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Abstract. The nerve of brachial plexus controls the sensory of human upper limb. Ac-
curately segmenting this nerve structure on ultrasound images is the premise for upper

limb surgical anaesthesia. However, auto-segmentation is extremely difficult because it

demands taking account of the global anatomical dependencies and organ elastic defor-
mation. In this work, we develop a deep adversarial neural network to overcome these

difficulties. Specifically, we firstly set up a segmentation network based on well-established

deep neural network. Secondly, the anatomical dependencies are ensured by an discrim-
inator network that assesses the segmentation quality and punishes the segmentation

network accordingly. Thirdly, the elastic deformation and its byproduct, small object is-
sue, are handled by deformation data augmentation and diluted convolutions respectively.

Comparing our approach to estimates made by experts in brachial plexus diagnosis shows

significant performance gain over state-of-the-art models.
Keywords: Ultrasound image, Brachial plexus, Segmentation, Deep learning, Convolu-
tion neural networks, Diluted convolutions, Adversarial network

1. Introduction. Brachial plexus is the main sensory and motor nerve of the upper limb.
Blocking brachial plexus can mitigate the pain for the surgery of upper limb [1]. Ultra-
sound is a noninvasive and real-time imaging technology which is widely used to guide the
process of brachial plexus block [2]. Accurately segmenting brachial plexus in ultrasound
images is a critical step in effectively inserting a patient’s pain management catheter.
Manual segmentation of brachial plexus is time-consuming and highly variable. Doctors
are desperate for auto-segmentation to save the time and reduce variation. However,
auto-segmentation of ultrasound is extremely difficult for a number of reasons includ-
ing low image quality, anatomically inadequate images, edge blur and indistinguishable
characterization.

Most existing methods perform auto-segmentation without annotated images (unsu-
pervised methods) by grouping pixels that are homogeneous in low-level features, such
as color, edge or texture, into larger regions. However, these methods are limited to
inferior performance due to their unsupervised nature. Recently, with the help of large-
scale annotated images, supervised methods achieve supreme performance. Especially,
deep convolutional neural networks (DCNNs) based methods [4] are successfully used
in segmentation tasks [3, 5, 6]. The combination of powerful feature learning and fine-
grain end-to-end training works very well in practice. However, as shown by Figure 1,
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Figure 1. Two failed cases of brachial plexus segmentation using deep
convolutional neural networks [3]. Left: superfluous brachial plexus (left
red region) due to the lack of high order dependencies. Right: failed seg-
mentation due to small brachial plexus region (surrounded by white arrows).

DCNNs-based methods show a couple of critical limitations on ultrasound segmentation
task.

• Firstly, accurate segmentation usually requires anatomical contextual cues to reason
the position of brachial plexus. The cues may include subclavian artery and other
anatomical landmarks. However, the current DCNNs-based methods predict pixel
label independently from each other and ignore the long range anatomical depen-
dencies. As a result, the pixels that belong to the background may be mislabelled
as brachial plexus, as shown in Figure 1 (left).

• Secondly, since human bodies are deformable structures, brachial plexus region may
become smaller in some cases. Nevertheless, the current DCNNs-based methods will
ignore or classify the small brachial plexus region as background, as shown in Figure
1 (right). This failure is caused by the reduction of image resolution happening at
every layer of a standard DCNNs.

To overcome the first limitation, in this work, we develop a deep adversarial network
that takes account of the long range anatomical dependencies and small object simulta-
neously. The deep adversarial network consists of two components: segmentation network

and discriminator network. The segmentation network [3] is just one kind of DCNNs-
based segmentation methods. Our main contribution is the introduction of the discrim-
inator network which endows our model with the global anatomical consistency. The
discriminator network tries to distinguish the label maps produced by the segmentation
network from the ground-truth label maps. The segmentation network tries to produce
label maps as real as possible to deceive the discriminator network. Since discriminator
network makes decisions based on the entire label map, the global consistency will be
enforced through the above adversarial training process. The adversarial network was
originally designed by Goodfellow et al. [7] to generate perceptional pleasures images.
However, here we use it as a regularizer to encourage the global dependencies.
We resolve the second limitation by using the dilated convolution proposed by Yu and

Koltun [8]. The dilated convolution alleviates the resolution reduction issue by expo-
nential expansion of the receptive field without loss of resolution or coverage. We then
build the segmentation network out of multiple layers of diluted convolutions to improve
the performance of small objection segmentation. Additionally, we use elastic transfor-
mation to augment the datasets, which enforces the deep adversarial network taking the
deformable structures into account explicitly.
Our main contributions are summarized below: firstly, we present, to our best knowl-

edge, the first application of adversarial network to ultrasound segmentation of brachial
plexus; secondly, our approach is free from pixel-wise segmentation and small objection
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issues; thirdly, our approach is tested and shows that it substantially outperforms the
prior state-of-the-art approaches on challenging brachial plexus segmentation tasks.

