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Abstract. This paper presents a nonlinear stabilizing state feedback control for a dual-
excited and steam-valving system of synchronous generators via a backstepping strategy
combined with a nonlinear disturbance design. The disturbance observer is used to esti-
mate unavoidably external disturbances. The resulting controller is employed to stabilize
the system stability and reject undesired external disturbances. In order to demonstrate
the effectiveness of the developed design, numerical simulation results are provided to
illustrate that the presented control can improve dynamic performances, rapidly suppress
system oscillations of the overall closed-loop dynamics, and despite having inevitably ex-
ternal disturbances, performs better than two conventional nonlinear control techniques:
a backstepping design and an integral backstepping design.
Keywords: Dual excitation and steam-valving system, Backstepping control, Nonlinear
disturbance observer, Integral backstepping control

1. Introduction. It is well known that improving power system stability has attracted a
lot of researcher’s attention due to power systems with rapid increase of the size and com-
plexity. Additionally, it becomes a key issue of the operation of modern power systems.
Thus, there are currently a lot of effects to find high-performance stabilizing controllers
which are able to mitigate the results from many severe contingencies such as voltage
collapse, islanding faults, and loss of synchronism. The excitation control of synchronous
generators is an effective way for transient stability enhancement of power systems [1].
Further, a variety of excitation control strategies have been proposed [1-5]. Besides from
the excitation control, a steam-valving control scheme [6-8] is also a promising and effec-
tive way capable of stabilizing the overall closed-loop dynamics of synchronous generators
and effectively accomplishing the control performances. However, it was found that the
power system stability and operation were greatly improved with the help of a combina-
tion of generation excitation control with steam-valving control. This coordination has
received a great attention in the power engineering community [9-11]. This strategy can
offer an opportunity to increase a degree of freedom for achieving further desired control
performances.
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So far, the combination above has concentrated on the coordination of single-excited and
steam-valving control. This means that the d-axis field voltage is regarded as a constant
throughout consideration; nevertheless the only q-axis field voltage is utilized to achieve
the desired control objectives. Thus, a coordination of d-axis and q-axis field voltages,
called dual-excitation is a more effective method than the coordination of single-excited
and steam-valving control. Also, this method is a promising idea of increasing greater
flexibility for the system stability enhancement. Roughly speaking, this scheme can be
regarded as an inclusion of the additional degree of freedoms and offers an opportunity to
determine the effective control on account of both d-axis and q-axis field windings which
are separately designed.

To the best knowledge of the authors, there is less attention devoted to the coordina-
tion of dual-excited and steam-valving control of synchronous generators [12-14]. With
the help of a coordinated passivation scheme [12], a nonlinear control was presented
to demonstrate hat dynamic performances were considerably improved superior to the
feedback linearizing scheme. A design procedure based on an immersion and invariance
method for a nonlinear feedback stabilizing control law was report in [13,14]. This scheme
has provided an opportunity to achieve power angle stability along with frequency and
voltage regulation, and to ensure that the closed-loop system dynamics are transiently
and asymptotically stable. In those works, the resulting controller performed better than
a coordinate passivation controller [12] in terms of the rapid damping of oscillations in
all time responses following small or large disturbance. However, even if the I&I control
design has presented the high-performance stabilizing controller and was applicable for
many types of practical systems, it had several disadvantages such as no systematic way
to select the mapping, a target dynamical system, and an energy function, respectively.

It has been found that in practice, most engineering systems have often disturbances
capable of degrading inevitably the desired control performances of the closed-loop dynam-
ics. The disturbances considered include external disturbances, parametric uncertainties
and other unknown nonlinear terms. Therefore, the desired control design method needs
to include the disturbance dynamics to reject the effects of the abovementioned distur-
bances. Recently, a disturbance observer method is an approach for compensating the re-
sult from external disturbances and mismatched disturbances/uncertainties. This method
has been widely accepted in compensating the effects of disturbances. The disturbance ob-
server is utilized to estimate disturbances appearing in the system. There are currently the
development of disturbance observer design combined with most popular nonlinear control
methods such as backstepping method [15] and sliding mode method [16], as presented in
[16-20]. Based on the abovementioned references, disturbance observer-based control is
a promising method capable of rejecting external disturbances and improving robustness
against uncertainties [16] simultaneously. It also provides an effective way to handle ex-
ternal disturbances and system uncertainties. Additionally, disturbance observer design
method can be further extended to several problems in control system societies, such
as adaptive control [21], finite-time control [22], and tracking control [23]. Further, this
method can be successfully applied for numerous kinds of real engineering systems such
as flight control systems [16], permanent magnet synchronous motors [16], airbreathing
hypersonic vehicle systems [17], power systems [18], and electrohydrolic actuator systems
[23]. Those indicate important application potentials of the disturbance observer-based
control method to deal with the effect of unavoidably external disturbances.

However, even though the control design methods presented in [12-14] have good control
performances, external disturbances and uncertainties have not been taken into account
before. Disturbances and uncertainties arising in the system inevitably may lead to un-
desired control performances, and eventually make the system unstable.
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This paper still continues this line of investigation, but a systematic procedure to
synthesize a nonlinear feedback stabilizing control law on the basis of a backstepping
control [15] combined with the disturbance observer design [16] is developed to cope with
the effects of external disturbances.

