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Abstract. Automatic understanding of natural language problems is a long-standing
challenge research problem in automatic solving. This paper models the understanding
of geometry questions as a problem of relation extraction, instead of as the problem of
semantic understanding of natural language; further it discovers that the entities and
the geometric attribute pattern of elements can play an important role in relation extrac-
tion. Based on these ideas this paper proposes a syntax-semantics (S2) model approach to
understand geometry problem, targeting to produce a group of relations to represent the
given geometry problem. The formalized geometric relations can then be transformed into
the target system-native representations for manipulation to obtain geometric solutions.
Experiments conducted on the test problem dataset show that 91.5% of questions can be
correctly understood and solved, and the F1 score in formalizing these problems is sub-
stantially high (0.990). The comparisons also demonstrate that the proposed method can
achieve good performance against the state-of-the-art method. Integrating the automatic
understanding method with different geometry systems will greatly enhance the efficiency
and intelligence in automatic solving.
Keywords: Understanding geometry problems, Formalized geometric propositions, Re-
lation extraction, Syntax-semantics model, Automatic solution

1. Introduction. Understanding problems described in natural language is a critical and
challenging step of many automatic solvers [2, 3, 4, 12, 18, 19]. Developing automatic
solvers of geometry problems in basic education has been a hot research problem due to
the fact that it is a core technology in building intelligent educational systems that can
provide step-by-step proofs for tutoring learners [24]. The research on the problem of
understanding geometry problems in the basic education achieved good progress, but it
is still an open research problem.

Currently, many geometry problem solving systems have been built to conduct auto-
matic reasoning to get geometric proofs [4, 13, 14, 15, 17, 18, 25]. Ideally, these systems
should understand the information presented in the natural language geometry problems
themselves to extract the geometric relations among the elements and perform automatic
solving by using some intelligent strategies [2, 3, 4, 10, 11]. However, due to the fact
that the natural language description of a problem can be stated in various ways by d-
ifferent users, most geometry solving systems, to the best of our knowledge, perform the
geometric reasoning and automatic solving based on the hypothesis that the natural lan-
guage geometry problems are accurately understood and leave the problem understanding
task to users. Specifically, these systems have a control of problem setups over the user-
input through the predesigned input mechanism [13, 14, 17]. In other words, they cannot
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directly understand the geometry problems in a natural language environment. Some
geometry solving systems incorporating algorithms for understanding geometry problems
in natural language adopt the approach of semantic analysis [8, 9]. However, the semantic
expressions of the same geometric relation have a slew of variants. Hence, the approach
of deriving relations through semantic understanding requires a large number of models,
even if all cases have their corresponding models.
This paper proposes a new approach to formalize and understand geometry problems to

overcome the difficulty of understanding geometry problems through semantics analysis.
These geometry problems are mainly plane geometry problems at secondary school level
with no geometric quantities. As it is difficult for the existing solvers to deduce algebraic
expressions involving geometric quantities because of the combinatorial explosion of search
space [18, 20]. Informally, the proposed approach is to extract the geometric entities and
geometric relations of these entities and constitute the geometric propositions, which is
based on the idea that the elementary geometry deals with the relations of geometric
entities. For achieving this aim, a set of syntax-semantics models are built to extract
the geometric relations from the problem texts. Moreover, linguistic analysis in NLP
area (e.g., syntax analysis) is used for parsing the geometry problem text to get the
geometric entities including geometry elements and geometry relation words. A model
matching algorithm is proposed to match the proper syntax-semantics model to extract
geometric relations from each problem sentence using the geometric entities as indicators.
This procedure is fully automated, a school-level geometry problem in Chinese language
is understood and transformed into formalized geometric propositions in the form of
first-order predicate logic. These formalized propositions can be further written in the
target system-native representation for direct manipulation and used for various tasks.
Experiments conducted on a geometry problem dataset show the effectiveness of the
proposed approach.
The proposed approach has multiple merits. Firstly, the problem understanding is

converted into relation extraction. Informally, it models the automatic understanding as
a problem of the finite pattern recognition that overcomes the innumerous varieties of
semantic meanings of natural language. Secondly, relation extraction is converted into
syntax-semantics model matching, which is a more easily executive procedure in pattern
matching.
This paper is organized as follows. Related work is presented in Section 2. The problem

definition of geometry problem understanding is described in Section 3. Section 4 presents
the technical details of the proposed approach. Analysis and illustration of the experi-
mental results are presented in Section 5 and finally the paper is concluded in Section
6.

2. Related Work. Many geometry systems with deductive mechanism were built with
focus on geometry theorem proving and dynamic diagram construction, such as Geometry
Expert [13], GeoProof [14], GEOTHER [15], Cinderella [16] and GeoGebra [17]. In these
systems, geometry problems and conjectures are input either following construction in the
point-and-click manner, or as formalized geometric statements unfamiliar to typical users.
None of the systems involve machines to understand and formalize the natural language
[10, 11] which is a common form of problem description in geometry domain.
To solve this problem, Liu et al. used geometric ontology and relation pattern base to

transform the restricted problem texts into command sequences [7]. They discovered the
geometric elements and their relations in the problem text and represented each relation
as an n-triple. These n-triples are matched with the predefined relation patterns to obtain
the command sequences. The geometric relations are extracted from the whole problem
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text rather than separate sentences, thus making the transformation inefficient and error
prone.

