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Abstract. In brief, this work focuses on reducing the encoding complexity with less
than 1% encoding efficiency loss for low delay (LD) and random access (RA) profiles
in HEVC. An efficient CU (coding unit) size decision algorithm based on probabilistic
graphical models is proposed for HEVC inter coding, which contains two methods: the
CU size early termination (CUET) decision method and the CU size early skip (CUES)
decision method. The CU pruning is modeled as a binary classification problem based on
the Naive Bayes (NB) model. Furthermore, a Markov random fields (MRF) model based
method is presented to improve the algorithm performance. The difference from previous
works is that residual flag in inter-coded CU and the neighboring information are used
to determine the CU size. The offline learning method is used to obtain the statistical
parameters. This presented approach can significantly reduce the encoding complexity.
Furthermore, it can bring lower power cost for hardware implementation. The simulation
experiment results demonstrate that this method can significantly reduce by 50.59% and
53.86% average encoding complexity under low delay and random access profiles, while
the encoding efficiency can be reduced by 0.82% and 0.98% on average. Moreover, the
rate-distortion (RD) performance of this method is nearly the same as HEVC reference
software.
Keywords: Video coding, CU size, Encoding efficiency, Encoding complexity

1. Introduction. High efficiency video coding (HEVC) is the latest video coding stan-
dard that is released in 2013 [1]. It is a hybrid coding model, and it achieves 50% bitrate
saving compared with H.264/AVC. HEVC divides the picture into coding tree unit (CTU).
Then a CTU is further divided into four coding units (CU) in a quad-tree structure. Pre-
diction unit (PU) is a smaller unit, defined by partitioning the CU. Each inter coded
PU has a set of motion parameters including motion vector (MV), picture index, and
reference picture list. For each PU, there are three available modes: inter, skip and merge
modes. In the partitioning unit, the partition modes are used to define the prediction unit
for inter-coded CU. Partitioning modes include two square partition modes, two symmet-
ric motion partition modes and four asymmetric motion partition modes. Usually, the
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best motion vector is selected from certain motion vector prediction candidates which can
minimize the rate-distortion cost.

In HEVC, the maximum CU size is 64 × 64, and each of this sub-CU can be divided
into smaller sub-CUs recursively in the same quad-tree. As a result, the intra and inter
predictions take the most encoding time in the whole encoding process. The implemen-
tation cost is unacceptable for both software and hardware implementation, especially
for those real-time applications. Therefore, on the premise of guaranteeing the coding
performance, reducing the encoding complexity is a key factor for the success of HEVC,
and the need of large scale HD video application.

However, CU size is critical in HEVC, and more researches focus on CU fast decision
algorithm. The purpose of this kind of method is to reduce the encoding complexity of
CU size decision, on the premise of guaranteeing the coding quality. There are differences
between intra prediction and inter prediction. The intra CU size fast decision algorithm
mainly targets the CU size decision of intra mode prediction, while inter CU size fast
decision algorithm mainly targets the CU size decision of P frame and B frame. Fur-
thermore, the intra CU size fast decision algorithm is to determine the CU size and intra
prediction mode beforehand by evaluating the CU texture complexity or on the basis of
the CU depth information. The inter CU size fast decision algorithm is to determine the
CU size and inter PU mode beforehand on the basis of the neighboring CU depth or the
middle encoding parameters. In this work, the proposed algorithm mainly focuses on the
inter CU size fast decision.

Many previous works have major attention to reduce encoding complexity of HEVC
encoder [2-23]. According to different usage of information, there are three categories for
the CU size fast decision: (1) based on the middle encoding parameters, (2) based on the
neighboring CU depth, and (3) based on the rate-distortion cost (RD-cost). The detailed
description of these methods is as follows.

The main idea based on the middle encoding parameters of inter prediction fast selection
algorithm is that the middle encoding parameters (such as motion vector (MV), coded
block flag (CBF), MV difference (MVD), TU size, and SAO) can effectively reflect the CU
motion compensation effect of inter prediction. These methods can effectively determine
the current CU coding mode by using these encoding parameters. The representative
works have the following. Ahn et al. propose the inter CU fast decision algorithms
based on the spatial and temporal encoding information [2,3]. These methods use SAO
parameters to estimate the CU texture complexity, and use MV, TU size and CBF to
estimate the CU motion complexity. Shen et al. propose a fast CU size decision approach
based on Bayes rule [4], and the feature parameters include sum of absolute transformed
difference (SATD) and MV that are used to decide the CU coding mode based on Bayes
rule. Kim et al. propose an early inter mode termination algorithm [5], and this method
mainly uses the MVD and CBF information to check the skip mode. Ahn et al. use the
zero block detection and MVD information to early terminate the inter prediction CU split
process [6]. Pan et al. propose a merge mode detection of inter CU size decision [7], and
this approach uses the zero block detection and inter motion estimation information to
early terminate the merge mode. The above mentioned methods mainly use the middle
encoding parameters, and selecting the optimal mode depending on these parameters
reflects the effect of CU coding. However, these methods lack precision for CU size
decision.