Therefore, the primary contributions of this work lie in that:

• The use of a nonlinear disturbance observer-based backstepping control strategy to
stabilize the system in the presence of external disturbances has not been investigated
before;

• The overall closed-loop system is input-to-state in spite of having external distur-
bances;

• In comparison with a backstepping control and an integral backstepping control,
the developed control law offers better dynamic performances and a satisfactory
disturbance rejection ability.

The rest of this paper is organized as follows. A dynamic model of a dual-excited and
steam-valving system of synchronous generators is briefly presented, and some significant
lemmas together with the problem statement are given in Section 2. Controller design
and stability analysis are developed in Section 3 while simulation results are stated in
Section 4. Finally, in Section 5, a conclusion is given.

2. Power System Model Description and Preliminaries.

2.1. Power system models. In this subsection, a dynamic model of a synchronous
generator with dual-excited and steam-valving controller can be obtained as follows:

δ̇ = ω − ωs + d̄1(t),

ω̇ =
1

M

(
Pm −

E ′
q

X ′
dΣ

V∞ sin δ − E ′
d

X ′
qΣ

V∞ cos δ −
X ′

dΣ − X ′
qΣ

2X ′
dΣX ′

qΣ

V 2
∞ sin 2δ − D(ω − ωs)

)
+ d̄2(t),

Ṗm = −Pm − Pme

THΣ

+
CH

THΣ

uG + d̄3(t),

Ė ′
q = − XdΣ

X ′
dΣT ′

d0

E ′
q +

(XdΣ − X ′
dΣ)

X ′
dΣT ′

d0

V∞ cos δ +
ufd

T ′
d0

+ d̄4(t),

Ė ′
d = − XqΣ

X ′
qΣT ′

q0

E ′
d −

(XqΣ − X ′
qΣ)

X ′
qΣT ′

q0

V∞ sin δ +
ufq

T ′
q0

+ d̄5(t),

(1)

where δ is the power angle of the generator, ω denotes the relative speed of the gener-
ator, D ≥ 0 is a damping constant, and E ′

q and E ′
d are the q-axis and d-axis internal

transient voltages, respectively. X ′
d and X ′

q are the d-axis and q-axis transient reactances,
respectively. Pe is the electrical power delivered by the generator to the voltage at the
infinite bus V∞, ωs is the synchronous machine speed, ωs = 2πf , H represents the per
unit inertial constant, f is the system frequency and M = 2H/ωs. X ′

dΣ = X ′
d +XT +XL is

the reactance consisting of the direct axis transient reactance of SG, the reactance of the
transformer, and the reactance of the transmission line XL. Similarly, XdΣ = Xd+XT +XL

is identical to X ′
dΣ except that Xd denotes the direct axis reactance of SG. X ′

qΣ and XqΣ

denote the q-axis reactances similar to d-axis reactance. T ′
d0 and T ′

q0 are the d-axis and
q-axis transient open-circuit time constants. ufd and ufq are the q-axis and d-axis field
voltage control inputs to be designed, respectively. Pme is the initial value of mechanical
power, and CH is the assigned coefficient of high-pressure cylinder. THΣ is the equiva-
lent time constant of steam valve control systems. uG is the steam-valving control input
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to be designed. d̄j(t), (j = 1, 2, 3, 4, 5) are external disturbances and system parameter
variations.

For convenience, let us define new state variables as follows:

x1 = δ − δe,

x2 = ω − ωs,

x3 = Pm − Pme,

x4 =
E ′

qV∞ sin(x1 + δe) − E ′
qeV∞ sin δe

X ′
dΣ

+ m(sin 2(x1 + δe) − sin 2δe),

x5 =
E ′

dV∞ cos(x1 + δe) − E ′
dV∞ cos δe

X ′
qΣ

,

(2)

where m =
X′

dΣ−X′
qΣ

2X′
dΣX′

qΣ
.

Subsequently, after differentiating the state variables (2), we have the dynamic model
of the dual excitation and steam-valving system of synchronous generators with lumped
disturbances can be expressed as an affine nonlinear system as follows:

ẋ = f(x) + g(x)u(x) + d(t), (3)

where

f(x) =


f1(x)

f2(x)

f3(x)

f4(x)

f5(x)

 =



x2

1

M
(x3 − Dx2 − x4 − x5)

Pme − x3

THΣ(
−aqE

′
q + bq cos(x1 + δe)

) V∞ sin(x1 + δe)

X ′
dΣ

(−adE
′
d − bd sin(x1 + δe))

V∞ cos(x1 + δe)

X ′
qΣ


,

g(x) =


0 0 0

0 0 0

g31(x) 0 0

0 g42(x) 0

0 0 g53(x)

 =



0 0 0

0 0 0

1 0 0

0
V∞ sin(x1 + δe)

X ′
dΣ

0

0 0
V∞ cos(x1 + δe)

X ′
qΣ


,

u(x) =



CH

THΣ

uG

ufd

T ′
d0

ufq

T ′
q0

 , d(t) =


d1(t)

d2(t)

d3(t)

d4(t)

d5(t)

 =



d̄1(t)

d̄2(t)

d̄3(t)
V∞ sin(x1 + δe)

X ′
dΣT ′

d0

d̄4(t)

V∞ cos(x1 + δe)

X ′
qΣT ′

q0

d̄5(t)


,

(4)

where aq = XdΣ

X′
dΣT ′

d0
, ad =

XqΣ

X′
qΣT ′

q0
, bq =

(XdΣ−X′
dΣ)

X′
dΣT ′

d0
V∞, bd =

(XqΣ−X′
qΣ)

X′
qΣT ′

q0
V∞. The region of

operation is defined in the set D = {x ∈ S ×R×R×R×R| 0 < x1 < π
2
}. The open loop

operating equilibrium is denoted by xe = [0, 0, 0, 0, 0]T .
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For the sake of simplicity, the power system considering (3) and (4) can be expressed
as follows. 

