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Abstract. Differential evolution (DE) is a simple and efficient algorithm for solving
optimization problems in a continuous space. Although DE shows relatively good perfor-
mance, its search performance depends greatly on the mutation strategy. In this research,
we focus on the number of difference vectors in strategy of differential mutation. The
characteristics of the differential mutation using multiple difference vectors differ from
mutation of single vector. In this paper, we firstly analyze the search characteristics of
DE with multivector mutation. Next, we improve an algorithm of rank-based differential
evolution (RDE) by introducing multivector mutation. RDE is one of the DE vari-
ants where control parameters are adaptively controlled during the search. The proposed
method, called RDE-MM, allocates different control parameter values and the number of
difference vectors for each individual based on the ranking information in the current
population. Through the experiments using standard benchmark functions, we show that
the multivector mutation can enhance the search ability of RDE.
Keywords: Differential evolution, Multivector mutation, Population diversity

1. Introduction. Differential evolution (DE) [1, 2] is a population-based stochastic sear-
ch method for solving global optimization problems in continuous domain. It has been
successfully applied to various standard benchmark problems and has found several real-
world applications. However, the performance of DE mainly depends on mutation strate-
gies and crossover operators and their associated control parameters (i.e., population size
NP , scaling factor F , and crossover rate CR). There are some variants of DE that have
been proposed. The variants are classified based on the notation DE/base/num/cross,
where “base” specifies a way of selecting an individual that will form the base vector,
“num” specifies the number of difference vectors used to perturb the base vector, and
“cross” specifies the type of crossover.

In DE, the most popular strategy is DE/rand/1 where only one difference vector is
generated and the base vector is chosen by random from population. Meanwhile, it is
also possible to have multiple difference vectors in mutation. Opara and Arabas, in [3],
showed that the difference vector distribution for the differential mutation using multiple
difference vectors tends to a normal distribution, whose covariance matrix is proportional
to the covariance matrix of the current population. Furthermore, a generalization of
DE/rand/k mutation schemes for large k is defined in [4].

Rank-based differential evolution (RDE) [5], which is one of the adaptive parameter
controlling methods, employs RDE/rand/1 strategy. In RDE, different F and CR are
allocated for each individual by using ranking information in the current population. Due
to its parameter allocation scheme, RDE has a well balance between exploration and
exploitation which is necessary for solving black box optimization. Additionally, we have
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proposed several variants of RDE to improve the search ability. For large scale global
optimization, we introduced a selection mechanism of the mutation strategy to RDE with
landscape modality detection [6]. Also, we incorporated the eigenvector-based (EIG)
crossover operator to RDE and proposed a control scheme to select EIG or exponential
crossover [7]. These methods outperformed the original RDE on a set of benchmark
functions; however, one difference vector was used in their mutation operators.
In this paper, we focus on the ability of multivector mutation which can maintain

population diversity, and aim to improve the performance of RDE by incorporating mul-
tivector mutation. At first, the search characteristics of DE with multivector mutation
are analyzed on standard benchmark functions. Next, we propose RDE with multivector
mutation (RDE-MM) where F , CR and the number of difference vectors are controlled
at each individual based on the ranking information in the current population. This pa-
per is organized as follows. A brief description of the DE algorithm is given in Section
2. Section 3 describes impact of multivector mutation in DE. In Section 4, we present
the proposed RDE with multivector mutation. In Section 5 we present the result of
experiments. Finally, the conclusion is given in Section 6.

2. Optimization by Differential Evolution.

2.1. Optimization problems. In this study, the following optimization problem with
lower bound and upper bound constraints will be discussed.

minimize f(x)

subject to Lj ≤ xj ≤ Uj, j = 1, . . . , D
(1)

where x = (x1, x2, . . . , xD) is a D-dimensional vector and f(x) is an objective function.
Values Lj and Uj are the lower bound and the upper bound of xj, respectively. Let
the search space in which every point satisfies the lower and upper bound constraints be
denoted by S.

