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Abstract. Here using the framework of a tailor made parameterization for a closed
loop system, we study the performance analysis problem where a closed loop transfer
function is parameterized using the parameters of an open loop plant model, and utiliz-
ing knowledge of a feedback controller. When the plant model and feedback controller
are all polynomial forms, a recursive least squares method with forgetting schemes is
proposed to verify that this recursive method can be regarded as a regularization least
squares problem. Based on the parameter vector, one uncertainty bound about the pa-
rameter vector is constructed to reflect the identification accuracy by using the statistical
probability theory. Using a tailor made parameterization form, some results about robust
control theory and related stability property are used to give a preliminary performance
analysis corresponding to the closed loop transfer function. Generally this preliminary
performance analysis is extended to a transfer function matrix form which is constituted
by three transfer functions. The worst case performance at frequencies is analyzed by
solving one standard convex optimization problem involving some linear matrix inequal-
ity constraints.
Keywords: Tailor made parameterization, Performance analysis, Confidence internal,
Linear matrix inequality

1. Introduction. Now many systems operate under feedback control situation, and it is
due to required safety of operation or to unstable behavior of the plant, as occurs in many
industrial processes such as paper production, glass production, and separation process
like crystallization. In closed loop system, the feedback controller is added to return the
collected output back to the collected input. Then one error signal from the input and
feedback output can be imposed on the plant to generate one correction action which
makes the output converge to a given value. The essences of closed loop system are to
decrease the error using the negative feedback controller, and to correct the deviation
from the given value automatically. As the closed loop structure can suppress the errors
coming from the internal or external disturbances to achieve the achieved control goal, so
the closed loop structure is most needed in all of our engineering.

There are many subjects on closed loop system, for example, closed loop system identi-
fication, closed loop controller design, and closed loop performance monitoring and diag-
nosis. There are three identification methods for closed loop system, i.e., direct approach,
indirect approach and joint input-output approach, where the feedback is neglected in
direct approach and the plant model is identified directly using only input-output data.
For the indirect approach, the feedback effect is considered and the input-output data
from the whole closed loop condition are used to identify the plant model. The joint
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input-output approach is very similar to indirect approach. The joint input-output ap-
proach requires two separate steps: (1) identification of the closed loop system, and (2)
recalculation of the open loop model. For the problem of how to design feedback controller
in closed loop system, generally two strategies are used to design the feedback controller
in closed loop structure, i.e., model based design and direct data driven design. The
primary step of model based design is to construct the plant model in closed loop system
using system identification theory and apply this mathematical model in the next process
of designing controller. Conversely for the direct data driven design method, the model-
ing process is not needed and the controller is directly designed using only the observed
input-output data under closed loop condition. Through comparing these two strategies,
this direct data driven method is worth studying deeply in future. However, now as
the first model based design strategy is more applied widely, then we need to do much
research on closed loop system identification. The performance of model based control
system is often limited. This primarily arises from the quality of their underlying model
that affects the closed loop performance. The plant-model mismatch always exists, be-
cause various changes occur in closed loop system over time that may cause the mismatch
and invalidate the model identified at the stage of those control systems. Closed loop
performance monitoring and diagnosis comprise a crucial step in maintenance of model
based control system. In the event of performance degradation, diagnostic tools allow us
to verify if the unsatisfactory closed loop operation results from the idea of plant-model
mismatch. Some references on closed loop system are given as follows. In [1], prediction
error identification of linearly parameterized models is considered in the situation where
the system is in the model set. In [2], a robust stability and performance analysis is pre-
sented for an uncertainty set delivered by classical prediction error identification. In [3],
the robust de-convolution filtering is addressed, when the system and noise dynamics are
obtained by parametric system identification. The closed loop system identification for
single input single output systems with a linear time invariant controller is extended for
multivariable state space system in [4]. In [5,6], a joint robust state feedback control/input
design procedure is presented to guarantee the stability and prescribed closed loop perfor-
mance using models identified from experimental data. In [7], the idea of plug and play
is merged into the robust distributed control and one plug and play robust distributed
control algorithm is formulated to design the feedback controller in closed loop system
[8]. The experiment design problem from a dual point of view and in a closed loop setting
is proposed in [9], and one cheapest identification experiment will give an uncertainty set
that is within the required bounds. A D-optimal input design method for finite impulse
response type closed loop system is given in [10], the optimization of the determinant of
the Fish information matrix is expressed as a convex optimization problem. Closed loop
performance monitoring is studied to detect whether an observed deviation from nominal
performance is due to a disturbance or due to a control relevant system change [11]. The
closed loop performance diagnosis approach and the decision rule are presented for linear
time invariant systems with disturbance [12].