ẋ1 = x2 + d1(t),

ẋ2 =
1

M
(x3 − Dx2 − x4 − x5) + d2(t),

ẋ3 = f3(x) + g31(x)
CH

THΣ

uG + d3(t),

ẋ4 = f4(x) + g42(x)
ufd

T ′
d0

+ d4(t),

ẋ5 = f5(x) + g53(x)
ufq

T ′
q0

+ d5(t).

(5)

Assumption 2.1. The external disturbances dj(t), (j = 1, 2, 3, 4, 5) are bounded. Addi-
tionally, the first derivatives of the disturbances above are also bounded.

Remark 2.1. The assumption above is often employed in the disturbance estimator based
control design technique for real engineering applications [16], such as airbreathing hyper-
sonic vehicle systems [17], power systems [18], and electrohydrolic actuator systems [23].
In particular, the derivative of the disturbance will appear in the estimation error equation
(10). This assumption is necessary to be used to analyze the overall closed-loop system
stability as given in Section 3.3.

2.2. Preliminaries. In this subsection, some important lemmas are mentioned as follows
for convenience of the reader. Consider the following system

ẋ = f(t, x, u), x ∈ Rn, u ∈ Rm. (6)

Definition 2.1. [24] A continuous function α : [0, a) → [0, +∞) belongs to class K if it
is strictly increasing and α(0) = 0. It belongs to class K∞ if a = +∞ and a(r) → +∞ as
r → +∞.

Lemma 2.1. [24] Let V : [0,∞)×Rn → R be a continuously differentiable function such
that

α1(||x||) ≤ V (t, x) ≤ α2(||x||)
∂V

∂t
+

∂V

∂x
f(t, x, u) ≤ −W3(x), ∀||x|| ≥ ρ(||u||) > 0,

for all (t, x, u) ∈ [0,∞)×Rn ×Rm, where α1 and α2 are class K functions, ρ is a class K
function, and W3(x) is a continuous positive definite function on Rn. Then, system (6)
is input-to-state stable (ISS).

Lemma 2.2. [24] Consider the following system (6). If the following conditions are
satisfied

• system ẋ = f(t, x, u) is globally input-to-state stable.
• limt→+∞ u = 0.

then the states of the system (5) will asymptotically converge to zero, that is, limt→+∞ x =
0.

Remark 2.2. It is observed that the second subsystem of the system (5) depends upon
the state variables x3, x4 and x5. Therefore, the dynamic equations considered are not the
strict-feedback form. The backstepping design presented in this work needs to be extended
for the nonlinear control design for non-strict-feedback form.
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Problem statement: The control objective of this paper is to solve the problem of the
stabilization of the system (5) with the external disturbances d, which can be formulated as
follows: with the help of the nonlinear disturbance observer-based backstepping control
technique [17], to design a stabilizing (state) feedback controller u(x) and disturbance

estimation d̂ as follows:  u = ϕ
(
x, d̂
)

˙̂
d = φ

(
x, u, d̂

) (7)

such that the overall closed-loop systems (5) and (7) are input-to-state stable, where d̂ is
the estimate of d.

For the developed design procedure in the next section, a combination of the back-
stepping strategy and disturbance observe design will be presented to obtain a composite
nonlinear controller (7). In comparison with the conventional backstepping method, the
proposed approach will introduce the disturbance estimation terms into virtual control
variables. These terms are also used for compensating the external disturbances at each
step, and the estimation error dynamics are included for the closed-loop stability analysis.

3. Controller Design and Stability Analysis. In this section, we aim at deriving the
control laws for stabilizing the dual-excitation and steam-valving system of synchronous
generators. Our proposed design process can be divided into three subsections.

• The first subsection consists of designing the nonlinear disturbance observer to online
identify the unknown, but bounded, disturbances.

• The second subsection presents a design procedure combining the backstepping con-
trol law with the disturbance estimator introduced into the virtual control laws in
each design step.

• Based on Lyapunov stability arguments, the overall closed-loop system in the pres-
ence of external disturbance is investigated in the final subsection. Also, the resulting
controller can achieve stability and performance specifications.

3.1. Nonlinear disturbance observer design. In accordance with [16-18] in order to
guarantee the control performance of the system (5), the nonlinear disturbance observer
can be designed as 

d̂i = λi(xj − pj), j = 1, 2, 3, 4, 5,

ṗ1 = f1(x) + d̂1,

ṗ2 = f2(x) + d̂2,

ṗ3 = f3(x) + g31(x)
CH

THΣ

uG + d̂3,

ṗ4 = f4(x) + g42(x)
ufd

T ′
d0

+ d̂4,

ṗ5 = f5(x) + g53(x)
ufq

T ′
q0

+ d̂5,

(8)

where λj > 0 is a design parameter. Thus, based on (8) the disturbance estimation
dynamics can be expressed in the following form:

˙̂
dj = λi (ẋj − ṗj) = λ

(
dj − d̂j

)
, j = 1, 2, 3, 4, 5. (9)
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Let us define the disturbance estimation error as ej = dj−d̂j, and we have the estimation
error dynamics as follows.