Some researchers conducted automatic problem understanding to ground geometry
problem texts into underlying relation sets by the aid of specific knowledge base. Wong
et al. used a cognitive knowledge base named InfoMap to extract the exact category of
a geometry problem and the problem-concept set using template matching mechanism
and formalized a problem as a concept-attribute content tree containing hierarchical n-
odes of problem category, problem concepts and linguistic knowledge [2]. The knowledge
framework is predefined and the problems solvable are certain types of geometric shape
problems concerning perimeter and area of elementary shapes. Thereby it is difficult to
formalize the problems containing complex geometric constructions and multiple cate-
gories. Mukherjee et al. used a knowledge base called GeometryNet [6] to interpret the
geometric meaning of an input text to diagram descriptions [3, 5]. They decomposed the
extracted entities into atomic entities by consulting the concepts in GeometryNet and
used connecter to link the entities to form a parse graph. The graph is then translated
into formal representation. The intermediate graph representation is more suitable for the
aim of geometric construction but is difficult to use for other aims like problem solving.

Seo et al. mapped a multi-choice geometry problem into logical representation by in-
terpreting both problem text and diagram. They formalized the problem sentences into
hypergraph representations and used a discriminative model to measure the interpreta-
tion score of a relation between the concepts in hypergraph [4]. The combination with
diagram interpretation remedies the incorrect understanding in the over-generated logical
formulas from problem text. By following the idea of mapping and grounding the natural
language descriptions to specific forms, some researchers adopted the transformation ide-
ology [26, 27] to formalize the geometric statements in natural language. Chen proposed
a framework to automatically transform the geometric statements to propositions using
the geometry description language (GDL) [1]. Based on the syntax of GDL, concept
matching and transforming rules are presented to transform a geometric statement into
equivalent statement in terms of basic concepts. However, the syntaxes of GDL and the
rules used for formalizing statements are so complicated that the problems could only
be transformed manually in the current stage, and the automated method of translating
natural statements into GDL statements is not implemented at present.

The state-of-the-art method for automated understanding of geometry problem in natu-
ral language is sentence-template based method, which is used in some geometry systems
that provide the natural language interactive interface. This method uses predesigned
sentence templates to understand a problem sentence. The sentence templates consist of
a series of variables and keywords in specific order and the matching process is sequen-
tially executed by comparing the corresponding items in the sentence and each template.
If a template matches with the sentence, the useful information in the sentence will be
extracted. Following this method, [8, 9] designed various geometry sentence templates
and used template matching to extract the contained geometric relations from the prob-
lem text. However, the templates designed are in large numbers but are still incomplete
to process the innumerous varieties of semantic meanings of natural language. The re-
sults they got have a high precision but a very low recall in relation extraction and the
procedure in designing these templates is quite complicated and demanding.

Our work is related with the sentence-template based method in relation extraction
but significantly different from the method in two important aspects. Firstly, instead
of matching a sentence model using all the characters and syntax information in the
sentence incorporating some relation-irrelevant information, we only use the directly re-
lated geometric entities to match the syntax-semantics model, thus making the relation
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extraction algorithm more flexible. Secondly, the sentence templates are incomplete for
understanding the natural language geometry problems since the large volume of varieties
of semantic meanings, comparatively, the number of geometric relations in elementary ge-
ometry is very limited. Hence the syntax-semantics models used in the proposed method
are much complete in extracting the geometric relations and it also significantly decreases
the number of required models.

3. Problem Definition. This section formulizes the problem of understanding geometry
problems. Given a school-level geometry problem in natural language, the goal of this
study is to automatically understand and formalize the problem. This paper gives a
descriptive definition of problem understanding for the geometry problems at secondary
school level as below.
The problem of understanding geometry problems does not have a general and formal

definition yet, though a lot of papers have addressed the automatic solving of such prob-
lems. This paper proposes a new approach for automatically understanding geometry
problems. It targets to get a set of geometric relations.

Definition 3.1. (Equivalent representation): A group of relations is called an equiv-
alent representation of a given geometry problem if an algorithm can produce the solution
of the given problem from this set of relations without revisiting the given problem.

Definition 3.2. Problem understanding is to produce a group of relations that is an
equivalent representation of a given geometry problem.