Generally, here we concentrate on performance analysis of closed loop system deeply.
All theories are based on a tailor made parameterization used to parameterize the closed
loop system. A tailor made parameterization combines those two separate steps from
indirect closed loop identification. This means that knowledge of the closed loop system
and knowledge of the controller are employed into the parameterization of the closed loop
system. This method applies knowledge of the controller and minimizes an error between
the true closed loop transfer function and identified closed loop, using a parameterization
model of the open loop model only. Here we study the tailor made parameterization
method in a linear framework, where the plant model and controller are all parameterized
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as polynomials. To identify the closed loop parameter vector, a recursive least squares
method with forgetting schemes is proposed. This recursive least squares method with
forgetting schemes achieves the reformulation of the classical recursive least squares with
forgetting schemes as a regularized least squares problem. In order to reflect the identi-
fication accuracy, we apply the statistical probability framework to deriving the variance
matrix of the unknown parameters. This variance matrix is decomposed into one inter
product form which is used to construct one uncertainty bound about the unknown pa-
rameter estimation. This uncertainty bound is called by the confidence interval and it
constitutes the guaranteed confidence region test with respect to the model parameter
estimation under closed loop condition. Using only one plant model, we define a Vinni-
combe distance between its true and identified plant model. Then we use the results of
some robust control theories such as the Vinnicombe gap between plant and its related
stability property to give a preliminary performance analysis. Generally this preliminary
performance analysis is extended to a transfer function matrix form which is constituted
by three transfer functions. The worst case performance at frequencies is analyzed by
solving one standard convex optimization problem involving some linear matrix inequal-
ity constraints.

The paper is organized as follows. In Section 2, some preliminaries and problems are
formulated in the closed loop system structure with a tailor made parameterization. In
Section 3, a recursive least squares method with forgetting schemes is proposed to iden-
tify the unknown parameters, and one confidence interval is constructed to include the
unknown parameters with an achieved probability level. In Section 4, using only one
plant model, a Vinnicombe distance or a Vinnicombe gap is studied to give a preliminary
performance analysis corresponding to the closed loop system with a tailor made param-
eterization. In Section 5, the preliminary performance analysis is extended to a transfer
function matrix form, where a convex optimization problem with linear matrix inequality
constraints is solved to provide one optimal value. In Section 6, one simulation example
illustrates the effectiveness of the proposed theories. Section 7 ends the paper with final
conclusion.

2. Closed Loop System Description. Consider the following closed loop system con-
figuration in Figure 1.

In Figure 1, G0(q) is a true plant model, H0(q) is a noise filter, and they are all
linear time invariant transfer functions. C(q) is a stable linear time invariant feedback
controller; here we assume this controller is priori known. The excited signal r(t) and
external disturbance e(t) are uncorrelated. e(t) is a white noise with zero mean value and
variance σ2. v(t) is a colored noise which can be obtained by passing white noise e(t)
through that noise filter H0(q). u(t) and y(t) are the input-output signals with respect to
plant model G0(q). q is the time delay operator, which means that qu(t) = u(t + 1).

The closed loop system configuration in Figure 1 appears in many practical engineering
problems, for example, flight simulation. Flight simulation is a speed servo system with
high precision position. The driven element of flight simulation is an electric motor, and
the essence of the control structure in flight simulation is a closed loop system correspond-
ing to the position or speed of that electric motor. According to the analysis of the servo
control system, one negative feedback part is added to reduce the sensitivity in the closed
loop system, while the cascade regulator is introduced in each feedback control structure
in order to reduce the dependence on the electric motor’s parameter.

Here we give an example about the pitch position tracking loop from flight simulation
to verify the feasibility of our iterative correlation tuning control approach in precision
servo control system. In the closed loop system of flight simulation, the photoelectric
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Figure 1. Closed loop system configuration

Figure 2. The simplified pitch position tracking loop

encoder is mounted on the outer pitch frame, and the angular position signal collected at
outer pitch frame is regarded as the position feedback part. After the difference between
two angular positions goes through the position correlation part and power amplifier
part, then this difference will make the electric motor start to rotate. The pitch position
tracking loop from flight simulation is simplified in Figure 2.

In Figure 2 the input signal is the relative angular signal of inner pitch loop, and this
input signal is collected by one photoelectric encoder located in inner pitch frame. It
means that one photoelectric encoder collects the angular position signal to send one
position feedback part. The transfer function model of that simplified pitch position
tracking loop can be seen in Figure 3.

In Figure 3 we regard the encoder as a constant and merge it in the power amplifier,
and then the close loop system is a unit feedback. θme is the input signal with respect to
the electric motor, and the controller in this position tracking loop is the classical PID
controller.