ėj = −λjej + ḋj. (10)

3.2. Backstepping design. According to the concept reported in [18], the stabilization
problem for the system (5) is solved by designing a backstepping control. The design
procedures are developed step by step as follows.

Step 1: Considering, the first subsystem (5), a Lyapunov function is selected as

V1 =
1

2
z2
1 +

1

2
e2
1, (11)

where z1 = x1. Then the time derivative of V1 along the system trajectories becomes

V̇1 = z1(x2 + d1) + e1(−λ1e1 + ḋ1)

= −λ1e
2
1 + z1x2 + z1d1 + e1ḋ1

= −λ1e
2
1 + z1x

∗
2 + z1(x2 − x∗

2) + z1d1 + e1ḋ1. (12)

From (12), it is seen that x∗
2 is regarded as the virtual control variable with the distur-

bance estimate d̂1 as follows.

x∗
2 = −

(
k1 +

1

4ϵ1

)
z1 − d̂1, (13)

where k1 > 0 and ϵ1 > 0. After substituting (13) into (12), we have

V̇1 = −
(

k1 +
1

4ϵ1

)
z2
1 − λ2

1e
2
1 + z1e1 + z1z2 + e1ḋ1

= −
(

k1 +
1

4ϵ1

)
z2
1 − λ2

1e
2
1 +

1

4ϵ1

z2
1 + ϵ1e1 + z1z2 + e1ḋ1

= −k1z
2
1 − (λ1 − ϵ1)e

2
1 + z1z2 + e1ḋ1, (14)

where z = x2 − x∗
2.

Step 2: Let us define the Lyapunov function of Step 1 as

V2 = V1 +
1

2
z2
2 +

1

2
e2
2. (15)

Then the time derivative of V2 along the system trajectories is as follows:

V̇2 = −k1z
2
1 − (λ1 − ϵ1)e

2
1 + z1z2 + e1ḋ1 + e2ḋ2

+z2

(
1

M
(x3 − Dx2 − x4 − x5) + d2 −

∂x∗
2

∂z1

(x2 + d1) −
∂x∗

2

∂d̂1

λ1e1

)
= −k1z

2
1 − (λ1 − ϵ1)e

2
1 − λ2e

2
2 + z1z2 +

1

M
z2x

∗
3 −

1

M
z2x

∗
4 −

1

M
z2x

∗
5 − z2

∂x∗
2

∂z1

x2

+z2

[
1

M

(
x3 − x∗

3 − Dx2 − (x4 − x∗
4) − (x5 − x∗

5) + d2 −
∂x∗

2

∂z1

(x2 + d1)

)]
−z2

∂x∗
2

∂d̂1

λ1e1 + e1ḋ1 + e2ḋ2. (16)
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From (16), it can be observed that x∗
3, x∗

4 and x∗
5 are considered as the virtual control

variables with the disturbance estimates d̂1 and d̂2 as follows.
x∗

3 =
M

3

[
−
(

k2 +
1

4ϵ2

+ ĉ2

)
z2 − z1 +

Dx2

M
− d̂2 +

∂x∗
2

∂z1

(
x2 + d̂1

)]
,

x∗
4 = −x∗

3,

x∗
5 = −x∗

3,

(17)

where k2 > 0, ϵ2 > 0 and ĉ2 = 1
4ϵ2

(
∂x∗

2

∂z1
+

∂x∗
2

∂d̂1
λ1

)
. After substituting (17) into (16), we

obtain

V̇2 = −k1z
2
1 − λ2

1e
2
1 −

(
k2 +

1

4ϵ2

+ ĉ2

)
z2
2 − λ2e

2
2 +

1

M
z2(x3 − x∗

3) −
1

M
z2(x4 − x∗

4)

− 1

M
z2(x5 − x∗

5) + z2e2 − z2

(
∂x∗

2

∂z1

+
∂x∗

2

∂d̂1

λ1

)
e1 + e1ḋ1 + e2ḋ2. (18)

Based on Young inequality, it can be straightforwardly computed of the terms in (18)
as

e2z2 ≤ 1

4ϵ2

z2
2 + ϵ2e

2
2 (19)

−z2

(
∂x∗

2

∂z1

+
∂x∗

2

∂d̂1

λ1

)
e1 ≤ 1

4ϵ2

(
∂x∗

2

∂z1

+
∂x∗

2

∂d̂1

λ1

)2

z2
2ϵ

2
1 = ĉ2z

2
2 + ϵ1e

2
1. (20)

Substituting (19) and (20) into (18) and then defining zi = xi − x∗
i , i = 3, 4, 5, we get

V̇2 ≤ −k1z
2
1 − k2z

2
2 − (λ1 − 2ϵ1) e2

1 − (λ2 − ϵ2) e2
2 +

z2

M
(z3 − z4 − z5) . (21)

Step 3: we select a Lyapunov function as follows:

V3 = V2 +
1

2

5∑
i=3

(
z2

i + e2
i

)
. (22)

After taking derivatives of both sides of (22), one has

V̇3 = V̇2 +
5∑

i=3

(ziżi + eiėi)

= −k1z
2
1 − k2z2 − (λ1 − 2ϵ1)e

2
1 − (λ2 − ϵ2)e

2
2 +

z2

M
(z3 − z4 − z5)