The main idea based on the neighboring CU depth of inter CU fast selection algorithm is
that it uses the neighboring CU depth information to deduce the current CU depth range.
Because the neighboring CU motion complexity and encoding size are close to the current
CU motion complexity and size, which can decide the current CU coding mode faster
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by using the neighboring CU encoding information. The representative works have the
following. Shen et al. propose a fast inter CU depth range selection algorithm [8], and this
approach uses the spatial neighboring CU depth information and temporal neighboring
CU depth information to deduce the current CU depth range. Zhang et al. use the depth
similarity of current CTU and neighboring spatial-temporal CTU to zoom out the depth
range [9]. Leng et al. propose a fast inter CU depth determination method [10], and
this method uses the neighboring spatial-temporal CU depth information in frame level
and CU level to skip some CU rate-distortion optimization process. Lee et al. propose a
fast mode selection algorithm based on neighboring spatial-temporal CU information [11].
Similarly, Correa et al. use spatial-temporal CU depth to estimate the current CU depth
[12]. Mu et al. propose a fast CU depth decision scheme to reduce the encoder complexity
for HEVC [13]. The method is used to predict the CU depth based on the support vector
machine (SVM) model. The robustness of these methods is not high, because it depends
on the consistency of the texture and motion characteristics between neighboring CU and
the current CU.

The main idea based on the RD-cost of inter CU fast selection algorithm is that the
RD-cost can reflect the final motion compensation effect of current CU significantly, and
it is able to determine early coding mode by calculating part of the pattern of the RD-
cost. The representative works have the following. Tan et al. propose a fast inter CU
selection algorithm [14]. Lee et al. propose a fast inter CU mode selection method based
on the RD-cost among encoding process [15], and the RD-cost of skip mode and the
optimal RD-cost after executing skip or merge and 2N× 2N mode are used to decide the
CU encoding mode. Cassa et al. propose an approach to determine whether it needs
to skip or terminate the current encoding process by comparing the RD-cost with the
setting threshold [16]. Vanne et al. propose a fast inter mode selection algorithm [17].
This method analyzes the distribution of inter prediction mode and the relationship of
different prediction modes, and judgment condition whether PU mode needs to execute or
not is proposed. Zhang et al. propose an RD-cost based fast CU depth decision algorithm
[18], and the method includes a three-output joint classifier to control the risk of false
prediction. The optimal mode of above methods depends on the threshold of RD-cost.
However, this threshold is relative to the image texture and motion intensity, and the
threshold is dynamic variation. Thus, the implementation cost is high, because it costs
much time to calculate the RD-cost.

The above three methods have advantages and disadvantages. The advantages of the
middle encoding parameters method are that the feature extraction is straightforward and
it does not need the extra computational complexity, while the accuracy of this method is
low. The advantages of the neighboring CU depth method are that this method is simple
and is easy to achieve; however, it depends on the consistency of the neighboring CU. The
advantages of the RD-cost method are that the RD-cost threshold determination method
is easy to implement, while the cost of RD-cost calculation is very time-consuming and
the robustness is not high. Although Jiang et al. propose a fast CU size decision algo-
rithm based on the RD-cost and the middle encoding parameters to reduce the encoding
complexity in [22,23], they have some limitations. (1) This method cannot achieve the
trade-off between the encoding efficiency and encoding complexity, and the average loss of
encoding efficiency is greater than 1%. (2) The more effective information of neighboring
CU has not been used to determine the CU size.

As a summary, the state-of-the-art algorithms cannot achieve a better trade-off between
encoding complexity and encoding efficiency. For high-definition applications correspond-
ing to LD profile, the loss encoding efficiency should be negligible. Meanwhile, for network
applications corresponding to RA profile, the encoding efficiency can be sacrificed a little
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bit more to reduce the encoding complexity. Thus, this work focuses on reducing the
encoding complexity with less than 1% encoding efficiency loss for low delay (LD) profile
and random access (RA) profile in HEVC. An efficient CU size decision algorithm based
on probabilistic graphical models (PGM) is proposed.

The remainder of this paper is organized as follows. In Section 2, we review the rate dis-
tortion model and investigate the probability distribution of CU splitting or non-splitting.
In Section 3, the CU size decision based on probabilistic graphical models is introduced
to reduce the encoding complexity. In Section 4, we present some experimental results.
Finally, Section 5 concludes this paper.