Observing the closed loop system configuration, we obtain the following transfer func-
tion form.

y(t) = G0(q)r(t) − G0(q)C(q)y(t) + H0(q)e(t) (1)
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Figure 3. The transfer function model of that simplified pitch position
tracking loop

Continuing to do some simple computations, we get
y(t) =

G0(q)

1 + G0(q)C(q)
r(t) +

H0(q)

1 + G0(q)C(q)
e(t)

u(t) =
1

1 + G0(q)C(q)
r(t) − C(q)H0(q)

1 + G0(q)C(q)
e(t)

(2)

To simplify the analysis process, one sensitivity function is defined as

S0(q) =
1

1 + G0(q)C(q)

Applying the above defined sensitivity function, the output of closed loop system can be
rewritten as

y(t, θ) = G0(q)S0(q)r(t) + H0(q)S0(q)e(t)

Introducing one unknown parameter vector θ into the closed loop system, the parame-
terized form corresponding to Equation (2) is given by

y(t) =
G(q, θ)

1 + G(q, θ)C(q)
r(t) +

H(q, θ)

1 + G(q, θ)C(q)
e(t) (3)

where θ denotes the unknown parameter vector, and it exists in the parameterized plant
model G(q, θ) and noise filter H(q, θ) respectively. The goal of closed loop identification
is to identify the unknown parameter vector from one given data set ZN = {r(t), y(t)}N

t=1

and priori known controller C(q), where N denotes the total number of observed data.
According to Equation (3), the prediction of output y(t, θ) can be calculated as the one

step ahead prediction.

ŷ(t, θ) =
G(q, θ)

H(q, θ)
r(t) +

H(q, θ) − 1 − G(q, θ)C(q)

H(q, θ)
y(t) (4)

Construct one step ahead prediction error or residual as

ε(t, θ) = y(t) − ŷ(t, θ) =
1 + G(q, θ)C(q)

H(q, θ)

[
y(t) − G(q, θ)

1 + G(q, θ)C(q)
r(t)

]
(5)

In prediction error algorithm, using input-output data set ZN = {r(t), y(t)}N
t=1 with

the number N , the unknown parameter vector is identified by solving an optimization
problem.

θ̂N = arg min
θ

VN

(
θ, ZN

)
= arg min

θ

1

N

N∑
t=1

ε2(t, θ) (6)

The above Equation (6) is similar to the classical prediction error algorithm and direct
approach. In next section it will be made clear that a tailor made parameterization is used.
The parameterized plant model G(q, θ) and feedback controller C(q) are all assumed to be
polynomials. Then we propose a recursive least squares method with forgetting schemes
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to identify the unknown parameter vector θ. Based on this identified parameter vector,
one confidence interval of unknown parameter vector is constructed under closed loop
condition.

3. Confidence Interval Analysis with a Tailor Made Parameterization. Let the
plant model G(q, θ) be parameterized as one polynomial.

G(q, θ) =
B(q, θ)

A(q, θ)
=

b1q
−1 + · · · + bnb

q−nb

1 + a1q−1 + · · · + anaq
−na

(7)

where θ =
[

a1 · · · ana b1 · · · bnb

]T
. Similarly the feedback controller is parame-

terized as

C(q) =
Nc(q)

Dc(q)
=

n0 + n1q
−1 + · · · + nnN

q−nN

1 + d1q−1 + · · · + dnD
q−nD

(8)

where Nc(q) and Dc(q) are coprime polynomials. Based on these two polynomial forms
(7) and (8), the parameterization of the output predictor is given by

ŷ(t/t − 1, θ) =
Dc(q)B(q, θ)

Dc(q)A(q, θ) + Nc(q)B(q, θ)
r(t) (9)

The denominator of the closed loop transfer function can be written as a function of the
open loop unknown parameter vector θ.

Dc(q)A(q, θ) + Nc(q)B(q, θ) = 1 +
[

q−1 q−2 · · · q−n
]
θcl (10)

The order of the closed loop polynomial is given by

n = max(na + nD, nb + nN)

The closed loop parameter vector θcl is given as

θcl = Sθ + ρ (11)

Matrix S and vector ρ are parameterized as

ρ =
[

d1 · · · dnD
0 · · · 0

]T ∈ Rn, S =

[
PD PN

0 0

]

PD =



1 0 · · · 0

d1 1 · · · ...

d2 d1
. . .

...
... 1

dnD

. . . d1

0
. . . d2

...
...

0 · · · 0 dnD


, PN =



n0 0 · · · 0

n1 n0 · · · ...

n2 n1 · · · ...
...

... · · · n0

nnN
· · · n1

... · · · ...
0 · · · nnN


(12)

When the feedback controller C(q) is priori known, then matrix S and vector ρ can be
constructed by using parameters from coprime polynomials.