Under these two definitions, the objective of geometry problem understanding is to
produce a set of relations to equivalently represent the geometry problem. Given the
geometry problem text T, the understanding of textual information is to identify a set
of geometry elements E = {E1, E2, . . . , En} from T, and find the geometric relations
R = {R1, R2, . . . , Ri} among the set E.
Therefore, the understanding of geometry problem is converted into relation extraction

from the problem text. How to extract the relations in the problems is critical to success-
fully implement the proposed approach. General natural language understanding targets
to understand the semantic meaning of text. However, a geometry relation can have a
slew of semantic expressions. A lot of models are needed if the semantic understand-
ing approach is adopted. Hence, the approach of extracting relations through semantic
understanding is not practical. This paper discovers that the relations can be extracted
by using a pool of syntax-semantics (S2) models, in which the syntax portions are the
patterns of geometric types of elements and the semantic portions are keyword struc-
tures of geometric relation. The existing software can parse the problem text in natural
language into phrases and label the part-of-speech of phrases with a high accuracy [23].
This approach is general to multiple nature languages. However, this paper presents the
algorithm for understanding geometry problems in Chinese as example.
The extracted relations are represented as a set of atomic propositions using first-order

predicates. The predicates here can be classified into three categories:

• Geometric element, such as parallelogram (ABCD);
• Position relation, such as midpoint (E, BC);
• Quantity relation, such as eqAngle (ABC, DEF).

By using the S2 models, the geometry problems are understood and formalized in-
to a set of atomic propositions. These formalized propositions can be further used for
manipulation in various tasks.
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4. Our Approach. This section is to present our approach to automatically extract a
set of atomic propositions that can represent a given geometry problem. The framework
of the proposed approach is shown in Figure 1. Here we first give an overview of the
approach and then detail respective components.

Given a school-level plane geometry problem in natural language, our approach mainly
uses three steps to output a set of relations of being equivalent to the given problem in
finding solution.

• Step 1 (Parsing and annotation): Uniform the problem text; parse the problem
text into phrases and annotate each phrase with part-of-speech (POS) labels; perform
sentence boundary detection to divide the text into sentences.

• Step 2 (Entity identification): Extract geometric entities from each sentence,
and then recognize the types of the extracted entities. All the results of extraction
and recognition for a sentence form an annotation set ω;

• Step 3 (Relation extraction): Use the syntax-semantics models to extract the
relation from each sentence according to its annotation set ω.

To improve the accuracy of formalized results, preprocessing of the natural language
statement and relation completion of the formalized geometric propositions are also con-
ducted. Specific descriptions of the respective components are in the following subsections.

Figure 1. The framework of the proposed approach to formalize and un-
derstand a geometry problem

4.1. Parsing and annotation.

4.1.1. Preprocessing. The geometry statement in Chinese usually contains geometric sym-
bols and format information. These particular symbols and information make it difficult
for the following syntax analysis. Hence the input statements are normalized in three
aspects. Firstly, the full-width letters and numbers are transformed into half-width ones,
and the Chinese punctuation symbols into the corresponding symbols in English. Second-
ly, some particular geometric symbols are replaced by the corresponding Chinese descrip-
tion words. For example, “∼=” is replaced by the word “congruent”. Thirdly, the format
information is removed, such as line feeds and multiple space. After preprocessing, the ge-
ometry statement contains several simple word types: Chinese characters, English letters,
numbers and punctuation symbols.

4.1.2. Parsing and annotation. Chinese is generally written without word boundaries. To
extract the entities from a geometry problem with several sentences, problem text must
undergo word segmentation and POS tagging. We use an NLP tool named ICTCLAS
[23], a perfect Chinese word segmentation system with the accuracy of 98.345%, to tackle
this task. In order to improve the accuracy in parsing the sentences in geometry domain,
a geometric dictionary is used as the user dictionary. An example problem is illustrated
in Figure 2(a) and the result of segmentation and tagging is shown in Figure 2(b). A
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/p /n ABCD/x /f ,/w AD/x /v BC/x ,/w /c M/x ,/w N/x /d /v AB/x ,/w CD/x 

/u /n ,/w AD/x ,/w BC/x /u /n /v MN/x /p E/x ,/w F/x ./w /v :/w /n DEN/x 

/v /n CFN/x ./w 

In/p quadrilateral/n ABCD/x ,/w AD/x equals/v to/p BC/x ,/w and/c M/x ,/w N/x are/v the/r midpoint/n of/p 

AB/x and/c CD/x respectively/d ,/w AD/x and/c BC/x produced/v meet/v MN/x at/p point/n E/x and/c 

F/x ./w prove/v angle/n DEN/x equals/v to/p angle/n CFN/x ./w 

 

ABCD , AD BC, M,N AB,CD , AD,BC MN E,F. 

: DEN CFN. 

In quadrilateral ABCD, AD is equal to BC, and M, N are the midpoint of AB and CD respectively, AD and 

BC produced meet MN at point E and F. prove angle DEN equals to angle CFN. 

