contact between biogas and water (solvent) flow rates in
order to reduce the CO2 concentration in the outlet gas stream; (4) A PID controller was
implemented in the simulated absorption column to manipulate the inlet water flow rate
to ensure efficient biogas purification and also water saving; (5) After a first estimation
of Kc, τD and τI values, the independent variables ranges were defined, as well as the
experimental design matrix; (6) The integral of time-weighted absolute error – ITAE was
used to evaluate the controller performance; (7) A quadratic model (function of the fac-
tors Kc, τD and τI) for ITAE was fitted from the tests results; (8) The PID tuning was
made based on the quadratic model for ITAE, on an optimization process.

2. Materials and Methods.

2.1. Studied system characterization. The studied system was composed of a tray
absorption column, through which compressed biogas flows upward, and water downward,
aiming to remove carbon dioxide present in biogas. Figure 1 illustrates the equipment
and utilities arrangements for the purification.

Figure 1. Equipment and utilities chart

In Figure 1, the following abbreviations are used: B, biogas; BM, biomethane; C01,
absorption column; T01, reservoir tank of water; P01, water inflow pump; P02, water
outflow tank; GAS01, reservoir tank of biogas; C01, compressor; GAS02, reservoir tank
of biomethane; W, water; WCD, water with carbon dioxide dissolved; F, flare.

In the system represented in Figure 1, water inflow is manipulated to control the dis-
solved carbon dioxide in the biogas outflow according to the set point.
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While the system is undisturbed and without the controller’s actions (open loop), the
water flow, corresponding to 2783 cm3.s−1 (about 10 m3.h−1) is moved from a T01 tank
to the highest elevation by pump P01, overcoming a positive shift of about 34 w.c.m. In
closed loop the water flow is controlled by the PID controller. Biogas originated from
biogas reservoir GAS01 is sent to the column at a flow rate of 50 m3.h−1 by a compressor
C01, which compresses it at 3 atm.

The effluent water flow of about 27.5 m3.h−1 (17.5 m3.h−1 of it corresponding to CO2)
is returned to the T01 tank to be decompressed and release CO2. Effluent biomethane
(flow of 33.2175 m3.h−1 in a scenario without disturbances, corresponding to methane
flow plus 3% CO2) is sent to biogas reservoir GAS02 and subsequently forwarded for sale.
The biogas reservoir GAS02 has a flare burner for emergencies and excesses burning.

2.2. Absorption column modeling and simulation. The dynamic model developed
by Maia [16] was used to perform the modeling and simulation of the absorption column.
The model refers to a column with N plates, where there is physical absorption of a gas
component. Plates are numbered in descending order, in that gas feeding takes place at
the N -th plate, and liquid in the first plate.

The model was obtained from the overall mass balances for each stage n, mass balances
for the component which is absorbed in each stage n, equilibrium relationship and Francis
equation.

CO2 solubility in water for the described conditions was calculated by the equilibrium
equation Y = 545 X, where X is the CO2 mole fraction in the liquid phase, and Y is the
CO2 mole fraction in the gas phase. The equilibrium relationship was obtained through
Henry’s Law, Henry’s constant values for CO2 and the system pressure.

For the column mathematical model, the following simplifications were used [17]: 1)
Only one component is transferred from one phase to another; 2) Absorption is considered
isothermal; 3) Each stage is considered as ideal; 4) Solute transferring between phases does
not change gas or liquid flows; 5) Pressure is constant along the column; 6) It is assumed
no amount of gas is trapped between stages.

For the study, the composition considered for the biogas is shown in Table 1.

Table 1. Biogas composition considered for the study

Component Concentration (% in volume)
Methane (CH4) 64.5

Carbon dioxide (CO2) 35
Hydrogen sulfide (H2S) 0.5

To achieve molar balance, biogas was considered as a binary mixture of carbon dioxide
and other gases classified as “non-carbon-dioxide”, i.e., methane majority, and hydrogen
sulfide as a small fraction. In the simulation absolute values for both flows and the
fractions moles of the component were used. Table 2 shows the values used for absorption
column parameters.