Rearranging Equation (9), we obtain

[Dc(q)A(q, θ) + Nc(q)B(q, θ)] y(t) = [Dc(q)B(q, θ)]r(t) (13)

Substituting (10), (11) and (12) into (13), it yields(
1 +

[
q−1 q−2 · · · q−n

] [(
PD PN

)
θ + ρ

])
y(t)

=
[

q−1 q−2 · · · q−n
] [

0 PD

]
θr(t)

(14)
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Expanding above equation, we see that

y(t) =
([

r(t − 1) r(t − 2) · · · r(t − n)
] [

0 PD

]
−
[

y(t − 1) y(t − 2) · · · y(t − n)
] (

PD PN

))
θ

Define one vector φ(t) as

φT (t) =
([

r(t − 1) r(t − 2) · · · r(t − n)
] [

0 PD

]
−
[

y(t − 1) y(t − 2) · · · y(t − n)
] (

PD PN

))
Then output of the closed loop system can be written as

y(t) = φT (t)θ (15)

Vector φ(t) is similar to the classical regression vector. A common way to identify the
unknown parameter vector θ in (15) relies on the recursive least squares with forgetting

schemes, where parameter vector estimation θ̂t is given as

θ̂t = arg min V1
θ

(θ) (16)

where the loss function is defined as

V1(θ) =
t∑

s=1

λt−s
(
y(s) − φT (s)θ

)
(17)

The forgetting factor λ ∈ [0, 1] operates as an exponential weight which decreases with
more remote data. Optimization problem (16) admits the recursive solution. Rt = λRt−1 + φ(t)φT (t)

θ̂t = θ̂t−1 + R−1
t φ(t)

(
y(t) − φT (t)θ̂t−1

) (18)

Defining Pt = R−1
t , then one equivalent recursion is obtained.

θ̂t = θ̂t−1 + Kt

(
y(t) − φT (t)θ̂t−1

)
Kt =

Pt−1φ(t)

λ + φT (t)Pt−1φ(t)
, Pt =

1

λ

(
I − Ktφ

T (t)
)
Pt−1

(19)

Observing optimization problem (16) again, let Qt = diag
(

1 · · · λt−1
)

and consider

θ̂t = arg min
θ

(
y(t) − φT (t)θ

)2
+ λ

t−1∑
i=1

[(
φT (i)

(
θ − θ̂t−1

))2

− 2
(
y(i) − φT (i)θ̂t−1

)
φT (t)

(
θ − θ̂t−1

)]
λt−i−1

(20)

where we use the following relation

θ̂t−1 = arg min
θ

t−1∑
i=1

(
y(i) − φT (i)θ

)2
λt−i−1

By using optimality condition, it holds that

θ̂t = arg min
θ

(
y(t) − φT (t)θ

)2
+ λ

(
θ − θ̂t−1

)T

Rt−1

(
θ − θ̂t−1

)
(21)

where the updating law is Equation (19). Equation (21) shows that the recursive least
squares with forgetting scheme can be regarded as regularization least squares problem.
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Based on optimization problem (6), define the asymptotic limit parameter estimate θ∗

as

θ∗ = arg min
θ

lim
N→∞

E
{
VN

(
θ, ZN

)}
where E denotes the expectation operator. In the common identification process, assume
that there always exists one true parameter vector θ0 such that

G(q, θ0) = G0(q), H(q, θ0) = H0(q)

This above assumption shows that the identified model is contained in the considered
model set, and then the asymptotic covariance matrix of the parameter vector is obtained.

Pθ = cov θ̂N = σ2
0 ⟨φ(t), φ(t)⟩−1 (22)

where ⟨φ(t), φ(t)⟩ denotes some inter product operator, φ is the negative gradient of the
predictor error, i.e., it can be computed from Equation (15).

φ(t, θ) = −∂ε(t, θ)

∂θ
=

∂ŷ(t, θ)

∂θ

On the basis of (22), the following asymptotic result can be got.

θ̂N
N→∞−→ θ0

It shows that the parameter estimator θ̂N will converge to its limit θ0, and further θ̂N will
asymptotically converge (N → ∞) to normally distributed random variable with mean
θ0 and variance Pθ. √

N
(
θ̂N − θ0

)
→ N (0, Pθ) , as N → ∞

This asymptotic result is rewritten in a quadratic form, and then we get one λ2 distribu-
tion.

N
(
θ̂N − θ0

)T

P−1
θ

(
θ̂N − θ0

)
N→∞−→ λ2

n (23)

where n is the number of degrees of freedom in the λ2 distribution, being equal to the
dimension of the parameter vector. Equation (23) implies that the random variable θ̂N

satisfies one uncertainty bound.