 

1. /p /n ABCD/x /f ,/w  (In/p quadrilateral/n ABCD/x ,/w) 

2. AD/x /v BC/x ,/w  (AD/x equals/v to/p BC/x ,/w) 

3. /c M/x ,/w N/x /d /v AB/x ,/w CD/x /u /n ,/w  (and/c M/x ,/w N/x are/v the/r 

midpoint/n of/p AB/x and/c CD/x respectively/d ,/w) 

4. AD/x ,/w BC/x /u /n /v MN/x /p E/x ,/w F/x ./w  (AD/x and/c BC/x produced/v meet/v 

MN/x at/p point/n E/x and/c F/x ./w) 

5. /v :/w  (prove/v :/w) 

6. /n DEN/x /v /n CFN/x ./w  (angle/n DEN/x equals/v to/p angle/n CFN/x ./w) 

 

 

 

 

 

 

 

 

 

 

 
a 

b 

c 

Figure 2. An example geometry problem and the result of parsing and
annotation. (a) An example geometry problem; (b) the result of word seg-
mentation and POS tagging; (c) the result of sentence boundary detection,
each line is a separate sentence.

geometric relation is usually explicitly contained in one sentence; hence the geometry
problem should be divided into several simple sentences. Here a rule-based sentence
boundary detection method is adopted to judge whether a test line should be broken into
two. A group of words followed by a comma (,), a semicolon (;), a period (.) and a colon
(:) are labeled as a sentence. Several cases arise when connectors like “,” appear in a
geometry statement:

1) If a “,” separates two geometry elements (tagged with “/x”) of the sample type, the
division should not take place. For example, in the sentence “M, N are the midpoint
of AB, CD”, the comma between “M” and “N” (or “AB” and “CD”) separates two
geometry elements of the type “point” (or “line segment”), and the sentence is not
broken into two.

2) If a “,” separates two different types of geometry elements, the sentence should be
divided into two short ones. For example, “line EC intersects DA at F, AE is equal to
AF”. Here, the comma lies between two different types of elements (“F” is the type of
“point” while “AE” is the type of “line segment”), so the division should take place.

4.2. Entity identification. After conducting sentence boundary detection, a tagged
problem is divided into separate sentences which contain the geometric relations to be
extracted. The division result of the problem in Figure 2(a) is illustrated in Figure 2(c).
Then two categories of geometric entities constituting the geometric relations are extracted



UNDERSTANDING GEOMETRY PROBLEMS USING S2 MODELS 89

in each sentence. The first one is geometry element and the other is the geometry relation
indicator.

Definition 4.1. (Geometric element representation): A geometric element repre-
sentation is a duple e = (w, t) in which w is a phrase, and t is the geometry type of w.
The types of geometric elements include points, lines, triangles, angles and some special
geometric shapes.

This paper has identified 48 kinds of geometric relations and each relation is named
after a relation word. Examples of relation words are “Parallel” and “MidPoint”. Each of
these geometric relations has a collection of variant expressions in problem text. A table
is created to include all these relation words and their expression variant representations.

Definition 4.2. (Geometric relation representation): A geometric relation repre-
sentation is a duple J = (v, o) in which o is a representative relation word and v is the
variant list of o.

We discover that the POS tags are helpful in extracting the geometric entities. As
shown in Figure 2(b), all the geometric elements are tagged with “/x”, and most of the
words with tag “/v” or “/n” are the relation words. For each sentence, we extract these
entities and get a list of geometric elements and relation words. Some words tagged
with “/v” or “/n” but not belonging to the relation words, such as “extension line”,
“draw”, “suppose”, “is” and “prove”, are labeled as stop words and removed from the
list of relation words. Following this method, two lists E and J of geometric entities are
extracted. The entities identified in each sentence of Figure 2(c) are shown in Figure 3. It
is worth noting that the type of a geometric element is assigned using domain knowledge
based on the number of capital letters. This works because if a specialized entity were to
use in a problem, the type should be explicitly mentioned. For example, in the sentence
“AB is equal to CD”, it is easy to infer that AB and CD are both line segments. However,
if ABC is used in a sentence, it has to be mentioned whether it is an angle or a triangle.

Sentence NO. Geometric element Geometric relation word 

1 (ABCD, quadrilateral) ( , quadrilateral) 

2 (AD, line), (BC, line) ( , eqDistance) 

3 (M, point), (N, point), (AB, line), (CD, line ) ( , midpoint) 

4 (AD, line), (BC, line), (MN, line), (E, point), (F, point) ( , intersect) 

6 (DEN, angle), (CFN, angle) ( , eqAngle) 

Figure 3. The entities extracted in each sentence of Figure 2(c). Note
that the 5th sentence contains stop words and is removed.

4.3. Relation extraction. Relation extraction is a key step for transforming the natural
language sentences of a geometry problem to formalized geometric propositions by using
the predefined syntax-semantics (S2) models.

Definition 4.3. (S2 model): An S2 model for plane geometry problems is defined as
a triple M = (J,E, F ), where J represents the geometric relation representation, E =
{e1, e2, e3} is the set of the involved elements, and F is the atomic proposition in first
order predicate logic (FOL). Let Π = {Mi = (Ji, Ei, Fi)|i = 1, 2, . . . , n} denote all the
prepared S2 models. It is also called as a pool of S2 models of plane geometry.
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The syntax portion of an S2 model is the change pattern of types of geometric elements
and the semantic portion is keywords of geometric relation. The types of geometric
elements include points, lines, triangles, angles and some special geometric shapes. The
keywords of semantic portion include the 48 kinds of geometric relation words and their
variants. A total of 48 kinds of geometric relations are identified. Each S2 model contains
one geometric relation so that there are 48 S2 models.
The 48 kinds of geometric relations in plane geometry can be divided into three types,

namely, unary, binary and ternary relation, as shown in Table 1. Each such relation
corresponds to an atomic proposition so that there are 48 atomic propositions.