2.2. Differential evolution. DE is one of the variants of evolutionary algorithms that
use a population. There are some variants of DE that have been proposed. The variants
are denoted as DE/base/num/cross, where “base” denotes the manner of constructing
the mutant vector, “num” denotes the number of difference vectors, and “cross” indicates
crossover method.
The pseudo-code of DE/rand/1/- is presented in Algorithm 1, where Gmax denotes the

maximum number of generations. In the initialization phase, NP individuals P = {xi, i =
1, 2, . . . , NP} are randomly generated in a given search space. Each individual contains
D genes as decision variables. At each generation, DE creates a mutant vector vi =
(vi1, vi2, . . . , viD) for each individual xi (called a target vector) in the current population.
Some well-known mutation operations are listed as follows.
“rand/1”:

vi = xr1 + F (xr2 − xr3) (2)

“best/1”:

vi = xbest + F (xr2 − xr3) (3)

“current-to-best/1”:

vi = xi + F (xbest − xi) + F (xr2 − xr3) (4)

In the above equations, xbest is the best individual in the current population, and the
indices r1, r2 and r3 are distinct integers uniformly chosen from the set {1, 2, . . . , NP}\{i}.
The parameter F is called the scaling factor, which amplifies the difference vectors.
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Algorithm 1 DE/rand/1/-

1: /*Initialize a population*/
2: P = NP individuals {xi} generated randomly in S;
3: Set scaling factor F and crossover rate CR;
4: for G = 1 to Gmax do
5: for i = 1 to NP do
6: /*DE operation*/
7: (xr1 ,xr2 ,xr3) = randomly selected from P
8: s.t., r1 ̸= r2 ̸= r3 ̸= i;
9: vi = xr1 + F (xr2 − xr3);
10: ui = trial vector generated from xi and vi by a crossover;
11: end for
12: for i = 1 to NP do
13: if f(ui) ≤ f(xi) then
14: xnew

i = ui;
15: else
16: xnew

i = xi;
17: end if
18: end for
19: P = {xnew

i , i = 1, 2, . . . , NP};
20: end for

After mutation, DE performs the crossover operator between target vector and mutant
vector, and generates a trial vector ui = (ui1, ui2, . . . , viD). In DE, there are two main
crossovers: exponential (exp) crossover and binomial (bin) crossover. In this paper, we
use shuffled exponential crossover, which does not rely on arbitrary dependencies between
adjacent variables [8]. In the crossover, CR is the crossover rate within the range [0, 1)
and presents the probability of generating genes for a trial vector ui from a mutant vector
vi. If the jth element uij of the trial vector ui is infeasible (i.e., out of the boundary
[Lj, Uj]), it is reset as follows:

uij =

{
(Lj + xij)/2 (uj < Lj)
(Uj + xij)/2 (uj > Uj)

After all of the trial vectors have been generated, the selection operator is performed
to select a better one from the target vector xi and its corresponding trial vector ui

according to their fitness values f(·). The selected vector is given by

xnew
i =

{
ui if f(ui) ≤ f(xi)
xi otherwise

(5)

and xnew
i is used as a target vector in the next generation.

2.3. Multivector mutation. In a classical DE, a mechanism of using one difference vec-
tor is the most common choices. When a pair of individuals is used for difference mutation,
the distribution of the differential vector becomes a triangular distribution centered on
the base vector. Also, the distribution of the differential vectors generated in a certain
generation approaches the normal distribution centered on the center of gravity of the
population. Distribution of scaled difference vector depends on the population contents
and can be expressed by means of convolution of distributions [3]. This distribution is
symmetric with respect to origin, and has zero mean and its covariance matrix is propor-
tional to the covariance matrix of vectors in the current population. In DE/rand/1, if a
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distribution of target vectors xi has mean µx and covariance Cx, a distribution of mutant
vector has mean µy = µx and covariance Cy = (1 + 2F 2)Cx.
On the other hand, it is also possible to use multiple difference vectors for mutation.