θ̂N ∈ D (α, θ0) =
{

θ/N (θ − θ0)
T P−1

θ (θ − θ0) ≤ λ2
n,α

}
(24)

with λ2
n,α corresponding to a probability level α in λ2

n distribution. However, now in order

to quantify the uncertainty on θ0 rather than on θ̂N , for every realization of θ̂N , it holds
that

θ̂N ∈ D (α, θ0) ⇔ θ0 ∈ D
(
α, θ̂N

)
It signifies that

θ0 ∈ D
(
α, θ̂N

)
=

{
θ/N

(
θ̂N − θ

)T

P−1
θ

(
θ̂N − θ

)
≤ λ2

n,α

}
with probability α (25)

Equations (24) and (25) give the confidence intervals of unknown parameter vector

under closed loop condition. The probability level of the event θ̂N ∈ D (α, θ0) which holds
is at least α. From the above statistical derivation, we obtain one kind of performance
analysis corresponding to the unknown parameter vector in closed loop system. Also when
considered in a tailor made parameterization, the negative gradient of the prediction (22)
is exactly the regression vector (15).
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4. Performance Analysis Only on One Transfer Function. Here we use some ro-
bust control theories to give a preliminary performance analysis. Combining Equations
(15) and (10), the closed loop transfer function can be reformulated as

Dc(q)B(q, θ)

Dc(q)A(q, θ) + Nc(q)B(q, θ)
=

[
q−1 q−2 · · · q−n

] [
0 PD

]
θ

1 +
[

q−1 q−2 · · · q−n
]
(Sθ + ρ)

=
Z2θ

1 +
[

q−1 q−2 · · · q−n
]
ρ +

[
q−1 q−2 · · · q−n

]
θ

=
Z2θ

a + Z1θ

(26)

where we apply the parameterized plant model G(q, θ), and column vectors Z1, Z2 are
defined as follows respectively.{

Z1 =
[

q−1 q−2 · · · q−n
]
, Z2 =

[
q−1 q−2 · · · q−n

] [
0 PD

]
a = 1 +

[
q−1 q−2 · · · q−n

]
ρ

(27)

To simplify the mathematical derivation, we use T (θ) to denote the above closed loop
transfer function. As the closed loop system is considered here, we use the closed loop
transfer function T (θ) in our performance analysis, not the former open loop transfer
function G(q, θ). After substituting the true parameter vector θ0 into the above closed
loop transfer function T (θ), we obtain the true closed loop transfer function T (θ0) as

T0 = T (θ0) =
Z2θ0

a + Z1θ0

Remark 4.1. In reality the true closed loop transfer function T0 does not exist; here it is
used in our performance analysis. Ideally when the number N tends to ∞, then we have
the following asymptotic result.

T
(
θ̂N

)
N→∞−→ T0 = T (θ0)

As the above asymptotic result is an ideal case, we define one measure to qualify the
quantity between the parameterized closed loop transfer function and its true value. An
alternative measure from robust control theory is the Vinnicombe distance as

δv(T (θ), T0) =


max

w
k (T (θ), T0) = max

w

|T (θ) − T0|√
1 + |T0|2

√
1 + |T (θ)|2

if (29) is satisfied

1 otherwise
(28)

The condition to be satisfied in order to have δv(T (θ), T0) < 1 is{
1 + T ∗

0 T (θ)(jw) ̸= 0 for all w

wno (1 + T ∗
0 T (θ)(jw)) + η(T (θ)) − η̃(T ∗

0 ) = 0
(29)

where T ∗(q) = T (−q), η̃(T ) denotes the number of closed right half plane of T , while
η(T ) denotes the number of open right half plane poles of T , wno(T ) denotes the winding
number about the origin of T (q) as q follows the standard Nyquist D-contour. Here
δv(T (θ), T0) is the Vinnicombe distance between T (θ) and T0. From robust control theory,
the worst case Vinnicombe distance is at least one optimal value

√
γ. This requirement

is equivalent to the following inequality.

δv(T (θ), T0) = max
w

|T (θ) − T0|√
1 + |T0|2

√
1 + |T (θ)|2

≤ √
γ (30)
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Taking square operation on both sides, one inequality is easily obtained.(
|T (θ) − T0|√

1 + |T0|2
√

1 + |T (θ)|2

)2

≤ γ

Expanding the above inequality, we obtain

(|T (θ) − T0|)2 ≤ γ
(
1 + |T0|2

) (
1 + |T (θ)|2

)
⇕

T ∗
0 T0 + T ∗(θ)T (θ) − T ∗

0 T (θ) − T0T
∗(θ) − γ (1 + T ∗

0 T0) − γ (1 + T ∗
0 T0) T ∗(θ)T (θ) ≤ 0

(31)
We regard T ∗(θ)T (θ) as a free variable and formulate a quadratic function corresponding

to T ∗(θ)T (θ), and then one linear matrix inequality can be got.(
T ∗(θ)

1

)(
1 − γ (1 + T ∗

0 T0) −T0

−T ∗
0 T ∗

0 T0 − γ (1 + T ∗
0 T0)

)(
T (θ)

1

)
≤ 0 (32)

Substituting T (θ) = Z2θ
a+Z1θ

into the above linear matrix inequality, we obtain Z2θ

a + Z1θ
1

∗(
1 − γ (1 + T ∗

0 T0) −T0

−T ∗
0 T ∗

0 T0 − γ (1 + T ∗
0 T0)

) Z2θ

a + Z1θ
1

 ≤ 0 (33)