The rest of this paper is organized as follows. We first review related works in Section
2 and describe the architecture of our networks in Section 3. Experimental results are
demonstrated in Section 4. Finally, Section 5 concludes the paper.

2. Related Works. Most existing ultrasound image segmentation methods can be clas-
sified into two major categories: unsupervised methods and supervised methods. Unsu-
pervised methods [1, 9] group the pixels that are homogeneous in low-level features (e.g.,
color, edge or texture) into large regions that belong to brachial plexus structure without
any human intervention, i.e., annotated training examples. The unsupervised methods
can perform segmentation with only one image presented. The supervised methods, by
contrast, build up segmentation models with many annotated images. At the price of ex-
pensive labeling cost, supervised methods often achieve supreme performance for certain
object-of-interest, whereas the unsupervised methods are often not consistent with the
doctors clinical judgment.

Among the supervised methods, the state-of-the-art models following early work use
DCNNs for this task by Grangier et al. [10] in 2009 and Farabet et al. [11] in 2013.
Recently, fully convolutional networks (FCN) [3] have driven breakthrough on DCNNs-
based segmentation. The FCN converts fully connected layers to convolution layers. This
conversion allows the DCNNs to slide across pixels and predict pixel label. However, the
long range dependencies are ignored, because FCN predicts pixel label independently from
each other. To guarantee a consistent labelling of an image, recently several works exploit
conditional random fields (CRFs) [12, 13, 14]. An alternative approach [15] uses a second
CNN to learn data dependent pairwise terms. However, most of these works ensure the
consistency through pairwise potentials which encourage neighbouring pixels to share the
same label and omit the higher-order or global consistency. To address this issue, Pinheiro
and Collobert [16] use recurrent networks to exploit the high-capacity trainable models,
where each iteration maps the input image and current label map to a new label map.

Another issue of DCNNs-based methods is that they often involve a number of down-
sampling layers. The aim of down-sampling layers is increasing the receptive field size, but
the resolution of the output maps is reduced at the meanwhile. This poses a fundamental
conflict between large receptive field and full-resolution output maps. To solve this prob-
lem, several works [3, 5, 6] propose using bi-linear interpolation, or learned up-sampling
filters to upsample the output maps. Alternatively, Yu and Koltun [8] propose dilated
convolutions to increase the receptive field size without losing resolution, Ronneberger et
al. [6] propose skip connections to earlier high-resolution layers, and Zhou et al. [17] and
Saxena and Verbeek [18] propose multi-resolution networks.

In comparison to these previous methods our work has the following merits: (i) unlike
the methods [12, 13, 14, 16], our work handles the global consistency in an efficient way,
because, once trained, it does not involve any higher-order CRF energy terms or recur-
rence in the model itself; (ii) unlike the methods [17, 18], our work supports exponential
expansion of the receptive field without loss of resolution or coverage.

3. Adversarial Network for Brachial Plexus Segmentation. We describe the pro-
posed method for brachial plexus segmentation in this section.

3.1. Adversarial loss. Core to our architecture is modifying the loss function of original
segmentation network to adapt the adversarial training. The original loss function for the
state-of-the-art segmentation network is cross-entropy function for multiclass classification
which encourages the networks to predict correct class label at each pixel position. In
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this framework’s setting, only one class, brachial plexus, should be predicted. Therefore,
the segmentation network actually uses binary cross-entropy as loss function. We denote
the segmentation network as S(·) that produces class probability map S(x) ∈ RH×W of
size H ×W for input brachial plexus image x of size H ×W .
We propose using adversarial training to enforce global consistency by taking account of

discriminator network D(·) ∈ [0, 1] that discriminates the predicting maps S(x) produced
by the segmentation network from ground-truth segmentation maps y. The discriminator
network judges the entire or region predicting map and punishes the segmentation network
if the map does not like the correct one. By this way, we hope the segmentation network
can learn the high order consistency. Such consistency, for example, the contour of brachial
plexus or whether the fraction of pixels in a region of a certain class exceeds a threshold,
is not accessible by the standard pixel-wise binary cross-entropy loss function. Therefore,
we propose adding an extra loss term ln[1−D(S(x))] to standard loss function, i.e.,