+
5∑

i=3

[
zi

(
ẋi −

∂x∗
i

∂z1

ż1 −
∂x∗

i

∂z2

ż2 −
∂x∗

i

∂d̂1

λ1e1 −
∂x∗

i

∂d̂2

λ2e2

)
− λie

2
i + eiḋi

]
. (23)

Substituting ẋi, (i = 3, 4, 5) from (5), ż1, ż2 and x∗
2 into (23) yields

V̇3 ≤ −k1z
2
1 − k2z

2
2 − (λ1 − 2ϵ1)e

2
1 − (λ2 − ϵ2)e

2
2 −

5∑
i=3

(
λie

2
i − eiḋi

)
+z3

[
z2

M
+ f3(x) + g31(x)

CH

THΣ

uG + d3 −
∂x∗

3

∂z1

(
x2 + d̂1

)
− ∂x∗

3

∂z2

(f2(x) + d2)

+
∂x∗

3

∂z2

∂x∗
2

∂x1

(x2 + d1) −
∂x∗

2

∂d̂1

λ1e1

]
− z3

(
∂x∗

3

∂d̂1

λ1e1 +
∂x∗

3

∂d̂2

λ2e2

)
+z4

[
− z2

M
+ f4(x) + g42(x)

ufd

T ′
d0

+ d4 −
∂x∗

4

∂z1

(
x2 + d̂1

)
− ∂x∗

4

∂z2

(f2(x) + d2)
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+
∂x∗

4

∂z2

∂x∗
2

∂x1

(x2 + d1) −
∂x∗

2

∂d̂1

λ1e1

]
− z4

(
∂x∗

4

∂d̂1

λ1e1 +
∂x∗

4

∂d̂2

λ2e2

)
+z5

[
− z2

M
+ f5(x) + g53(x)

ufq

T ′
q0

+ d5 −
∂x∗

5

∂z1

(
x2 + d̂1

)
− ∂x∗

5

∂z2

(f2(x) + d2)

+
∂x∗

5

∂z2

∂x∗
2

∂x1

(x2 + d1) −
∂x∗

2

∂d̂1

λ1e1

]
− z5

(
∂x∗

4

∂d̂1

λ1e1 +
∂x∗

4

∂d̂2

λ2e2

)
. (24)

From (24), in order to achieve the desired control performance, we choose the control
law as follows:

CH

THΣ

uG =
1

g31(x)

[
− z2

M
− f3(x) − d̂3 +

∂x∗
3

∂z1

(
x2 + d̂1

)
+

∂x∗
3

∂z2

(
f2(x) + d̂2

−∂x∗
2

∂z1

(
x2 + d̂1

))
−
(

k3 +
1

4ϵ3

+ ĉ31 + ĉ32 + ĉ33 + ĉ34

)
z3

]
ufd

T ′
d0

=
1

g42(x)

[
z2

M
− f4(x) − d̂4 +

∂x∗
4

∂z1

(
x2 + d̂1

)
+

∂x∗
4

∂z2

(
f2(x) + d̂2

−∂x∗
2

∂z1

(
x2 + d̂1

))
−
(

k4 +
1

4ϵ4

+ ĉ41 + ĉ42 + ĉ43 + ĉ44

)
z4

]
ufq

T ′
q0

=
1

g53(x)

[
z2

M
− f5(x) − d̂5 +

∂x∗
5

∂z1

(
x2 + d̂1

)
+

∂x∗
5

∂z2

(
f2(x) + d̂2

−∂x∗
2

∂z1

(
x2 + d̂1

))
−
(

k5 +
1

4ϵ5

+ ĉ51 + ĉ52 + ĉ53 + ĉ54

)
z5

]
,

(25)

where ĉi1 = 1
4ϵ1

(
∂x∗

i

∂z1
+

∂x∗
i

∂d̂1
λ1

)2

, ĉi2 = 1
4ϵ2

(
∂x∗

i

∂z2
+

∂x∗
i

∂d̂2
λ2

)2

, ĉi3 = 1
4ϵ1

[
∂x∗

i

∂z2

(
∂x∗

i

∂z1
+

∂x∗
i

∂d̂1
λ1

)]2

,

ĉi4 = 1
4ϵ2

[
∂x∗

i

∂x2

]2

, i = 3, 4, 5.

Remark 3.1. In accordance with the results presented in [18], some auxiliary terms ĉ2,
ĉi1, . . . , ĉi4 are introduced into the virtual state variables (17) and the final controller (25)
to deal with the crossing terms arising from the effect of disturbances, compensation errors,
and system states. On the other hand, these auxiliary terms are not included in the
conventional backstepping method, thereby leading to unsatisfactory control performances.

Substituting the presented control law (25) into (24), we have

V̇3 = −k1z
2
1 − k2z

2
2 − (λ1 − 2ϵ1)e

2
1 − (λ2 − ϵ2)e

2
2 −

5∑
i=3

(
λie

2
i − eiḋi

)
+

5∑
i=3

zi

[
ei −

∂x∗
i

∂z1

e1 −
∂x∗

i

∂z2

e2 +
∂x∗

i

∂z2

∂x∗
2

∂z1

e1 −
∂x∗

i

∂x2

e2

+

(
ki +

1

4ϵ1

+ ĉi1 + ĉi2 + ĉi3 + ĉi4

)
zi

]
−

5∑
i=3

zi

[
∂x∗

i

∂d̂1

λ1e1 +
∂x∗

i

∂d̂2

λ2e2 +
∂x∗

i

∂z2

∂x∗
2

∂d̂1

λ1e1

]
. (26)
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It is observed that some terms of the last two lines in (26) can be changed into the
following inequalities:

−zi

(
∂x∗

i

∂z1

+
∂x∗

i

∂d̂1

λ1

)
e1 ≤ 1

4ϵ1

(
∂x∗

i

∂z1

+
∂x∗

i

∂d̂1

λ1

)2

z2
i + ϵ1e

2
1 = ĉi1z

2
i + ϵ1e

2
1, (27)

−zi

(
∂x∗

i

∂z2

+
∂x∗

i

∂d̂2

λ2

)
e2 ≤ 1

4ϵ2

(
∂x∗

i

∂z2

+
∂x∗

i

∂d̂2

λ1

)2

z2
i + ϵ2e

2
2 = ĉi2z

2
i + ϵ2e

2
2, (28)

−zi

[
∂x∗

i

∂z2

(
∂x∗

i

∂z1

+
∂x∗

i

∂d̂1

λ1

)]
e1 ≤ 1

4ϵ1

[
∂x∗

i

∂z2

(
∂x∗

i

∂z1

+
∂x∗

i

∂d̂1

λ1

)]2

z2
i + ϵ1e

2
1

= ĉi3z
2
i + ϵ1e

2
1, (29)

−zi
∂x∗

i

∂x2

e2 ≤ 1

4ϵ2

(
∂x∗

i

∂x2

)2

z2
i + ϵ2e

2
2 = ĉi4z

2
i + ϵ2e

2
2. (30)

After substituting the inequalities (27)-(30) and then combining those inequalities with
(26), we have

V̇3 ≤ −
5∑

j=1

(
kjz

2
j + ej ḋj

)
− (λ1 − 8ϵ1)e

2
1 − (λ2 − 4ϵ2)e

2
2 −

5∑
i=3

(λi − ϵi)e
2
i (31)

In the following subsection, we analyze the stability of the closed-loop system with the
control law (25) based on the control design of this subsection.

3.3. Stability analysis. In this subsection, the overall closed-loop stability of the system
(5) with the proposed control law (25) and the error estimation dynamics (10) are analyzed
within the framework of Lyapunov theory. Before the closed-loop stability is carried out,
the closed-loop system dynamics can be expressed as follows:

ż1 = z2 −
(

k1 +
1

4ϵ1

)
z1 + e1

ż2 = −z1 +
1

M
(z3 − z4 − z5) −

(
k2 +

1

4ϵ2

+ ĉ2

)
z2 + e2 −

∂x∗
2

∂z1

e1 −
∂x∗

2

∂d̂1

λ1e1

ż3 = − 1

M
z2 −

(
k3 +

1

4ϵ3

+ ĉ31 + ĉ32 + ĉ33 + ĉ34

)
z3 + e3 −

∂x∗
3

∂z1

e1 −
∂x∗

3

∂z2

e2

+
∂x∗

3

∂z1

∂x∗
2

∂z1

e1 +
∂x∗

3

∂z1

∂x∗
2

∂d̂1

λ1e1 −
∂x∗

3

∂d̂1

λ1e1 −
∂x∗

3

∂d̂2

λ2e2

ż4 =
1

M
z2 −

(
k4 +

1

4ϵ4

+ ĉ41 + ĉ42 + ĉ43 + ĉ44

)
z4 + e4 −

∂x∗
4

∂z1

e1 −
∂x∗

4

∂z2

e2

+
∂x∗

4

∂z1

∂x∗
2

∂z1

e1 +
∂x∗

4

∂z1

∂x∗
2

∂d̂1

λ1e1 −
∂x∗

4

∂d̂1

λ1e1 −
∂x∗

4

∂d̂2

λ2e2

ż5 =
1

M
z2 −

(
k5 +

1

4ϵ5

+ ĉ51 + ĉ52 + ĉ53 + ĉ54

)
z5 + e5 −

∂x∗
5

∂z1

e1 −
∂x∗

5

∂z2

e2

+
∂x∗

5

∂z1

∂x∗
2

∂z1

e1 +
∂x∗

5

∂z1

∂x∗
2

∂d̂1

λ1e1 −
∂x∗

5

∂d̂1

λ1e1 −
∂x∗

5

∂d̂2

λ2e2,

ėj = −λjej + ḋj, j = 1, 2, 3, 4, 5.

(32)

Therefore, we can summarize the control design in the following theorem.

Theorem 3.1. Under Assumption 2.1, the nonlinear disturbance observer-based back-
stepping controller (25) can guarantee that the overall closed-loop system consisting of the
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system and the disturbance observer error dynamics (32) with the developed controller is
input-to-state stable.

Proof: To demonstrate the closed-loop stability of the presented control strategy, let
us define the following Lyapunov function for the closed-loop dynamics (32).