Multivector mutation is generalized by using k difference vectors, which is denoted by
DE/rand/k.

vi = xr1 + F (xr2 − xr3) + F (xr4 − xr5) + · · ·+ F
(
xr2k − xr2k+1

)
(6)

Indices i, r1, r2, . . . , r2k+1 are distinct integers. The covariance matrix of mutant vectors
for DE/rand/k equals (1 + 2kF 2)Cx. Therefore, as the number of difference vectors in-
creases, the distribution of mutation vectors becomes wider. This effect can be eliminated
by dividing the sum of scaled difference vectors by

√
k:

vi = xr1 +
F√
k

k∑
j=1

(
xr2j − xr2j+1

)
(7)

That is, by setting scaling factor to F/
√
k, mutation range of k difference vectors is

equivalent to DE/rand/1 with F .
Figure 1 shows the one-dimensional frequency distribution when 10,000 individuals are

uniformly generated in the interval of [−1.707, 1.707] and the mutant vectors generated
by rand/1 and rand/5 with F = 1.0. Figure 1(a) shows the distribution of mutant vectors
with Equation (2) (normal F ) and Figure 1(b) shows the distribution of mutant vectors
with Equation (7) (adjusted F ). As shown in this figure, when the number of difference
vectors increases, it can be adjusted to almost the same range as rand/1 by using Equation
(7). Next, Figure 2 shows two-dimensional distribution of mutant vectors generated from
bimodal population distribution. In DE, if the objective function landscape is multimodal,
the distribution may be distributed separately in several valleys. When the population
distribution is bimodal, the features of the two methods differ remarkably. As shown in
Figure 2 if the distribution of population is divided, the distribution of mutant vector
differs greatly in k = 1 and k = 5 with adjusted F . In rand/1, the distribution of
mutant vectors is also divided into several subgroups. Contrastly, in rand/5, regardless
of the distribution of the population, the distribution of the mutation vectors is close
to the normal distribution. This is because of the central limit theorem. Even if the
population is not normally distributed as shown in Figure 2(b), when the sample size (k)

(a) Normal F (b) Adjusted F

Figure 1. Distribution of mutant vectors (rand/1 and rand/5, F = 1.0)
generated from uniform distribution
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(a) rand/1 with normal F (b) rand/5 with adjusted F

Figure 2. Distribution of mutant vectors (rand/1 and rand/5, F = 1.0)
generated from bimodal distribution

is sufficiently large, then the sample means (i.e., mutant vectors distribution) will have
an approximately normal distribution.

From above results, multivector mutation enables unbiased search around means of
current population even if population is distributed on multimodal landscape. We think
that such a search property of multivector mutation has ability to maintain population
diversity and prevents falling into a local optima in multimodal functions.

3. Impact of Multivector Mutation in DE. In this chapter, we investigate the influ-
ence of multiple vector mutation on the performance of conventional DE using standard
benchmark functions. The mathematical formulas and properties of these functions are
shown in Table 1, where dimension D = 30. All functions are chosen for the minimization
problems. The parameters settings for DE are as follows – the strategy is DE/rand/k/exp
with adjusted F , the population size NP = 50, F = 0.7, and CR = 0.95.