ℓ(θS) = −
1

N

N
∑

n=1

[

1

M

M
∑

m=1

[ynm ln(S(xn)m) + (1− ynm) ln(1− S(xn)m)]

− λ ln(1−D(S(xn)))

] (1)

where θS denotes the parameters of segmentation network, N denotes the sample number
in a dataset, m denotes a pixel in an image or a segmentation map, and there areM pixels
in the map. λ is the weight balancing the pixel-wise standard loss and the adversarial loss
such that both losses are on roughly the same scale. The training of the segmentation
network minimizes the binary cross-entropy loss, while simultaneously degrading the per-
formance of the adversarial networks. Therefore, the adversarial training encourages the
segmentation network to produce segmentation maps that are hard to distinguish from
ground-truth ones for the adversarial networks.
As with GAN, the loss function for discriminator network is defined as binary cross-

entropy, i.e.,

ℓ(θD) = −
1

N

N
∑

n=1

[ln(D(yn)) + ln(1−D(S(xn)))] (2)

where θD denotes the parameters of discriminator network. The training of discriminator
network maximizes the probability of assigning the correct label to both segmentation
network outputs and the ground truth maps from training dataset.

3.2. Adversarial training. Minimizing loss functions Equation (2) and Equation (1)
w.r.t θS and θD respectively can be considered segmentation network and discriminator
network playing the following two-player minimax game with value function V (θS, θD):

min
θS

max
θD

V (θS, θD) =
1

N

N
∑

n=1

1

M

[

M
∑

m=1

− [ynm lnS(xn)m + (1− ynm) ln(1− S(xn)m)]

+ λ[lnD(yn) + ln(1−D(S(xn)))]

] (3)

As indicated by Goodfellow et al. [7], the term ln[1 − D(S(x))] in Equation (3) cannot
provide sufficient gradient for training segmentation network, because this term will sat-
urate at the beginning of the training that discriminator network has high confidence to
discriminate produced maps from ground truth maps. Therefore, we replace minimiz-
ing ln[1 − D(S(x))] with maximizing ln[D(S(x))] which provides the same fixed point
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of the dynamics but with much stronger gradients early in learning. We summarize the
adversarial training in Algorithm 1.

Algorithm 1: Adversarial training algorithm

Input iteration T;

minibatch N;
discriminator update K;
Result: θS
while θS has not converged do

for t = 0 to T do

for k = 0 to K do
Sample minibatch of N ultrasound scans xn and corresponding ground
truth masks yn from training dataset;
Update the discriminator network by ascending its stochastic gradient:;

▽θD
1

N

∑N

n=1
[− ln(D(yn))− lnD(S(xn))]

end

Update the segmentation network by descending its stochastic gradient:;

▽θS
1

N

∑N

n=1

[

1

M

∑M

m=1
[−ynm ln(S(xn)m)− (1− ynm) ln(1− S(xn)m)]

+λ ln(1−D(S(xn)))
]

end

end

As can be seen from Algorithm 1, the adversarial training algorithm consists of two
stochastic gradient descents. On each iteration, a minibatch of N ultrasound images
and their corresponding labels are sampled from the training dataset. Then two gradient
descent processes are made alternatively: one updating θD to reduce discriminator network
loss ℓ(θD) (i.e., Equation (1)) and one updating θS to reduce segmentation network loss
ℓ(θS) (i.e., Equation (2)). The gradient-based updates can use any standard gradient-
based learning rule. We used momentum in the experiments. In practice, we suggest
running K steps of discriminator update before updating segmentation network for a
more stable training process.

3.3. Networks architectures. For segmentation network, we use dilated convolution
layers to systematically expand the the receptive field without losing resolution. The
VGG-16 network module [19] is adopted as front end by removing the last two pooling
and striding layers. The front end outputs feature maps at 64 × 64 resolution. The
dilated layers module is plugged in the front end. It has 8 layers that apply 3× 3 dilated
convolution layers with different dilation factors: 1, 1, 2, 4, 8, 16, and 1. The factors
are chosen to expand its receptive field to size 64 × 64 which should be consistent with
the output size of the front end. The segmentation network architecture is illustrated in
Figure 2.