The column parameters were determined as follows: the operation temperature corre-
sponds to the average temperature of the region in which the study was carried out, which
is an area of great potential for biogas production; the gas flow rate was adopted from
empirical values of the amount of biogas produced in a rural property in said region; the
operation pressure was selected according to literature data, such as [18-20]; the water
flow rate was estimated according to Magalhães et al. [20] and the number of ideal stages
(N) was calculated through equilibrium equation and mass balances; and the sizing and
project were carried out according to Spellman and Whiting [21].
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Table 2. Absorption column parameters

Parameter Value
Temperature 25◦C

Pressure 3 atm
Plate area 210 cm2

Spillway height 8 cm
Number of ideal stages (N) 5

Gas flow (G) 0.1987 mols.s−1

Initial liquid flow (L0) 154.5914 mols.s−1

CO2 concentration in the affluent liquid (X0) 0
CO2 concentration in the affluent gas (Y6) 0.5394 mols.s−1

Through the Francis equation, an equation for liquid retention in the plate was reached,
and by isolating the liquid flow leaving each plate, Equation (1) is obtained:

Ln = ρnLW

[
1

c

(
Mn

Paρn

− sh

)] 3
2

(1)

where:
ρn = Average specific molar mass of the mixture (moles/cm3)
Pa = Plate area (cm2)
c = Constant (cm−1/3s2/3)
sh = Spillway height (cm)
LW = Spillway length (cm)
Ln = Liquid flow leaving each plate (cm3s−1)
Controller programming and simulation applied to the column were developed in MAT-

LAB software R2013b version.

2.3. Absorption column control. Control of the absorption column was carried out
using a PID feedback controller, and the column regulatory problem was addressed. The
manipulated variable is the affluent water flow to the column, and the controlled variable
corresponds to the component (CO2) concentration in the gas stream effluent to the
column. The value of the controlled variable should remain close to the set point value
(desired value for CO2 mole fraction in biomethane). The set point value, as previously
defined, was 3%, which is equivalent to an absolute concentration of 0.0309 (mols of
CO2).(mols of liquid)−1.

The PID controller applied to the regulatory problem for the absorption column had
its modeling performed from the control law, which led to Equation (2):

L0(kSt) = L0(kSt − St) + Kce(kSt) +
St

τI

k∑
i=0

e(iSt) + τD

(
e(iSt) − e(iSt − 1)

St

)
(2)

where L0 is the solvent flow at column entrance; k is the sampling instant; St is the sam-
pling time; Kc is the controller gain; τI is the integral time constant; τD is the derivative
time constant; e is the error.

The step of tuning the controller parameters refers to finding optimal values for con-
stants Kc, τD and τI . The numerical values for proportionality constants Kc, τD and τI

were defined using the experimental design methodology through a Central Composite
Rotational Design whose study range was defined from an initial estimate.
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The initial estimate was made using the method proposed by López et al. [6], based
on ITAE performance criterion, which uses Equations (3), (4) and (5):

Kc =
a1

Kp

(
td
τp

)b1

(3)

τI =
τp

a2

(
td
τp

)b2

(4)

τD = a3τp

(
td
τp

)b3

(5)

where Kp is the process gain, td the dead time of the process, τp the time constant and
the values for coefficients a1, a2, a3, b1, b2 and b3 are shown in Table 3 [6].

Table 3. Equation coefficients values

Coefficient Value
a1 1.357
a2 0.842
a3 0.381
b1 −0.947
b2 −0.738
b3 0.995

Source: López et al. [6]

Values for Kp, td and τp were obtained through the analysis of the response graph
(controlled variable) of a simulation performed in open loop in which a 20% negative
perturbation has been inserted in the manipulated variable, at instant 5 s. Thus, water
inflow value was reduced by 20% from that moment on. In Figure 2 it can be seen from
the chart how the parameters were obtained.