We present the relative performance of DE/rand/k/exp with k ∈ {1, 5, 10, 15, 20}.
Performance at each setting is measured as the number of function evaluations (NFEs)
needed for satisfying the success condition over 20 runs. The success condition defined
as f(x) − f(x∗) is less than ε = 10−7, where x∗ is the global optimum of function f .
Figure 3 shows the average NFEs for each benchmark function. As can be seen from
these figures, the impact of k depends on the objective function’s modality. In Sphere
function, the performance is almost the same for any k. For other unimodal functions, as
k increases to 5, the search speed decreases. However, when k > 5 the search performance
is almost constant. In Rastrigin and Schwefel functions, the search speed decreases with
increasing k. They have many local optima, and their fitness landscapes are very rugged.
In these functions, the distribution of the population may be divided to some valleys
during the search. In multimodal landscape where population is divided into several
subpopulations, the search speed by multivector mutation obeying approximate normal
distribution decreases. This is because multivector mutation does not intensively search
the neighborhood of each subpopulation. In this situation, multivector mutation also
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Table 1. Benchmark functions

Name Expression Domain

F1: Sphere f(x) =

D∑
i=1

x2
i [−5.12, 5.12]D

F2: Ridge f(x) =
D∑
i=1

(
i∑

j=1

xj

)2

[−64, 64]D

F3: Rosenbrock (chain) f(x) =

D−1∑
i=1

{
100

(
xi+1 − x2

i

)2
+ (xi − 1)2

}
[−2.048, 2.048]D

F4: Rosenbrock (star) f(x) =
D∑
i=2

{
100

(
x1 − x2

i

)2
+ (xi − 1)2

}
[−2.048, 2.048]D

F5: Griewank f(x) = 1 +
D∑
i=1

x2
i

4000
−

D∏
i=1

(
cos

(
xi√
i

))
[−512, 512]D

F6: Schaffer f(x) =
D−1∑
i=1

(
x2
i + x2

i+1

)0.25 × {sin2 (50 (x2
i + x2

i+1

)0.1)
+ 1
}

[−100, 100]D

F7: Schwefel f(x) =
D∑
i=1

−xi sin
(√

|xi|
)

[−512, 512]D

F8: Rastrigin f(x) = 10D +

D∑
i=1

x2
i − 10cos(2πxi) [−5.12, 5.12]D
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(a) Unimodal functions f1-f4
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Figure 3. Comparison of search performance of DE/rand/k

searches for hill points that will exist between subpopulations. Although the Griewank
function is multimodal landscape, the impact of k is very small, because the ruggedness
of landscape is small compared to other multimodal functions.
Next, we present the transition of fitness at each k in Rastrigin function and Schwefel

function which are multimodal functions. Figure 4 shows the evolution graph of the
average best fitness in 20 runs. In Rastrigin function, individuals distribute on multimodal
landscape at the first stage of the search. Toward the end of the search, individuals gather
in one valley and the landscape will seem to be unimodal landscape. Therefore, as k
increases, the first phase where the fitness gently decreases becomes longer. Also, the
transition of fitness in the last stage where the function value rapidly decreases is almost
the same for any k. On the other hand, the landscape of Schwefel function is multimodal
during the search, and thus overall convergence speed is delayed as k increases.
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Figure 4. The evolution graph of the average best fitness in 20 runs

4. RDE with Multivector Mutation. The rank-based DE (RDE) is one of the DE
variants that adopts an observation-based control of algorithm parameters and a simple
modification in offspring generation [5]. In the original RDE, strategy is rand/1/exp and
continuous generation model is adopted. In RDE, different parameter values are assigned
based on goodness of base vector. When the base vector is good, a small scaling factor and
a large crossover rate are selected and convergence is realized. Also, when the base vector
is bad, a large scaling factor and a small crossover rate are selected and the divergence is
realized. At the beginning of each generation, the ranks Ri of the individual vectors xi

are given according to the fitness. First, the population is sorted in ascending order (i.e.,
from the best to the worst) based on the fitness of each individual. Then, the ranking
of a vector is assigned as Ri = i (i = 1, 2, . . . , NP ), where the best vector in the current
population will obtain the highest ranking (Ri = 1). Before mutation, different values
of F and CR are assigned to each target vector xi according to the rank of the base
vector xr1 . The scaling factor Fi and the crossover rate CRi for xi can be defined by the
following equations:

Fi = Fmin + (Fmax − Fmin)
Rr1 − 1

NP − 1
(8)

CRi = CRmax − (CRmax − CRmin)
Rr1 − 1

NP − 1
(9)

where Rr1 is the rank of base vector, Fmin, Fmax are parameters to specify the minimum
and maximum value of F , and CRmin, CRmax are parameters to specify the minimum and
maximum value of CR. If the base vector is the best individual, F becomes the minimum
value and CR becomes the maximum value. If the base vector is the worst individual, F
becomes the maximum value and CR becomes the minimum value.