For discriminator network, the input is ground truth label map or produced label map.
The discriminator network tries to discriminate the former from the latter. The ground
truth map is first converted to binary mask and then down-sampled to 64× 64 resolution
to match the output size of the segmentation network. We explore four architecture
variants for the discriminator network. Their details are given in Section 4.4.
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Figure 2. Segmentation network architecture

!"#$"%&'&()%*

+"&,)-.

0/1
/(01-($(%'&)-*

+"&,)-.

2%34&*

56&-'0)4%7

⊗

8-)4%7*9-4&:

/),%*

!'$36"

Figure 3. Adversarial network architecture

The adversarial network is illustrated in Figure 3, which consists of segmentation net-
work and discriminator network. The ultrasound images are input to segmentation net-
work to produce predicting label maps. The discriminator network tries to distinguish
the label maps produced by the segmentation network from the ground-truth label maps.
For better discrimination, we let the discriminator network conditioning on input image
x, i.e., D(x, S(x)). Since the size of input images will be reduced by the segmentation
network to 64× 64, we need to down sample the input images to match this size. Three
different conditioning architectures are explored. The first one is concatenating the fea-
ture map of the input image with the produced mask. The second one is multiplying the
input image with each of the class probability maps (or ground truth) directly. The mul-
tiplicative interactions are designed to encode the relationships between the input image
and produced mask [20], which can be viewed as a procedure of masking out non-brachial
plexus region. The last one is replacing ground truth mask with distributions over the
binary labels that put at least mass τ at the correct label, but are otherwise as similar
as possible (in terms of KL divergence) to the distributions produced by the segmenting
networks.
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4. Experiments.

4.1. Dataset. Our segmentation module was trained on the dataset collected from ul-
trasound scans of brachial plexus. There are 5271 high-resolution ultrasound scans with
annotations from doctors which enable large scale brachial plexus prediction for real clinic
images. To evaluate the model performance, we collected another 509 scans and anno-
tated them by a well trained physician. All ultrasound images are first pre-processed by
subtracting the per-pixel mean. Training images are augmented with probability 0.5 by
rotations drawn uniformly in [−30, 30] degrees and elastic transformation by an affine
factor drawn uniformly in [1, 3] as described in [21], see Figure 4 for an example.

Figure 4. Elastic transformation for data augmentation

4.2. Evaluation metrics. The evaluation metric we used is standard intersection over
union (IoU) as defined in [22], which can be used to compare the pixel-wise agreement
between a predicted segmentation and its corresponding ground truth. The formula is
given by:

Sseg ∩ Sgt

Sseg ∪ Sgt

(4)

where Sseg is the predicted set of pixels and Sgt is the ground truth. For the purpose of this
paper, the contour quality of brachial plexus significantly contributes to the procedure of
brachial plexus block. To take contour accuracy into consideration, we additionally use
BF metric introduced by [23] to measure the boundary quality of brachial plexus which is
based on the closest match between contour points in the prediction and the ground-truth
segmentation. The tolerance factor θ decides whether a boundary point has a match or
not. We used 0.75% of the image diagonal to set this factor.
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4.3. Training. The segmentation network and discriminator network are trained alter-
natively from scratch. We also try to train the discriminator network in advance, and
then use these trained networks to ensure global consistency when training segmentation
network at the very beginning. However, the experimental result showed that training
became rapidly unstable after just a few epochs. We then fall back Algorithm 1 to train-
ing both of them alternatively from scratch. This adversarial training was performed by
stochastic gradient descent with minibatch size 100, learning rate 10−3, momentum 0.9
and adversarial loss weight λ = 10−1. We have further divided the training set into ten
folds, and the model was trained on all folds but one, which were used as validation set to
choose hyper-parameter λ, learning rate and consequently the final model. The networks
were trained for 60K iterations. The two losses defined in Equation (1) and Equation (2)
will go to 0, as observed in Figure 5. The model converged when the discriminator is no
longer able to differentiate and assign different values to segmentation and ground truth
images.