Figure 2. Chart for parameters estimation

In Figure 2, the following abbreviations were used: B, response value after system
stabilization; td, point where the tangent line to the inflection point of the curve intersects
time axis (located on the ordinate corresponding to the set point); S, angular coefficient
of the tangent line.

The Kp value is obtained from the ratio between A and B, where A corresponds to
the magnitude of the disturbance applied to the manipulated variable (in the same unit
as the variable), and B is the response value after system stabilization. τp value is then
obtained from the ratio between B and S.
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3. Evaluation of CCRD as a PID Tuning Methodology.

3.1. Experimental design. The performed CCRD was a factorial design 23, with eight
factorial runs, six axial point runs, and three repetitions at the central point. The inde-
pendent variables were the controller parameters Kc, τD and τI .

The response variable was the ITAE performance criterion, which is the absolute error
integral weighted for time, shown by Equation (6).

ITAE =

∫
|e|.tdt (6)

where e is the error, i.e., the difference between the controlled variable and set point; t
is time. The experimental design runs were performed using simulations in a program
developed on the software MATLAB. All runs were performed with the same conditions,
which are presented in Table 4.

Table 4. CCRD simulation conditions

CO2 initial normal mole fraction 0.35
Disturbance CO2

normal molar fraction
0.4

Disturbance instant 100 s
Maximum time simulation 3000 s

The system is initially at set point, wherein the biogas entering the column has a CO2

concentration of 35%, and biomethane leaving the column has the desired concentration
of 3% CO2. At time equal to 100 s, it is inserted a disturbance in the affluent biogas
CO2 concentration in that it rises from 35% to 40%. It produces, as effect, an effluent gas
whose CO2 concentration higher than desired (set point), until the controller gets into
action.

The results obtained with the CCRD were analyzed with the Statistica v.7 software in
order to obtain a predictive model for the ITAE value as a function of the parameters Kc,
τD and τI .

The obtained model makes it possible to find an optimal set of controller parameters
to minimize ITAE value, i.e., improving controller performance.

3.2. Initial estimation of controller parameters. The implementation of the column
modeling program using the MATLAB environment enabled to simulate its operation for
given disturbances. The graph used to obtain the parameters for the initial estimation of
controller parameters, generated by inserting the disturbance in the manipulated variable,
can be found in Figure 3.

In Figure 3, the line corresponds to the molar concentration of carbon dioxide dissolved
in the biomethane that leaves the column.

The values of A, B and S obtained from the results shown in the graph, the values for
td, Kp and τp, used for the estimation, and the initial estimates results for the Kc, τI and
τD controller parameters are shown in Table 5.

A system simulation was performed with the values of the initial estimate for the
controller and it was obtained of an ITAE value equal to 0.44346, with CO2 concentration
value of exiting gas approaching the set point around 3000 s. Overshoot reached close
to 0.037 mols.s−1 in absolute fraction, which corresponds to 0.356 normal fraction. The
initial parameters simulation is shown in Figure 4.
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Figure 3. Graph for determination of constants for the initial estimate

Table 5. Initially estimated controller parameters

Values obtained from
the graph (mols/s)

Estimate parameters
Initial estimate

controller parameters
A 30.92 Kp 0.062 Kc 948.89
B 0.0628 td 0.4 τI 479.88
S 0.0029 τp 21.414 τD 0.155

Figure 4. Column control simulation with the estimated initial values of
controller parameters
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In Figure 4, the dotted line corresponds to the molar concentration of carbon dioxide
dissolved in the biomethane that leaves the column, and the continuous line to the set
point.

3.3. Experimental design matrix and effects of studied variables. CCRD study
ranges were set from the initial estimates and preliminary tests. The criterion used was
to take approximately twice the amount of the initial estimate for the upper limit, and
half for the lower range limit. Since the lower value for τD would be close to zero, the
study range was extended to zero for this parameter.