Table 1. Explanation of three types of geometry relations

Type Feature Meaning FOL #
Unary (ABC, equilateral triangle) ABC is a equilateral triangle eqTriangle (ABC) 17
Binary (AB, CD, line, line) line AB is parallel to CD parallel (AB, CD) 22
Ternary (AB, CD, E, line, line, point) line AB intersects CD at point E intersect (E, AB, CD) 9

The pool of S2 models is used to extract the atomic propositions, as described in
Algorithm 1.

Algorithm 1: Extraction of geometry relations using S2 models
Input: a set of simple sentences of a plane geometry problem T , each sentence S is

annotated with its geometry element representation E
′
and geometry relation

representation J
′
.

Output: the contained atomic propositions in each sentence, denoted as R.
Load S2 models Π = {Mi = (Ji, Ei, Fi)|i = 1, 2...n};
Initialize R as empty;

while TRUE do
Pick a simple sentence from the sentence set;
for i from 1 to n do

if match Ji of Mi with J
′
is FALSE then

Continue;

end

if match the number and types of Ei with E
′
is FALSE then

Continue;

end
Put the instantiated Fi of Mi into R;

end

if all sentences are processed then
break While loop;

end

end

As shown in Algorithm 1, each sentence of a geometry problem is annotated with its
geometry entities including the geometry element representation and geometry relation
representation using the method described in Sections 4.1 and 4.2. The geometric relations
are extracted sentence by sentence. The entities in a sentence are used as indicators for
matching the proper S2 models. The geometry relation representation is first used to
match the geometric relation word in an S2 model. If it is matched then the number
and types of geometric elements in the geometry element representation are tested with
the element part in the S2 model. Only when all these conditions are matched, an S2

model will be activated for a sentence. The geometric elements in the sentence will be
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line/n  AD/line  intersects/v  MN/line  at/p  point/n  E/point 

[intersect][e1,line][e2,line][e3,point]   intersect(e3,e1,e2) 

intersect(E,AD,MN) e1=AD, e2=MN, e3=E

Figure 4. Atomic geometric relation extraction using S2 model for a ge-
ometry problem sentence

extracted. And an atomic proposition will be generated by applying the predicate in the
model to a sequence of matched geometric elements. An example of relation extraction
using Algorithm 1 is shown in Figure 4. Repeating this process for each sentence of a
geometry problem, eventually a set of atomic propositions will be obtained. These atomic
propositions are equivalent to the given geometry problem in the sense of finding solutions.

It is worth noting that a given Chinese keyword may have two different predicates. For
example, the word perpendicular matches with the predicate “perpendicular” and “foot”
in the sentence “AB is perpendicular to CD” and “AB is perpendicular to CD at point
F” respectively. In such cases, the number of geometric elements and their types are used
to differentiate the appropriate models.

Relation completion. So far, we have explained how to automatically formalize the
question sentences into propositions. This is effective when a sentence only contains one
explicit geometric relation, but geometry problems usually include implicit concepts and
may have more than one geometric relations in each sentence. In addition, ellipses and co-
ordinate structures are frequently used in stating a geometry problem [4]. Ellipses usually
happen when two or more geometric relation words exist in one sentence, while coordinate
structures always occur when several adjacent geometric elements are separated by “,” or
“and”. In “A line is drawn through A parallel to BC intersecting DE at F”, the entity
mention of the line (“AF”) paralleling to BC is omitted. Also, consider the following
sentence “AD and BC are produced to meet MN at E and F respectively”. Here, “AD,
BC” and “E, F” are coordinate structures.

It is difficult to directly use the S2 model matching algorithm (Algorithm 1) to get
the right geometric relations because of the ellipses of geometric entities and the over-
numbered geometric elements in coordinate structures. For the case of ellipses, entities are
recovered by using sentence template method before the relation extraction. Figure 5(a)
shows how a sentence model is matched to recover the entity mention “AF” in the example
sentence used in the previous paragraph. Note that this sentence contains two geometric
relation and is broken into two simple ones. These two simple sentences are processed by
Algorithm 1 to get the final formalized propositions. For the case of coordinate structures,
the geometric elements which are coordinate are written in a pair of brackets (“{}”)
in the formalized proposition and then are assigned to separated propositions after the
relation extraction. Figure 5(b) shows the processing of an example containing coordinate
structures.