In this paper, we incorporate multivector mutation to the RDE (RDE-MM). A large
value of k improves the exploration abilities as shown in Section 3, while the convergence
speed may degrade. Therefore, we apply the parameter assignment mechanism of RDE to
control of k. To balance between exploration and exploitation, the following two equations
are used.

“Increasing k with a demotion of rank”:

ki = kmin + (kmax − kmin)
Rr1 − 1

NP − 1
(10)
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“Decreasing k with a demotion of rank”:

ki = kmax − (kmax − kmin)
Rr1 − 1

NP − 1
(11)

where kmin, kmax are parameters to specify the minimum and maximum value of k. In
Equation (10), the better the base vector’s rank is, the smaller the number of k is. E-
quation (11) is opposite setting of Equation (10), i.e., the better the base vector’s rank
is, the larger the number of k is. After allocating Fi, CRi and ki for each target vector
xi, mutant vector vi is generated by the following:

vi = xr1 +
Fi√
ki

ki∑
j=1

(
xr2j − xr2j+1

)
(12)

The algorithm of the RDE-MM is shown in Algorithm 2. Except for allocation of
parameter k, it is the same procedure as normal RDE algorithm.

Algorithm 2 RDE-MM

1: /*Initialize a population*/
2: G = 0;
3: P = NP individuals {xi} generated randomly in S;
4: Set Fmin, Fmax, CRmin, CRmax, kmin, kmax;
5: for G = 1 to Gmax do
6: {Ri} = ranks of {xi} according to fitness;
7: for i = 1 to NP do
8: /*DE operation*/
9: xr1 = randomly selected from P (r1 ̸= i);
10: Fi and CRi are determined by Equation (8) and Equation (9);
11: ki is determined by Equation (10) or Equation (11);
12: vi = mutant vector generated by Equation (12);
13: ui = trial vector generated from xi and vi by a crossover;
14: if f(ui) ≤ f(xi) then
15: xi = ui;
16: else
17: xi = xi;
18: end if
19: end for
20: end for

5. Experiment. In this section, we evaluate the performance of RDE-MM on the bench-
mark functions as shown in Table 1, where dimension D = 60. To investigate the effect of
the multivector mutation on RDE, we run RDE-MM with Equation (10) (named RDE-
MMi) and RDE-MM with Equation (11) (named RDE-MMd) for each function. The
common parameters settings for RDE and RDE-MM are as follows – the strategy is
RDE/rand/1/exp, the population size NP = 40, Fmin = 0.5, Fmax = 1.0, CRmin = 0.1,
CRmax = 1.0. Normally, NP is recommended to be 5D or more [1]; however, we set small
NP in this experiment for confirming the ability to maintain population diversity of the
multivector mutation. Performance at each setting is measured as the NFEs needed for
satisfying the success condition over 50 runs. The success condition is the same as Section
3 and the maximum generation is Gmax = 105. In RDE-MMi and RDE-MMd kmin is set
to 1 and kmax is across {5, 10, 15}.
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Table 2. The average NFE of RDE and RDE-MM

Function RDE/ RDE-MMi RDE-MMd
rand/1 kmax = 5 kmax = 10 kmax = 15 kmax = 5 kmax = 10 kmax = 15

Sphere 5.04E+04 5.08E+04 5.04E+04 5.08E+04 5.55E+04 5.64E+04 5.64E+04
[50] [50] [50] [50] [50] [50] [50]