By definition of the used method (CCRD) and number of variables, the encoded value
to the upper limit of the range corresponds to +1.68, and the lower limit corresponds to
−1.68. To obtain the decoded intermediate range values for the variables, linear interpo-
lations were performed, according to Equations (7), (8) and (9):

Kcreal
= 424.1Kccod

+ 1187.5 (7)

τIreal
= 214.3τIcod

+ 600 (8)

τDreal
= 0.089τDcod

+ 0.15 (9)

Study ranges for Kc, τI and τD variables of CCRD are presented in Table 6.

Table 6. Real and encoded values of variables used in the CCRD methodology

−1.68 −1 0 1 1.68
Kc 475 763.4 1187.5 1611.6 1900
τI 240 385.7 600 814.3 960
τD 0 0.061 0.150 0.239 0.300

The experimental design matrix and the results obtained from simulations with the
conditions set out in CCRD are shown in Table 7.

Table 7. Experimental design matrix and simulation results using the CCRD

Run Kc τI τD ITAE
1 −1 −1 −1 0.6023
2 +1 −1 −1 0.1979
3 −1 +1 −1 0.6547
4 +1 +1 −1 0.1995
5 −1 −1 +1 0.6017
6 +1 −1 +1 0.1978
7 −1 +1 +1 0.6541
8 +1 +1 +1 0.1995
9 0 0 0 0.2879
10 0 0 0 0.2879
11 0 0 0 0.2879
12 +1.68 0 0 0.2641
13 −1.68 0 0 1.1632
14 0 +1.68 0 0.2879
15 0 −1.68 0 0.2679
16 0 0 +1.68 0.2874
17 0 0 −1.68 0.2883
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Test responses ranged from 0.1979 to 1.1632, and the lowest found value represents
about 55% improvement in ITAE in comparison to the simulation using the initial es-
timated values. There was no noticeable variation among the central points, indicating
good process repeatability, which was to be expected given it is a simulation.

It is noticed that in general a setting that features higher ITAE value tends to need
more time to reach set point after a disturbance. For example, with the configuration of
run 13, 1900 seconds are necessary, whereas in run 9 it takes about 1100 seconds.

It is also important to note the relation between the ITAE value and the time during
which the controller’s response is above the set point. With the configuration of run 13,
the controller’s response was held for about 300 seconds above the set point, while in trial
7 it held about 200 seconds, and in trial 9 for about 100 seconds.

Thus, analyzing CCRD results shown in Table 7, it was possible to calculate the effects
of the three studied variables, which are presented in Table 8.

Table 8. Effects of studied variables on CCRD for the ITAE performance
criterion response

Factors Effecta Standard error t(7) p-value
Meanb,c 0.289338 0.022779 12.7021 4.33 × 10−6*
Kc(L) −0.473263 0.021407 −22.1081 9.78 × 10−8*
Kc(Q) 0.292010 0.023583 12.3821 5.15 × 10−6*
τD(L) 0.020750 0.021407 0.9693 0.3647
τD(Q) −0.016808 0.023583 −0.7127 0.4991
τI(L) −0.000393 0.021407 −0.0183 0.9859
τI(Q) −0.009711 0.023583 −0.4118 0.6928

Kc by τI −0.025401 0.027957 −0.9086 0.3938
Kc by τD 0.000258 0.027957 0.0092 0.9929
τI by τD 0.000005 0.027957 0.0002 0.9998
aEffects presented in seconds; bL = linear terms; cQ = quadratic terms; *p ≤ 0.05.

3.4. Quadratic model for ITAE. The results from the experimental runs also allow to
obtain a quadratic model of ITAE as a function of the statistically significant variables,
as well as the optimal values for the PID parameters. Figure 5 shows the Pareto chart
for the experimental design matrix, which allows a more clear observation of which model
parameters are significant.

In Figure 5, the bars indicate which parameters had its p-value inferior to the signifi-
cance level, shown in the dashed line.