2. Observation and Statistical Analysis. In HEVC reference software HM, a two-
step rate distortion optimization (RDO) method is used for mode decision. At first, to
save computation overhand, a fast RDO is used for early termination, and fast RDO
selects the motion vectors and modes for inter prediction. The minimized low-complexity
RD-cost function Jpred is defined as

min Jpred = Dpred + λpred ×Rpred (1)

where Dpred represents the distortion between the original block and reference block, Rpred

represents the number of coding bits, and λpred is the Lagrange multiplier. Then, a full
RDO is used for the final decision. The full RDO is determinated by CABAC bit rate
and distortion cost, and the minimized full RD-cost function Jmode is defined as

min Jmode = (SSEluma + ωchroma × SSEchroma) + λmode ×Rmode (2)

where SSEluma and SSEchroma are on behalf of the sum of square error (SSE) between
the original and reconstructed luma and chroma blocks, Rmode represents the number of
the coding bits, and ωchroma is weighting factor. However, the cost of full RDO is high in
real-time HEVC encoder. Similarly, λmode is Lagrange multiplier, and the definition λmode

and the relationship between λmode and λpred are that:

λmode = α×Wk × 2
(QP−12)

3.0 (3)

λpred =
√
λmode (4)

where QP is quantization parameter, and Wk is weighting factor.

α =

{
1.0 − Clip3(0.0, 0.5, 0.05 × number of B frames); for referenced pictures
1.0; for non-referenced pictures

where

Clip3(x, y, z) =

 x; z < x
y; z > y
z; otherwise

The CBF is an important factor for deciding the CU size decision [27]. When CBF
equals zero, the image texture tends to be more smooth. Therefore, the current CU tends
not to be split. On the contrary, when CBF equals one, the image texture tends to be
complex. Therefore, the current CU tends to be split.

In HEVC, based on RDO model, the RD-cost is calculated to decide whether the current
CU splits or not. Therefore, the current CU non-splitting or splitting is formulated as a
binary classification problem. This two-class event is denoted by discrete random variable
y, which is defined as

y =

{
0 if CU non-splitting
1 if CU splitting
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Extensive experiments based on HEVC reference software (HM12.0) are to investigate
the probability distribution of CU splitting or non-splitting with different class sequences,
and the results are shown in Table 1. The sequences have different resolutions: Traffic
(2560×1600), BQTerrace (1920×1080), Vidyo1 (1280×720), BQMall, and BlowingBub-
bles (416 × 240). The profile is LD (lowdelay), and CU size is 64 × 64 when QP (quan-
tization parameter) is 32. The result is shown that the probability of CU non-splitting
is high for high resolution. On the contrary, the probability of CU splitting is high for
low resolution. Similar to the same simulation environment, Table 2 represents the condi-
tional probability distribution of p(xcbf |y) with different resolution sequences, where xcbf

represents the value of CBF, and p0 = p(xcbf = 0|y = 0), p1 = p(xcbf = 1|y = 1). It can
be seen that the conditional probability of xcbf = 0 is high for CU non-splitting. On the
contrary, the conditional probability of xcbf = 1 is high for CU splitting.

Table 1. Probability distribution of the CU non-splitting (NS) and split-
ting (S)

Sequence Resolution Sequence NS S
2560 × 1600 Traffic 0.60 0.40
1920 × 1080 BQTerrace 0.70 0.30
1280 × 720 Vidyo1 0.82 0.18

High Resolution Average 0.71 0.29

832 × 480 BQMall 0.16 0.84
416 × 240 BlowingBubbles 0.48 0.52

Low Resolution Average 0.32 0.68

Table 2. Conditional probability distribution of p(xcbf |y)

Sequence Resolution Sequence p0 p1
2560 × 1600 Traffic 0.96 0.73
1920 × 1080 BQTerrace 0.97 0.54
1280 × 720 Vidyo1 0.96 0.61

High Resolution Average 0.96 0.63

832 × 480 BQMall 0.91 0.88
416 × 240 BlowingBubbles 0.88 0.70

Low Resolution Average 0.90 0.79

In addition, based on some observations from experiments with many sequences, the
RD-cost probability density function (pdf) of the CU non-splitting and CU splitting obeys
Gaussian distribution [15].