After relation extraction and relation completion, the problem in Figure 2(a) is formal-
ized to a set of atomic geometric propositions shown in Section 5.3.1.
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(a) Sentence: A line is drawn through A parallel to BC intersecting DE at F 

Matched sentence model: A line through [letter1] parallel to [[letter2]] intersecting 

[[letter3]] at [letter4]  

Ellipsis recovering: A line [[letter1][letter4]] parallel to [[letter2]]; 

[[letter1][letter4]] intersecting [[letter3]] at [letter4] 

Recovery result: A line AF parallel to BC; AF intersecting DE at F 

Final: parallel( BC, AF), intersect(F, AF, DE) 

(b) Sentence: AD and BC are produced to meet MN at E and F respectively 

Atomic proposition: intersect ({E, F},{AD, BC}, MN)  

Final: intersect (E, AD, MN), intersect (F, BC, MN) 

Figure 5. The relation completion of geometry sentences incorporating
two cases. (a) The template matching method of ellipsis recovering; (b) the
processing of formalized proposition with coordinate structures.

5. Experimental Evaluation.

5.1. Dataset. In order to evaluate the effectiveness of the proposed method, a dataset of
162 plane geometry proof problems was built. The problems are collected from the PEP
edition of Chinese mathematics textbooks for junior high school students of grades 8 and
9 and a professional book [22] in plane geometry and some problems in [21]. In addition, a
portion of the publicly available plane geometry problems for senior high schools are also
used. We collect mainly those problems that do not mix algebraic expressions or compu-
tations in the problem stems. The texts of these problems are understood by people and
manually input to the geometry theorem proving system Java Geometry Expert (JGEX)
[13] by interactively drawing dynamic diagrams. Eventually 130 geometry problems can
be solved by using the provided proving methods, and these problems are used to form
the test dataset. For each problem we manually prepare a set of atomic propositions as
its groundtruth. Table 2 gives the statistics of the problems and the groundtruth of the
dataset.

Table 2. Statistics on the problems and the groundtruth of test dataset

#
Statistics on problems Statistics on groundtruth

Questions Sentences Words UR BR TR Total propositions
Total 130 685 3862 202 392 191 785

Average 1 5 30 2 3 2 6

Note: UR =: Unary relation, BR =: Binary relation, TR =: Ternary relation.

5.2. Experimental setup.

5.2.1. Syntax-semantics model building. After analyzing all the geometric concepts and
geometric relations appearing in the PEP edition of Chinese mathematics textbooks for
junior high school students of grades 7, 8 and 9, a total of 48 syntax-semantics models
are built and stored in a relation model database.
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5.2.2. Baseline method. The method presented in [9] is selected as a baseline method for
comparing with the proposed method because it is the state-of-the-art method that ad-
dresses the understanding of plane geometry problems. The algorithm in [9] uses sentence
template matching (STM) method to convert the problem in Chinese into the problem
in restricted language. STM method understands the geometry problems by using the
predefined sentence templates. If a sentence template is matched with a sentence in a
problem, the relations contained in the sentence will be output. In [9], they prepared a
total of 196 sentence templates.

5.2.3. Evaluation. Two aspects are evaluated in the experiment. Firstly, the performance
of solving geometry problems. A geometry problem understanding and transformation
system is developed to understand the problems. The result of problem understanding is
input to the geometry solving system for getting solution. The number of solved problems
can reflect the capability of the proposed method in problem understanding. Secondly,
the performance of relation extraction is evaluated between the proposed method and the
baseline method. Precision, recall and F1-measure are used to reflect the performance.
Assuming that a method extracts m of n geometric relations in a test set and k of m are
correct. (1) P (precision) = k/m, (2) R (recall) = k/n, (3) F1 = 2k/(m+ n).

5.3. Experimental results.

5.3.1. Solving geometry problems. A geometry problem understanding and transformation
system (GPUTS) is developed and integrated with JGEX to unite the two systems for
dynamic diagram drawing and problem solving. Figure 6 (left) shows the interface of
GPUTS. Each test problem is input to the system and the geometric relations in the
problem text are extracted and formalized to atomic propositions in the predefined format.
The middle of the interface shows the formalized propositions and the matched models are
also listed. These propositions are then transformed into the native language of JGEX.
Then these transformed propositions are imported into JGEX and a dynamic diagram
can be automatically generated. Moreover, specific solving method, for example, the
deductive database method and Wu’s method, can be selected to generate the geometric
proofs.

An application to the example problem in Figure 2 (in Section 4) is also shown in
Figure 6. After problem understanding and formalization, the problem is transformed
into a geometry proposition shown as follows.
Given: quadrilateral (ABCD), eqDistance (AD, BC), midpoint (M, AB), midpoint (N,
CD), intersect (E, AD, MN), intersect (F, BC, MN).
Prove: eqAngle (DEN, CFN).
The proofs of solving the example problem using deductive database method are shown
in Figure 6 (right).

Here we choose JGEX as an example of geometry solving system for the following two
reasons. Firstly, it is a famous geometry system widely used for dynamic diagram drawing,
visually dynamic presentation of proofs and automated geometry theorem proving and
discovering and it is also free to use1. Secondly, the formalized atomic propositions are
easy to be transformed into the clauses in JGEX. According to the rules in Table 3,
geometric predicates are mapped to the corresponding concepts in JGEX and geometric
elements only change in form but not in content. This translation is easy to be achieved
because these propositions reserve the original concepts in the problem statement and do
not need any semantic translation of the involved concepts.