By pre-multiplying (33) by (a + Z1θ)
∗ and post-multiplying it by (a + Z1θ), we have(

Z2θ
a + Z1θ

)∗(
1 − γ (1 + T ∗

0 T0) −T0

−T ∗
0 T ∗

0 T0 − γ (1 + T ∗
0 T0)

)(
Z2θ

a + Z1θ

)
≤ 0 (34)

which is equivalent to the following constraint after complex mathematical derivation and
with Q = (1 + T ∗

0 T0).(
θ
1

)∗( (1 − γQ)Z2
2 − T ∗

0 Z1Z2 − T0Z1Z2 + (T ∗
0 T0 − γQ)Z2

1 −T0aZ2 + (T ∗
0 T0 − γQ) aZ1

−T ∗
0 aZ2 + (T ∗

0 T0 − γQ) aZ1 (T ∗
0 T0 − γQ) a2

)(
θ
1

)
≤ 0

(35)
To simplify the above expression, we introduce three variables as{

a11 = (1 − γQ)Z2
2 − T ∗

0 Z1Z2 − T0Z1Z2 + (T ∗
0 T0 − γQ) Z2

1

a12 = −T0aZ2 + (T ∗
0 T0 − γQ) aZ1, a22 = (T ∗

0 T0 − γQ) a2

Then we obtain one Theorem 4.1.

Theorem 4.1. In the performance analysis process of closed loop system, to qualify the
distance between the parameterized closed loop transfer function and its true value, the
requirement that the worst case Vinnicombe distance is equal to one optimal value

√
γ can

be reformulated as an optimization problem with linear matrix inequality constraints.

min
γ

γ

subject to

(
a11 a12

a∗
12 a22

)
≤ 0

(36)

This above optimization problem can be solved directly by the Matlab Toolbox. After
one optimal value γ is solved, then the worst case Vinnicombe distance is equal to this
optimal value.
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5. Performance Analysis on One Transfer Function Matrix. As the above part
studies the performance analysis of closed loop system only on one closed loop transfer
function, but from Equation (2), there are four closed loop transfer functions which are
used to constitute one closed loop transfer function matrix form. Its parameterized form
is

H(G,C) =


G(q, θ)

1 + G(q, θ)C(q)

H(q, θ)

1 + G(q, θ)C(q)
1

1 + G(q, θ)C(q)
− C(q)H(q, θ)

1 + G(q, θ)C(q)


where we consider the case that H(q, θ) ≡ 1. If H(q, θ) ̸= 1, we also assume H(q, θ) can
be parameterized as a polynomial. Then the following mathematical derivation is similar.
Let H(q, θ) ≡ 1, and the above closed loop transfer function matrix H(G,C) is reduced
to

H(G,C) =


G(q, θ)

1 + G(q, θ)C(q)

1

1 + G(q, θ)C(q)
1

1 + G(q, θ)C(q)
− C(q)

1 + G(q, θ)C(q)

 (37)

From Equation (7), we rewrite open loop plant model G(q, θ) as

G(q, θ) =
B(q, θ)

A(q, θ)
=

b1q
−1 + · · · + bnb

q−nb

1 + a1q−1 + · · · + anaq
−na

=
Z4θ

1 + Z3θ

Z3 =
(

q−1 · · · q−na 0 · · · 0
)
, Z4 =

(
0 · · · 0 q−1 · · · q−nb

) (38)

Substituting (8) and (38) into each element of matrix H(G,C), we obtain respectively

G(q, θ)

1 + G(q, θ)C(q)
=

Z4θ
1+Z3θ

1 + Z4θ
1+Z3θ

× Nc

Dc

=
Z4θDc

(1 + Z3θ)Dc + Z4θNc

1

1 + G(q, θ)C(q)
=

1

1 + Z4θ
1+Z3θ

× Nc

Dc

=
(1 + Z3θ) Dc

(1 + Z3θ) Dc + Z4θNc

− C(q)

1 + G(q, θ)C(q)
= −Nc

Dc

× (1 + Z3θ)Dc

(1 + Z3θ) Dc + Z4θNc

= − (1 + Z3θ) Nc

(1 + Z3θ) Dc + Z4θNc

(39)

In a tailor made parameterization case, after substituting (39) into matrix H(G,C),
then its parameterized form is got.

H(θ) =


Z4θDc

(1 + Z3θ) Dc + Z4θNc

(1 + Z3θ) Dc

(1 + Z3θ) Dc + Z4θNc

(1 + Z3θ) Dc

(1 + Z3θ) Dc + Z4θNc

− (1 + Z3θ) Nc

(1 + Z3θ) Dc + Z4θNc

 (40)

Based on some above definitions, given a plant model G(q, θ) and a stabilizing controller
C(q), the performance of a closed loop system

[
C G

]
is defined as the following fre-

quency function.