V3 =
5∑

j=1

1

2

(
z2

j + e2
j

)
. (33)

After computing the time derivative of the Lyapunov function candidate (33), the
closed-loop system can be expressed as

V̇3 ≤ −
5∑

j=1

(
kjz

2
j + ej ḋj

)
− (λ1 − 8ϵ1)e

2
1 − (λ2 − 4ϵ2)e

2
2 −

5∑
i=3

(λi − ϵi)e
2
i . (34)

After selecting λ1 = a01 + 8ϵ1, λ2 = a02 + 4ϵ2, λi = a0i + ϵi, (i = 3, 4, 5), a0j > 0,
(j = 1, 2, 3, 4, 5), we obtain

V̇3 ≤ −
5∑

j=1

kjz
2
j −

5∑
j=1

a0je
2
j +

5∑
j=1

ej ḋj ≤ −
5∑

j=1

kjz
2
j − a0∥e∥2 + ∥e∥∥ḋ∥, (35)

where e = [e1, e2, e3, e4, e5]
T , ḋ =

[
ḋ1, ḋ2, ḋ3, ḋ4, ḋ5

]T
, a0 = min{a01, a02, . . . , a05}. Besides,

we rewrite the inequality (35) as

V̇3 ≤ −
5∑

j=1

kjz
2
j − (1 − θ)a0∥e∥2 − θa0∥e∥2 + ∥e∥∥ḋ∥, (36)

where 0 < θ < 1. Provided that ∥e∥ ≥ ∥ḋ∥
a0θ

, we obtain V̇3 ≤ −
∑5

j=1 kjz
2
j − (1−θ)a0∥e∥2 ≤

0. In accordance with Lemma 2.2, it can be concluded that the overall closed-loop dy-
namics (32) are input-to-state stable. This completes the proof.

Remark 3.2. According to the result of Theorem 1 and Lemma 9.2 in [24], it can be
observed that under Assumption 2.1, the disturbance estimation error will approach to
any specified level via a suitable selection of the observer gain (λi).

Assumption 3.1. The disturbances satisfy the condition of limt→+∞ ḋj(t) = 0, (j =
1, 2, 3, 4, 5).

Theorem 3.2. Under Assumptions 2.1 and 3.1, the closed-loop dynamics (32) under the
control law (25) and the disturbance estimation (8) will asymptotically converge to zero.

Proof: It is seen from the closed-loop system (32) that ḋj can be regarded as an input
of the system. After combining Theorem 3.1 with Assumption 3.1, it follows from Lemma
2.2 that all trajectories of zj and ej of the closed-loop dynamics converge to zero. This
means that zj → 0 and ej → 0 as t → +∞. This completes the proof.

4. Simulation Results. In this section, simulation results are given to indicate the
effectiveness of the developed strategy. The proposed controller is evaluated via simula-
tions of a single-machine infinite bus (SMIB) power system consisting of dual-excited and
steam-valving control as shown in Figure 1 [13]. The performance of the proposed control
scheme is evaluated and verified in MATLAB environment.

The physical parameters (pu.), the controller parameters, and initial conditions used
for this power system model are the same as those used in [13] as follows:
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• The parameters of dual-excitation and steam-valving system and transmission line:
ωs = 2πf rad/s, D = 5, H = 5, f = 60 Hz, T ′

d0 = 10, T ′
q0 = 4, V∞ = 1∠0◦, ω = ωs,

Xq = 1.6, X ′
q = 0.38, Xd = 1.6, X ′

d = 0.23, THΣ = 0.4, XT = 0.13, XL = 0.17.
• The controller parameters of the proposed controller are ϵj = 10, kj = 20, λj = 50,

(j = 1, 2, . . . , 5).

• Initial conditions δe = 0.3445 rad, Pme = 1.2749, E ′
qe = 1.0703, E ′

de = 0.522, d̂j0 = 0,
(j = 1, 2, 3, 4, 5).

Figure 1. A single line diagram of SMIB model with SMES

Additionally, the external disturbances (dj, j = 1, 2, 3, 4, 5) acting on the underlying
system are assumed to be:

d1(t) = 0, 0 ≤ t ≤ 20,

d2(t) =


0.5 sin(2t), 0 ≤ t < 5

1, 5 ≤ t < 10

0.25 sin(2t)e−t, 10 ≤ t ≤ 20

, d3(t) =


0.15 cos(t), 0 ≤ t < 5

2, 5 ≤ t < 10

0.5 cos(t)e−2t, 10 ≤ t ≤ 20

d4(t) =


0.25 sin(t), 0 ≤ t < 5

2, 5 ≤ t < 10

0.3 sin(t)e−3t, 10 ≤ t ≤ 20

, d5(t) =


0.2 cos(t), 0 ≤ t < 5

1.5, 5 ≤ t < 10

0.4 cos(t)e−t, 10 ≤ t ≤ 20

The controller parameters are set as ϵj = 10, kj = 20, λj = 50, (j = 1, 2, . . . , 5). The
time domain simulations are carried out to investigate the system stability enhancement
and the dynamic performance of the designed controller, as given in (25), in the system in
the presence of external disturbances. The control performance of the proposed controller
(nonlinear disturbance observer-based backstepping controller) is compared with that of
the following nonlinear controllers.

• A backstepping controller [15] is provided by

CH

THΣ

uG =
1

g31(x)

[
− k3z3 −

z2

M
− f3(x) +

1

3
(Dẋ2 − M(k2ż2 + ż1 + k1ẋ2))

]
,

ufd

T ′
d0

=
1

g42(x)

[
− k4z4 +

z2

M
− f4(x) − 1

3
(Dẋ2 − M(k2ż2 + ż1 + k1ẋ2))

]
,

ufq

T ′
q0

=
1

g53(x)

[
− k5z5 +

z2

M
− f5(x) − 1

3
(Dẋ2 − M(k2ż2 + ż1 + k1ẋ2))