As it is seen in the chart, among the studied variables, only the linear and quadratic
terms of Kc parameter (controller gain) were statistically significant, presenting a p-value
lower than the significance level (5%). Thus, the other two parameters can be fixed at any
point within the study range. For τD, that means it can be placed at the encoded value
−1.68, which corresponds to the real zero, and as it is, it does not influence significantly
on the system control.

The analysis of the experimental design results allowed to determine the regression
coefficients shown in Table 9, in order to obtain a quadratic model for the response
(ITAE performance criterion), as a function of the significant parameters related to the
studied variables.

It is observed that the p-value for the significant terms was much lower than 0.05,
confirming its significance. It is also important to notice the low standard error values
for the terms, of less than 1%. The model shown in Equation (10) was obtained from
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Figure 5. Pareto chart for the experimental design matrix

Table 9. Regression coefficients for the ITAE performance criterion response

Regression coefficients Standard error t(14) p-value

Mean 0.276275 0.010623 26.0083 2.98 × 10−13

Kc(L) −0.236632 0.008732 −27.0989 1.69 × 10−13

Kc(Q) 0.149020 0.008953 16.6448 1.28 × 10−13

*p ≤ 0.05; L – linear terms; Q – quadratic terms.

Table 10. ANOVA for the quadratic model of the ITAE criterion as func-
tion of the significant terms

Variation source SQa GLb QMc Fcalculated Ftabulated p-value

Regression 1.052284 2 0.526142144 505.700 3.74 8.84 × 10−14

Residues 0.014566 14 0.001040424

Total 1.066850 16

% explained variation (R2) = 98.63%; a = square sums; b = degrees of freedom; c = mean squares.

the statistically significant parameters, and describes the ITAE value as a function of the
encoded Kc value.

ITAE = 0.276275 + 0.14902K2
c − 0.236632Kc (10)

The non-significant parameters were added to the residue for the analysis of variance
(ANOVA), as shown in Table 10, in order to determine the statistical significance of the
model.

It can be seen that the F test value (505.7) for the regression was highly significant
(p-value 8.84 × 10−14), about 135 times higher than the critical value (3.74) which is
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adequate, taking account of that to validate the model, the calculated F should be at
least 4 to 5 times higher than the critical value [22]. Variance percentage explained by
the model was also adequate (R2 = 98.63%), almost reaching 99%. Thus, the model is
predictive for the study range.

3.5. Optimal regions and values for the PID parameters. The model was used to
generate response surface and contour lines charts. Surfaces were generated as a result of
Kc and τI or τD, setting the remaining variable at the central point. Figure 6 shows the
ITAE response surface as a function of Kc and τI , with τD set at central point, and below
is the ITAE response surface as a function of τD, with τI fixed at central point.

Figure 6. ITAE response surfaces and contour lines

In it Figure 6(a) corresponds to the response surface of ITAE as a function of Kc and τI ,
with τD fixed in the central point; Figure 6(b) to the contour plot of ITAE as a function
of Kc and τI , with τD fixed in the central point; Figure 6(c) to the response surface of
ITAE as a function of Kc and τD, with τI fixed in the central point; and Figure 6(d) to
the contour plot of ITAE as a function of Kc and τD, with τI fixed in the central point.

The response surfaces and contour lines presented indicate that the optimal range for
Kc, the only significant variable, is between approximately 0.5 and 1.1 for coded values,
which represent 1400 to 1654 in real values.

The optimal value for Kc was found in order to optimize the process and to validate the
model in experimental conditions. To this end the model was derived and the derivative
was equal to zero, for it represents a point of minimum on the curve. As the τD and τI

variables were proven not to be significant, they are not included in the model and were
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Table 11. Real and coded values of optimal conditions

Value Kc τI τD

Coded 0.79396 0 0
Real 1524 600 0.15

Figure 7. Simulation to validate optimal conditions

fixed in the central points of the study range. Real and coded values for the variables
optimal conditions are presented in Table 11.