Figure 5. The loss curve during the adversarial training for discriminator
network (top) and segmentation network (bottom) respectively
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4.4. Comparison of architecture variants. We explore the best discriminator network
architecture in this experiment. Four architectures considered are:

• Arch 1: seven convolution layers with field-of-view size 34× 34
• Arch 2: seven convolution layers with field-of-view size 34 × 34 and extra filter
channels

• Arch 3: five convolution layers with field-of-view size 18× 18
• Arch 4: five convolution layers with field-of-view size 18×18 and extra filter channels

Four different discriminator architectures with different fields-of-view and filter channels
are explored here. The larger field-of-view size 34× 34 is expected to be more effective to
detect long-range label dependencies over larger regions, whereas the smaller field-of-view
size 18 × 18 is expected to focus on more fine local details. The filter channels variants
are designed to see if adding filter channels helps. The four architectures are further
compared under concatenate, multiply and normalize variants. The experiment results
are reported in Table 1. We notice that under the same field-of-view the parsimonious
model (less filter channels) outperforms the lavish ones (more filter channels). This may
suggest the over-fitting happened in the lavish networks. We also notice that deeper
networks (larger field-of-view) show better results than the shallow ones (smaller field-of-
view). We presume that this may attribute to the deeper networks with larger filed-of-view
can better ensure the global consistency. Among the concatenation, multiplication and
normalization variants, the multiplicative one is the most effective overall. This confirms
the benefit of multiplicative interactions we discussed in Section 3.

Table 1. Performances comparison between different discriminator architectures

Concatenation Multiplication Normalization
mIOU mBF mIOU mBF mIOU mBF

Arch.1 72.51 41.85 72.98 43.65 73.54 40.91
Arch.2 72.89 39.91 73.29 43.82 73.54 43.37

Arch.3 71.57 40.72 73.22 41.25 71.15 39.34
Arch.4 71.62 40.94 71.33 39.59 70.71 40.26

4.5. Effect of adversarial training. To test if adversarial training can improve the
quality of brachial plexus segmentation, we compare the segmentation results of the best
networks architecture with and without adversarial training. We notice that while the
adversarial training does not improve the performance significantly, it does improve the
consistency between the produced segmentation and the ground truth from an anatomi-
cal correctness perspective. As illustrated in Figure 6, adding adversarial training makes
the model take account of the high order context of the whole segmentation map which
consequently provides a more plausible result. As presented in Table 2, we notice consis-
tent gains for adversarial training, especially when performances are measured by mBF
metric which takes the contour quality into account. Overall, this experiment confirms
the benefit of adversarial training we discussed in Section 3.

4.6. Comparison with state-of-the-art models. To show the advantage of deep ad-
versarial networks, we compare it to five state-of-the-art approaches. To make a fair
comparison, we employ the same preprocessing pipeline such as mean subtract and data
augment. The baseline in this comparison is the current best shallow model which takes
the support vector machine with conditional random fields to combine unary prediction
with pairwise dependencies [24]. The four other models are all deep neural networks based
models including the full convolutional networks [3], the CNNs + CRF model [12], the



62 C. LIU, F. LIU, L. WANG, L. MA AND Z.-M. LU

Figure 6. Comparison of segmentation with (left) and without (right)
adversarial training

Table 2. Performances comparison for our model without or with adver-
sarial training

mIOU mBF
Without adversarial 72.66 23.47
with adversarial 73.29 43.82

Table 3. Comparison with current models

Method mIOU

SVM + CRF [24] 45.40
Deep Adversarial Networks 69.28
Deep Adversarial Networks with Elastic Transformation 73.29

Full Convolutional Networks [3] 57.18
CNNs + CRF [12] 69.30
Two Convolutional Networks [15] 71.57
Convolutional Networks + Recurrent Networks [16] 72.14

Two CNNs model [15] and the CNNs + RNNs model [16]. The results are reported in
Table 3. The upper part shows results of the baseline. The middle part presents our
models. The lower part reports the current best deep learning models.
As shown in Table 3, the proposed deep adversarial networks show consistent im-

provement over the baselines and four other deep models. This suggests the high order
dependencies captured by the proposed model play a key role in this task. Additional-
ly, we also note that the proposed method can be boosted significantly with the elastic
transformation.

5. Conclusion. In this paper we described a novel approach for automatically segment-
ing brachial plexus structure from ultrasound images based on deep convolution neural
networks. The major challenges we faced were the long range anatomical dependencies
and elastic deformation. To overcome these challenges, we develop the networks that
take account of the long range anatomical dependencies and full-resolution simultaneous-
ly. We find the results very promising: there is generally a good agreement between our
approach’s estimate and the expert’s and in those cases with most disagreement, external
expert opinion is in favor of the approaches result. We view our work here as a first step
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toward dedicated deep learning based architecture for brachial plexus ultrasound segmen-
tation. Future extension may include fully automating the analysis of medical imaging
data across imaging modalities and 3D volume images.
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