J (G,Wl,Wr, Ω) = σ1 (WlH(θ)Wr) (41)

where Ω denotes the frequency point, and Wl, Wr are diagonal weights.

Wl =

(
Wl1 0
0 Wl2

)
, Wr =

(
Wr1 0
0 Wr2

)
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σ1(A) denotes the largest singular value of matrix A. This matrix A can be computed as

A = WlH(θ)Wr =


Wl1Z4θDcWr1

(1 + Z3θ) Dc + Z4θNc

Wl1 (1 + Z3θ) DcWr2

(1 + Z3θ) Dc + Z4θNc

Wl2 (1 + Z3θ) DcWr1

(1 + Z3θ) Dc + Z4θNc

− Wl2 (1 + Z3θ) NcWr2

(1 + Z3θ) Dc + Z4θNc

 (42)

From knowledge of matrix theory, we see that the worst case performance at frequency
point Ω is equal to one optimal value

√
γ which is equivalent to the following inequality.

max
Ω

σ1(Ar) =
√

γ (43)

Equation (43) is equivalent to

λ1 (A∗A) = γ (44)

where λ1 (A∗A) denotes the largest eigenvalue of A∗A. It means that we need to solve
one largest eigenvalue problem by using linear matrix inequality condition.

λ1 (A∗A) ≤ γ (45)

where a new matrix A∗A can be computed through complex matrix product operation.
As matrix A is a rank one matrix, then the problem λ1 (A∗A) ≤ γ is equivalent to

[Wl1Z4θDcWr1]
2

[(1 + Z3θ)Dc + Z4θNc]
2

+
[Wl2 (1 + Z3θ)DcWr1]

2

[(1 + Z3θ) Dc + Z4θNc]
2

Wl1Z4θDcWr1Wl1 (1 + Z3θ) DcWr2

[(1 + Z3θ) Dc + Z4θNc]
2

−Wl2 (1 + Z3θ) DcWr1Wl2 (1 + Z3θ) NcWr2

[(1 + Z3θ)Dc + Z4θNc]
2

Wl1 (1 + Z3θ)DcWr2Wl1Z4θDcWr1

[(1 + Z3θ)Dc + Z4θNc]
2

−Wl2 (1 + Z3θ)NcWr2Wl2 (1 + Z3θ) DcWr1

[(1 + Z3θ) Dc + Z4θNc]
2

[Wl1 (1 + Z3θ)DcWr2]
2

[(1 + Z3θ) Dc + Z4θNc]
2

+
[Wl2 (1 + Z3θ) NcWr2]

2

[(1 + Z3θ)Dc + Z4θNc]
2


≤ γI2

(46)
By pre-multiplying (46) by [(1 + Z3θ) Dc + Z4θNc]

2 and post-multiplying it by [(1+
Z3θ)Dc + Z4θNc]

2, we have
[Wl1Z4θDcWr1]

2 + [Wl2 (1 + Z3θ) DcWr1]
2

Wl1Z4θDcWr1Wl1 (1 + Z3θ) DcWr2

−Wl2 (1 + Z3θ) DcWr1Wl2 (1 + Z3θ) NcWr2

Wl1 (1 + Z3θ) DcWr2Wl1Z4θDcWr1

−Wl2 (1 + Z3θ) NcWr2Wl2 (1 + Z3θ) DcWr1

[Wl1 (1 + Z3θ) DcWr2]
2

+ [Wl2 (1 + Z3θ) NcWr2]
2


≤ γ [(1 + Z3θ) Dc + Z4θNc]

2 I2

We regard θ∗θ as a free variable and formulate a quadratic function corresponding to
θ∗θ. As here the closed loop transfer function matrix is considered, four elements exist in
this matrix. Then four linear matrix inequalities can be easily be got.

(
θ
1

)∗
 W 2

l1Z
2
3D

2
cW

2
r2 + W 2

l2Z
2
3N

2
c W 2

r2

−γ (Z2
3D

2
c + Z2

4N
2
c + 2Z3DcZ4Nc)

W 2
l1Z3D

2
cW

2
r2 + W 2

l1Z3N
2
c W 2

r2

−γ (Z3D
2
c + Z4DcNc)

∗ W 2
l1D

2
cW

2
r2 + W 2

l2N
2
c W 2

r2 − γ

( θ
1

)
≤ 0

⇔
(

θ
1

)∗

M1

(
θ
1

)
≤ 0
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θ
1

)∗
 [Wl1Z4DcWr1]

2 + [Wl2Z3DcWr1]
2

−γ (Z2
3D

2
c + Z2

4N
2
c + 2Z3DcZ4Nc)

W 2
l2Z3D

2
cW

2
r1

−γ (Z3D
2
c + Z4DcNc)