Validation of the optimal values for the PID parameters. To validate the con-
troller’s optimal conditions, a simulation with the same conditions used in the CCRD was
carried out. The response chart of this simulation is shown in Figure 7 along with the
simulation response for the initial parameters, under the same conditions, for comparison.

In Figure 7, the dotted line corresponds to the molar concentration of carbon dioxide
dissolved in the biomethane that leaves the column, when the initial parameters are used;
the dashed-dotted line corresponds to the molar concentration of carbon dioxide dissolved
in the biomethane that leaves the column, when the optimized parameters are used; and
the continuous line corresponds to the set point.

The controller’s time response chart indicates very good performance, highlighting the
low time to reach set point and the very low time that the controlled variable remains
above the set point (30 seconds). By analyzing the chart, it is expected that the ITAE
value would also be low, given the small area covered by the curve.

The simulation enabled to find the ITAE value for the configuration, which was com-
pared to the value predicted by the model for the optimal condition. Results as well as
the model prediction error are shown in Table 12.

The value predicted by the model was very close to the real value obtained from the
simulation. The difference was just over a tenth, representing approximately 8.65% of
the actual value. The model prediction error was less than 10%, confirming proper model
adjustment to the experimental data. Thus, as indicated by the ANOVA, the model is
indeed valid and predictive for the study range.
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Table 12. Model validation in optimal conditions

ITAE value using
the initial estimated

values for the
parameters

ITAE value predicted
by the model for the

simulation in the
optimal conditions

ITAE value obtained
from the simulation

in the optimal
conditions

Model
prediction
error (%)

0.44346 0.182337 0.199602 8.65%

It was also noted that the ITAE value obtained with the simulation in optimal con-
ditions represented a 50% reduction in the value obtained using the values initially es-
timated for the parameters, which indicates a significant improvement in the controller
performance.

3.6. Performance assessment of the tuned PID controller. After proving the qua-
dratic model validity, it is necessary to prove the proposed control system effectiveness
with optimized parameters. Therefore, it would be appropriate to verify how it performs
with disturbance values different from those used in the experimental design.

Thus, other simulations were carried out, whose ITAE conditions and resulting value
are presented in Table 13. In order for the tests to have a good coverage, it was used
positive (runs 1 and 2) and negative (run 3) disturbances, and also, a simulation with a
positive disturbance followed by a negative disturbance after the stabilization of the first
one (run 4).

Table 13. Simulations for control system checking

Run
Time of

disturbance
insertion

Maximum
Simulation

Time

Normal CO2 mole
fraction in biogas

prior to
disturbance

Normal CO2 mole
fraction in biogas,

Y(6), after
disturbance

ITAE for
the initial
parameters

ITAE for
the optimized
parameters

1 100 3000 s 0.35 0.45 0.9046 0.4925089
2 100 3000 s 0.35 0.5 1.1779 0.9892596
3 100 3000 s 0.35 0.25 1.4110 0.5885905

4
100

3000 s
0.35 0.4

2.4740 1.5411411500 0.35 0.3

ITAE values of runs with the optimized parameters remained low, presenting the same
order of magnitude as those obtained with the CCRD, even with more significant or
negative disruptions. The only run in which ITAE value was superior to the maximum
obtained with the CCRD was the fourth run, in which two disturbances were inserted.
In comparison, runs with the initial parameters obtained higher ITAE values in all sim-
ulations. The controller performance in each case becomes more visible observing the
(absolute) molar fraction charts of CO2 in biomethane over time.