]
,

(37)

with zj = xj − x∗
j , (j = 1, 2, 3, 4, 5), x∗

1 = 0, x∗
2 = −k1z1, x∗

3 = 1
3
(Dx2 − M(k2z2 +

z1 + k1x2)), x∗
4 = x∗

5 = −x∗
3, ż1 = −c1z1 + z2, ż2 = f2(x) + c1x2. The controller

parameters of this scheme are set as cj = 20, (j = 1, 2, . . . , 5).
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• An integral backstepping controller is given by

CH

THΣ

uG =
1

g31(x)

[
− k3z3 −

z2

M
− f3(x) +

1

3

(
Dẋ2 − M(k2ż2 + ż1

+ k1(ẋ2 + βẋ1) + βẋ2)
)]

,

ufd

T ′
d0

=
1

g42(x)

[
− k4z4 +

z2

M
− f4(x) − 1

3

(
Dẋ2 − M(k2ż2 + ż1

+ k1(ẋ2 + βẋ1) + βẋ2)
)]

,

ufq

T ′
q0

=
1

g53(x)

[
− k5z5 +

z2

M
− f5(x) − 1

3

(
Dẋ2 − M(k2ż2 + ż1

+ k1(ẋ2 + βẋ1) + βẋ2)
)]

,

(38)

where zj = xj − x∗
j , (j = 1, 2, 3, 4, 5), x∗

1 = −β
∫ t

0
x1(τ)dτ , β > 0, x∗

2 = −k1z1 − βx1,

x∗
3 = 1

3
(Dx2 − M(k2z2 + z1 + k1(x2 + βx1) + βx2)), x∗

4 = x∗
5 = −x∗

3, ż1 = −c1z1+z2,
ż2 = f2(x) + c1(x2 + βx1) + βx2. The controller parameters of this scheme are set as
cj = 20, (j = 1, 2, . . . , 5), β = 1.

The simulation results are presented and discussed as follows. Time trajectories of
the power angle, frequency, mechanical power together with d-axis and q-axis transient
internal voltages under three controllers are presented in Figures 2 and 3, respectively.
Also, in order to illustrate the effectiveness of disturbance observer, Figure 4 shows time
histories of external disturbances and disturbance estimation. From these figures, it can
be observed that the time responses can achieve the control objectives in the presence

Figure 2. Controller performance – power angles (δ) (rad.), frequency
(ω−ωs) rad/s. and mechanical input (Pm) pu. (Solid: The proposed control,
Dashed: Backstepping control, Dotted: Integral backstepping control)
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Figure 3. Controller performance – the q-axis transient internal voltage
(Eq) (pu.) and the d-axis transient internal voltage (Ed) (pu.) (Solid: The
proposed control, Dashed: Backstepping control, Dotted: Integral back-
stepping control)

Figure 4. External disturbances and disturbance estimation
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of external disturbances. It is obviously seen that the proposed controller offers better
dynamic performances, such as a shorter settling time, a short rise time, a faster con-
vergence rate, and no steady-state error. It is capable of accomplishing a satisfactory
disturbance rejection ability despite having external disturbances. From Figures 2 and
3, one can observe that under the proposed control, the adverse effects caused by the
disturbances are removed from the system after a short period. On the other hand,
the backstepping control and the integral backstepping control clearly exhibit undesired
control performances such as unsatisfactory overshoots, slowly suppressing system oscilla-
tions, and nonzero steady-state error. Thus, the proposed controller offers superiority over
backstepping and integral backstepping controller since the disturbance observer design,
employed to estimate the external disturbance, introduces the disturbance estimation to
the virtual control laws in each step and the final controller (25). Figure 4 illustrates
time histories of disturbances and their estimations using the proposed observer capable
of effectively estimating and compensating the external disturbances successfully. Apart
from this, the disturbance estimator of the developed strategy quickly approaches to the
external disturbances with very fast convergence rates and no oscillations as shown in
Figure 4.

From the simulation results mentioned previously, it is evident that as the presented
backstepping method combined with the disturbance observer scheme is applied to the
SMIB power system with external disturbances, the advantages over both conventional
backstepping and integral backstepping methods are as follows.

• The proposed control law is effectively designed to stabilize the system in the presence
of undesired disturbances.

• The developed control strategy can make the overall closed-loop dynamics converge
more quickly to a desired equilibrium point. In particular, it obviously performs well
and has considerably effective disturbance rejection ability. It offers obviously supe-
rior transient performances illustrated by the rapidly suppressing system oscillations
in all time trajectories in spite of having external disturbances.

• The process of designing the desired control law includes some auxiliary terms into
the virtual control laws and the final controller. These terms can counteract the
crossing terms arising from disturbances, compensation errors, and system states.
In contrast, these terms are not included in the conventional backstepping method
and the integral backstepping method. Thus, both backstepping methods provide
unsatisfactory control performances.

5. Conclusion. In this paper, the nonlinear disturbance observer-based backstepping
control strategy has been proposed for a dual excitation and steam-valving system of
synchronous generators in the presence of external disturbances. The developed approach
is utilized to offer a satisfactory disturbance rejection performance and achieve improved
dynamic performances. To validate the proposed scheme, a dynamic model of the dual-
excited and steam-valving system of synchronous generators is used to evaluate through
a simulation environment. The simulation results have demonstrated that the developed
control method provides an improved transient performance and performs satisfactorily
in rejecting external disturbances better than backstepping and integral backstepping
methods. The comparative results with other two controllers confirm the effectiveness of
the proposed controller capable of rapidly suppressing system oscillations in the closed-
loop system dynamics and rejecting unavoidably external disturbances.
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