1The software of JGEX can be downloaded from here: http://www.cs.wichita.edu/ye/.



94 W. GAN AND X. YU

Figure 6. (left) The interface of GPUTS; (right) dynamic diagram con-
struction and problem solving in JGEX

Table 3. Mapping the formalized propositions into clauses in JGEX

Formalized proposition Corresponding clause in JGEX
quadrilateral(ABCD) QUADRANGLE A B C D
eqDistance(AD, BC) EQDISTANCE A D B C
midpoint(M, AB) MIDPOINT M A B
intersect(E, AD, MN) INTERSECTION LL E A D M N
eqAngle(DEN, CFN) EQANGLE D E N C F N
parallel(AB, CD) PARALLEL A B C D
foot(E, AB, CD) FOOT E A B C D
bisect(AG, BAC) ANGLE BISECTOR G B A C
...... ......

We evaluate the effectiveness of the proposed method using the number of solved ge-
ometry problems in test dataset. This is reasonable because if a geometry problem is not
correctly understood, the problem may be not solved to a large extent. Table 4 shows
the results of the problem solving experiment. 91.5% of test problems can be correctly
solved using the proposed method, and 11 problems cannot be solved because of defec-
tive configurations caused by the faulted and omissive formalization. Error analysis of
these unsolved problems will be discussed in Section 5.3.3. As a comparison, the baseline
method using sentence template matching solves 73.1% of test problems. These unsolved
problems are mainly because of omissive formalization. This result shows that the pro-
posed method has better capability in problem understanding than the state-of-the-art
method and the automatic understanding can enhance the effectiveness and intelligence
of existing geometry solvers.

5.3.2. Performance of relation extraction. We further evaluate the performance of relation
extraction to better understand why the proposed method performs better in problems
understanding. Table 5 details the comparison on performances of extracting three kinds
of geometric relations between the proposed and the baseline methods. The proposed
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Table 4. The comparison of numbers of test problems solved and unsolved
using two methods

Proposed method Baseline method
Solved Unsolved Solved Unsolved

Number of questions 119 11 95 35
Percentage 91.5% 8.5% 73.1% 26.9%

Table 5. Comparison on performances of extracting three kinds of geo-
metric relations between the proposed and the baseline algorithms

Proposed method
Proposed method

w/o RC
Baseline method

P R F1 P R F1 P R F1
Unary relation 1.0 0.990 0.995 1.0 0.990 0.995 1.0 0.772 0.871
Binary relation 0.997 0.995 0.996 0.917 0.898 0.907 0.978 0.673 0.797
Ternary relation 0.979 0.963 0.971 0.736 0.702 0.719 0.960 0.634 0.764

Total 0.994 0.986 0.990 0.896 0.874 0.885 0.98 0.689 0.809
Model number 48 196

method attains substantially high F1 score (0.990) in extracting relations from the texts
of geometry problems by using the 48 S2 models. Unary relation attains the best precision
(1.0) and binary relation has the best recall (0.995), while ternary relation performs less
perfect than the other two but is still quite good.

Ablation test is also conducted without using the relation completion (w/o RC) to un-
derstand its effectiveness. As shown in Table 5, the full method outperforms the ablation
method both for binary and ternary relation extraction while having no improvement in
unary relation extraction. It can be also noticed that the RC component is more effective
to the ternary relation than to the binary relation extraction. It improves performance
by 25.2% in F1 score for ternary relation and 8.9% for binary relation. This is consistent
with the trait of test questions as there are more ellipses, coordinate structures belonging
to ternary geometric relation than binary relation in problem text. This result verifies
that the relation completion procedure is effective for the extraction of geometric relations
contained in the problem text and it benefits the performance of problem understanding.

By contrast, the proposed method outperforms the baseline method in extracting re-
lations. The baseline method also achieves quite high precisions in extracting the three
kinds of relations but at the cost of lower recalls. This is reasonable at two aspects in
terms of method. Firstly, the sentence templates in the baseline method consist of a
series of variables and keywords in specific order and the matching process is sequentially
executed by comparing the corresponding items in the sentence and the template. While
the syntax-semantics models used in the proposed method are centered on the geometric
relations themselves. And it improves the matching strategy by only using the useful
information that forms a geometric relation like the relation word itself and the number
and types of geometric elements to match the relation models and takes no regard for
the various statement forms of natural language. For example, “AB intersects CD at the
point E” and “E is the intersection of AB and CD”. To extract the relation in these
two sentences, more sentence templates are needed while no more S2 models need to be
added. The proposed method extracts the geometric entities and uses them to match
the syntax-semantics model without considering the specific orders of involved elements.
Secondly, sentence templates are incomplete for all the geometry problems (although a
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total of 196 sentence templates are used) while the syntax-semantics models are relatively
complete for the elementary geometry problems. Since there are innumerous varieties of
semantic meanings of natural language, a single template should be added to match a
kind of statement form. Comparatively, the number of geometric relations in elementary
geometry is very limited (in our experiment a total of 48 common geometric relations
are found). Each relation is incorporated in one syntax-semantics model. The results in
Table 5 also verify that the proposed method obtains better performance and can also
significantly decrease the number of required models.