Figure 8 corresponds to the controller response graph for run 1.
It is noticed that for run 1, with a disturbance about 15% higher than the one imple-

mented in the CCRD, the controller with optimized parameters also acted efficiently, as
it required a low time to reach the set point, presenting few fluctuations. When compared
to the initially estimated values, one can see a 45% reduction in the ITAE value. The
superior performance for the controller with optimized parameters can also be verified in
Figure 8, since it clearly presents fewer errors and takes less time to return to set point.
With the initial parameters the controller takes about 1500 s, whereas with optimized
parameters it requires only about 250 s.
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Figure 8. Response graph for run 1 with the initial and optimal parameters

Figure 9. Run 2 response chart with initial and optimal parameters

Figure 9 corresponds to the controller response graph for run 2.
In run 2, in which a disturbance 30% higher than that of the CCRD was inserted, the

control system also worked effectively, though as reflected by the ITAE value, the error
was slightly higher. The ITAE value for optimized parameters was 16% lower than the
value for the initial estimate parameters. Using those, the controller took about 750 s
more to return to set point (1000 s against 250 s).

The controller response graph for run 3 is shown in Figure 10.
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Figure 10. Run 3 response graph with initial and optimal parameters

Figure 11. Run 4 response graph with initial and optimal parameters

In Test 3, wherein the inserted perturbation had the same magnitude of run 1, though a
negative rather than positive one, also showed good results with the optimized parameters.
However, due to the disturbance characteristics, the time lapse in which the controlled
variable value remains above set point is higher. Again, it is possible to see that the
control system showed few oscillations and an error lower than that of the simulation
with the initial estimate parameters, which is a reduction of about 58% in ITAE.

The controller response graph for run 4 is shown in Figure 11.
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In run 4, it was initially inserted a disturbance similar to that of the CCRD, and after
the system was stable, another of equal magnitude, except negative, was inserted. This
simulation was particularly interesting because it allowed to verify the control system
response to the insertion of successive disturbances, which are very common in real scale.
Even in this situation the controller proved its stability, making the controlled variable
return to the set point after both perturbations.

Regarding the simulation with the initial parameters, there was a 38% reduction in
ITAE value, which can be visualized in the graph (Figure 11). For the first disturbance
the controller with the optimal conditions returned to set point in approximately 250 s,
as opposed to about 1000 s with the initial conditions. As for the second disturbance, the
time to return to set point was 2750 s against around 3000 s.

Therefore, the values found for the controller parameters using the experimental design
methodology proved adequate and provided a better performance of the controller than
the values with the initial estimate, keeping the system stable even after the introduction
of different disturbances, and usually presenting a relatively low accumulated error, as
well as few oscillations until it reaches set point.

4. Conclusions. This work aimed to simulate the implementation of a control system
in a biogas purification system for carbon dioxide removal, optimizing the tuning of its
parameters through a novel methodology for this purpose: the experimental design.

The viability of the use of experimental design methodology to tune PID controller pa-
rameters for the studied system was proved. The use of CCDR made it possible to identify
which parameters are statistically significant within the study range, obtain optimal re-
gions for the parameters, obtain a quadratic model of the ITAE performance criterion
as a function of the significant variable Kc, which was proved valid and predictive to
the range through the ANOVA test, as well as through experimental validation, and find
optimal values for the controller parameters. The control system with these values had
its performance proven solid through simulations with the insertion of disturbances of
various magnitudes, in which, as a whole, the controlled variable was stabilized at the set
point within short time lapses, while presenting a low accumulated error value, as well as
few oscillations.

As evidenced by the graphs shown in this paper, the correct selection for the parameter
values is essential in order for a PID control system to present a good performance. Thus,
the availability of a methodology that enables good results while requiring fewer tests
than the traditional methods (trial and error), and that in addition, presents a statistical
basis, appears to be highly advantageous. With its efficiency now proven for PID controller
tuning, this methodology could be tested in more complex problems within the systems
control field, some of which were mentioned previously, such as finding global optimal
values for both servo and regulatory problems, as well as for MIMO plants.
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[6] A. M. López, J. A. Miller, C. L. Smith and P. W. Murril, Tuning controllers with error-integral
criteria, Instrumentation Technology, vol.14, pp.57-62, 1967.
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