Ridge 5.86E+05 5.84E+05 5.83E+05 5.85E+05 5.71E+05 5.71E+05 5.66E+05
[50] [50] [50] [50] [50] [50] [50]

Rosenbrock 5.09E+05 5.20E+05 5.16E+05 5.17E+05 5.07E+05 5.08E+05 5.09E+05
(chain) [43] [49] [42] [43] [47] [49] [49]
Rosenbrock − − − − 9.40E+05 8.83E+05 9.10E+05
(star) [0] [0] [0] [0] [17] [21] [26]

Griewank 6.49E+04 6.54E+04 6.41E+04 6.48E+04 7.16E+04 7.46E+04 7.57E+04
[45] [44] [49] [43] [50] [50] [50]

Schaffer 3.25E+05 3.40E+05 3.48E+05 3.53E+05 3.65E+05 3.74E+05 3.78E+05
[50] [50] [50] [50] [50] [50] [50]

Schwefel 8.88E+04 1.08E+05 1.29E+05 1.44E+05 1.13E+05 1.32E+05 1.47E+05
[49] [49] [50] [50] [49] [50] [50]

Rastrigin 1.04E+05 1.29E+05 1.54E+05 1.71E+05 1.26E+05 1.45E+05 1.63E+05
[50] [50] [50] [50] [50] [50] [50]

Table 2 shows the result of RDE-MMi and RDE-MMd. For each function, the average
NFEs over successful runs are shown in the top row. The number of success runs is shown
in the bottom row. For Sphere function, RDE/rand/1 and RDE-MMi are faster than
RDE-MMd. However, for Ridge function which has dependency between variables, RDE-
MMd obtains better results than other methods. Also, for Rosenbrock functions with
strong dependency between variables, the stability of all methods decreases and they
cannot find the optimal solution in all trials. Especially in Rosenbrock (star) function,
RDE and RDE-MMi fail in all trials. In the search of RDE, the population converged
to a valley with a local solution in several dimensions. On the other hand, RDE-MMd
succeeded in some trials, and the number of success trials becomes larger with increasing
k. RDE successfully searches for Schaffer and Rastrign functions in all trials; however,
some failures occur for Griewank and Schwefel functions. While RDE MMd with kmax =
{10, 15} can find solutions in all trials.

From the above results, we conclude that RDE-MMd can realize more stable search than
RDE and is a method effectively utilizing the characteristics of the multivector mutation.
Although RDE-MMi converges more quickly than RDE-MMd, considering the results of
Rosenbrock (star) function, RDE-MMd is better in terms of stability.

6. Conclusion. In this study, we focused on multivector mutation in DE algorithm and
combined it with RDE. At first, we analyzed impact of the number of difference vectors in
multivector mutation using standard benchmark functions. From experimental analysis,
we confirmed that multivector mutation enables unbiased search around means of current
population and it has ability to maintain population diversity. Next, we proposed con-
trolling method of the number of difference vectors in RDE with multivector mutation. In
the proposed RDE with multivector mutation, named RDE-MM, the number of difference
vectors of each target vector is determined based on the ranking information of the current
population. In the experiment, we compared original RDE and RDE-MM using standard
benchmark functions. In RDE-MM, we used two controlling methods: increasing k or
decreasing k with a demotion of base vector’s rank. From the experimental results using
basic benchmark functions, we showed that the RDE-MM with an adequate control of k
can provide enough population diversity and improve the search ability of RDE.
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In this paper, we have confirmed the validity of multivector mutation with a number
of difference vectors, but we think that DE/rand/∞ which assumes k → ∞ [3] is also
effective mutation operator. In the future, we will investigate the search performance and
characteristics of DRE/rand/∞. Furthermore, we intend to improve performance of our
previous RDE algorithms [6, 7] by incorporating multivector mutation strategy.
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