5.3.3. Error analysis. In order to understand the formalization errors made by the pro-
posed method, 11 unsolved geometry problems are analyzed. The formalization errors can
be divided into two categories: faulted formalization and omissive formalization. Table
6 details the error distribution in extracting three kinds of relations. Roughly 64% of
omissive formalization errors and 80% of faulted formalization errors are made during the
formalization of geometry sentences containing ternary relations. Part of the examples of
these two kinds of errors and the remedial measures adopted are listed as below.

(1) Faulted formalization error. In the sentence “draw a line BM perpendicular to EF
through point B”, the formalization result is “foot(EF, BM, B)”. In fact, the foot
point is M rather than B although point B is explicitly stated. To solve this issue,
corresponding sentence models are used to normalize the sentences to help extract
the correct geometric elements before the relation extraction.

(2) Omissive formalization error. Considering the sentence “in the triangle ABC, H is
the orthocenter”. After sentence boundary detection, the sentence is divided into
two short ones. In such a case, the system does not know whose orthocenter the
point H is and this may cause omissive formalization. Also consider another example
“Two altitudes AD and BE intersect at point H ”. There are three geometric relations
in this sentence: two altitudes AD and BE and their intersection H. After relation
extraction, the intersection relation intersect (H, AD, BE) may be output, but the
altitude relations may be omitted. This is due to the reason of not knowing whom the
altitudes belong to. However, based on the statement paradigms of geometry problem,
a geometric entity is usually stated first and then the parts of it are introduced
subsequently. Therefore, omissive formalization errors can be revised by backtracking
to the previous sentence to extract the appropriate geometric entities and adding the
omitted geometric relations to the formalized propositions.

Table 6. The distribution of two kinds of errors in transforming three relations

Faulted formalization Omissive formalization
Unary relation 0 2
Binary relation 1 2
Ternary relation 4 7

6. Discussions and Conclusions. This paper has presented a new approach to auto-
matically understand and formalize geometry problems in natural language. The con-
tributions of our work are mainly embodied in three aspects. Firstly, it proposes a new
approach of understanding geometry problems, which is to extract a set of geometric
relations to equivalently represent the given problem in terms of finding solution. This
approach models the problem understanding as a problem of the finite pattern recogni-
tion that overcomes the innumerous varieties of semantic meanings of natural language.
Secondly, it proposes a syntax-semantics (S2) model method to extract the relations. This
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paper discovers and verifies that the geometric relations can be extracted by using a pool
of S2 models, in which the syntax portions are the patterns of geometric types of ele-
ments and the semantic portions are keywords structures. Thirdly, a relation extraction
algorithm is proposed and a geometry problem understanding and transformation system
integrating with JGEX is developed. Natural language geometry problems can be in-
put to the system and transformed into the formalized propositions. As an intermediate
representation, these propositions can be then transformed into the target system-native
representations for manipulation in various tasks. Experiment conducted on the test prob-
lem dataset shows that 91.5% of problems can be correctly understood and solved, and the
F1 score in formalizing these problems is substantially high (0.990). The comparison with
state-of-the-art method also verifies the effectiveness of the proposed method. Employing
the proposed method will not only reduce the workload of understanding and transform-
ing the geometry problems needed to be done manually before, but also strengthen the
efficiency and intelligence of existing geometry problem solvers.

The geometry problems solved in this paper are mainly the constructive geometry
proving problems at secondary school level with no geometric quantities. The geometric
elements in these problems are successively introduced and the geometric relations are
relatively explicit. However, the proposed method can be also extended to understand the
constructive geometry problems with geometric quantities, but owing to the limitation
of existing geometry systems to tackle quantities [18, 20], it is difficult to process the
transformed logical expressions containing quantitative relations. Presently, the proposed
method cannot be directly used to understand the declarative geometry problems like
“The feet of the perpendiculars from a point to the sides of a triangle are collinear if and
only if the point lies on the circumcircle of the triangle”. Problems of this type do not
explicitly contain geometric relations. For these problems to be tackled, some processes
are needed to transform them into the constructive forms and this is one of our future
work.

In the future, the research in this paper can be also developed in the following three
directions. Firstly, we plan to develop the improved automatic solver of plane geometry
problems based on the method of understanding problems. Secondly, as various heuristics
are used in the rule-based method in problem understanding, in the future, we want to use
machine learning method to automatically learn the relation models from large numbers
of exercise problems and use the learned models to perform relation extraction in new
problems. Thirdly, we will also explore to fuse the propositions extracted from text in the
question stem and the propositions extracted from diagrams to understand and formalize
more kinds of exercise problems in plane geometry.
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