∗ W 2
l2D

2
cW

2
r1 − γ

( θ
1

)
≤ 0

⇔
(

θ
1

)∗

M2

(
θ
1

)
≤ 0

(
θ
1

)∗
 Wl1Z3DcWr2Wl2Z4DcWr1

−Wr2Z
2
3NcWr2Wl2DcWr1

1
2
Wl1DcWr2Wl1Z4DcWr1

−Wl2Z3NcWr2DcWr1

∗ −Wr2NcWr2Wl1DcWr1

( θ
1

)
≤ 0

⇕(
θ
1

)∗

M3

(
θ
1

)
≤ 0(

θ
1

)∗
 Wl1Z4DcWr1Wl1Z3DcWr2

−Wl2Z3Wr1Wl2Z3NcDcWr2

1
2
Wl1Z4DcWr1Wl1DcWr2

−Wl2Z3Wr1Wl2NcDcWr2

∗ −Wr2NcWr2Wl1DcWr1

( θ
1

)
≤ 0

⇕(
θ
1

)∗

M4

(
θ
1

)
≤ 0

(47)
To simplify the above four linear matrix inequalities, we introduce four matrices M1,

M2, M3, M4 to denote them. The above mathematical derivation is very difficult, if reader
or reviewer wants to check them, please ask for the first author. Then we obtain another
Theorem 5.1.

Theorem 5.1. Consider a closed loop system plotted in Figure 1 and the plant model
G(q, θ), a stabilizing controller C(q) are all parameterized as their tailor made parame-
terization form. The worst case performance at frequency point Ω is equal to one optimal
value

√
γ. This requirement can be formulated as the following standard convex opti-

mization problem involving linear matrix inequality constraints evaluated at the frequency
point.

min
γ,τ1,τ2,τ3

γ

subject to τ1 ≥ 0, τ2 ≥ 0, τ3 ≥ 0,M1 − τ1M2 − τ2M3 − τ3M4 ≤ 0
(48)

Comparing Equation (48) with the result in [2], we conclude that our results are a
generation of [2]. These two optimization problems (36) and (48) can be solved by many
convex optimization algorithms such as fast gradient projection algorithm, active set
algorithm, ellipsoidal algorithm, and trust region algorithm.

6. Simulation Example. To prove the confidence interval analysis under closed loop
condition with a tailor made parameterization, we consider one simulation system.

y(t) = G0(q)r(t) − G0(q)C(q)y(t) + H0(q)e(t)

where G0(q), H0(q) and C(q) are assumed to be as follows respectively.

G0(q) =
0.01293q−1 + 0.1062q−2 + 0.1058q−3 + 0.01279q−4

1 − 0.2482q−1 + 1.091q−2 − 0.2441q−3 + 0.9822q−4
, H0(q) = 1, C(q) = 1

Here the noise model is 1 and it shows the external disturbance acting on closed loop
reduces to the white noise disturbance. The feedback is the common positive feedback.
The noise e(t) is a white noise with zero mean and unit variance, and input r(t) is similar
to noise e(t). In order to analyze the confidence region of the model parameter and cross
correlation function, we choose the number of observed data set {y(t), w(t)}N

t=1 as N =
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500, and apply direct approach to identifying the unknown parameters in parameterized
plant model G0(q). The qualities of nine model parameters affect the output response
directly. So the identification accuracy or credibility of model parameters can be all
measured by the output response of closed loop.

The whole output frequency response curves are shown in Figure 4, based on estimated
model parameters. The middle curve is the actual true amplitude curve from Bode plot
tool. When the estimated model parameters are contained in the uncertainty bound with
probability level 0.99, the amplitude curves lie above or low the middle curve. From
Figure 4, we see these three curves are very close and the middle amplitude curve lies
between two confidence amplitude curves with probability level 0.99.

Figure 4. Confidence region of amplitude in Bode plot

Figure 5. Confidence region of phase in Bode plot
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Figure 6. Comparison of the true model and its identified model

As using Matlab simulation tool to simulate the output response of Bode plot in closed
loop, the phase plot is got with amplitude plot simultaneously. The confidence region
phase plot is given in Figure 5, and the middle phase curve lies also between two confidence
phase curves with the probability level 0.99. This is similar to the derivation of Figure 4.

To verify the efficiency of the identified model G
(
θ̂N

)
and make sure that this identified

model can be used to replace the true model, we compare the Bode responses through

true model G0(q) and its identified model G
(
θ̂N

)
respectively in Figure 6. From Figure

6, we see that these two Bode response curves coincide with each other, and it means that
the model error G̃(q) will converge to zero with time increase.

7. Conclusions. In this paper, we consider the problem of performance analysis in closed
loop system where the plant model and controller are all parameterized as their tailor
made parameterization forms. Under this framework of a tailor made parameterization,
we study the confidence internal analysis corresponding to the parameter vector and
the performance analysis only on one transfer function. Then we extend the result to
performance analysis on one transfer function matrix. However, here we do not study the
closed loop performance monitoring and experiment design, and these two subjects are
our next goals.
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