3. Proposed CU Size Decision for Inter Prediction. In this section, an effective
CU size decision algorithm is presented in the HEVC inter prediction. However, this
method is different from Shen et al.’s [4] and Lee et al.’s [15] work. Firstly, the CBF flag
is used to make CU size decision. Secondly, the decision strategy is based on Naive Bayes
model. Furthermore, this statistical parameters are estimated by using offline learning
and online learning methods.
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3.1. Naive Bayes based CU size decision algorithm. Thus, for the random variable
y of the current CU splitting or non-splitting, the probability density function (pdf) p(y)
follows a discrete Bernoulli (p) distribution, which is defined as

p(y) =

{
p if y = 0
1 − p if y = 1

where p is the probability of CU non-splitting.
For the binary classification problem y = {0, 1}, the assumption is that the features of

CU are comprised of x = {x1, x2, . . .}, and these features are independent of each other.
Having fit these parameters, to make a prediction on CU non-splitting or splitting with
features {x1, x2, . . .}, the CU termination decision rule is{

p(y = 0|x) > p(y = 1|x) CU non-splitting is made
else CU splitting is made

where the class-conditional probability density function p(y|x) is calculated based on
Naive Bayes (NB) model

p(y|x1, x2, . . .) =
p(x1, x2, . . . |y)p(y)

p(x1, x2, . . .)
=

n∏
i=1

p(xi|y)p(y)

p(x1, x2, . . .)
(5)

where the features xi are the coded block flag (CBF) and RD cost of partition 2N × 2N ,
denoted as x1 and x2. The prior probability function p(x1|y) is modeled using a discrete
Bernoulli (ϕ) distribution, which are defined as

p(x1|y) =

{
ϕ if y = 0
1 − ϕ if y = 1

The prior probability function p(x2|y) is modeled using the Gaussian distribution. The
model is

x2|y = 0 ∼ N
(
µ0, σ

2
0

)
x2|y = 1 ∼ N

(
µ1, σ

2
1

)
where the parameters (µ0, σ0), (µ1, σ1) are mean vectors and covariance matrix of CU
non-splitting and splitting, respectively. It is noted that these parameters are estimated
by the maximum likelihood estimation. Thus, the prior probability of p(x2|y) are defined
as

p(x2|y = 0) =
1√

2πσ0

e
− (x2−µ0)2

2σ2
0 (6)

p(x2|y = 1) =
1√

2πσ1

e
− (x2−µ1)2

2σ2
1 (7)

Actually, the evidence probability p(x) is the constant. In order to make a prediction,
we update the prior distribution to the posterior

p(y|x) =
p(x|y)p(y)

p(x)
∝ p(x|y)p(y) =

(
n∏

i=1

p(xi|y)

)
p(y) (8)

Thus, the decision function D(y) is defined as

D(y) =

(
n∏

i=1

p(xi|y)

)
p(y) (9)
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After the introduction of classifier, the CU splitting and non-splitting are decided by Naive
Bayes classifier. Therefore, the approach includes two methods: CU early termination
(CUET) decision and CU early skip (CUES) decision. CUET decision is to terminate the
CU further splitting, and CUES decision is to skip the CU mode selection in the current
depth and go to the next depth of the CU.

Thus, when the context of image tends to be smooth, the probability of CU non-splitting
is higher than the probability of CU splitting. The condition of CUET decision is that

CUET condition

{
CBF = 0
D(y = 0) > D(y = 1)

On the other hand, when the context of image tends to be complex, the probability of
CU splitting is higher than the probability of CU non-splitting. The condition of CUES
decision is that:

CUES condition

{
CBF = 1
D(y = 1) > D(y = 0)

3.1.1. Statistical parameter estimation. Table 3 summarizes the statistical parameters.
In our approach, the statistical parameters (mean, standard deviation and prior) are
estimated by the offline learning method [26].

Table 3. The lookup table of estimation parameter (learning parameter:
LP, derived parameter: DP)

LP DP Description

p p(y) Probability of CU non-splitting
(µi, σi) p(xcost|y) Conditional probability of RD cost
ϕ p(xcbf |y) Conditional probability of CBF

The statistical parameters are estimated by using a non-parametric estimation with
offline learning [26], and are stored in a lookup table (LUT0). It is noticed that the
statistical parameters are varied as the CU depth, QP and resolution changed. Thus, we
select the sequences: Traffic (2560×1600), BQTerrace (1920×1080), Vidyo4 (1280×720),
BQMall (832 × 480), and BlowingBubbles (416 × 240) for non-parametric estimation. In
the inter prediction stage by using the presented algorithm, the statistical parameters are
indexed by CU depth, QP and resolution.

3.1.2. Overall algorithm. By joining the CU termination and skip algorithm, the flowchart
of presented overall algorithm based on offline learning or online learning is shown as
Figure 1. This overall algorithm can be divided into five steps.

Step 1: Start CU size decision with motion estimation process.
Step 2: Look up the statistical parameters in LUT0.
Step 3: When the current mode is 2N × 2N and CBF is zero, calculate D(y = 0) and

D(y = 1) as Formula (9). If D(y = 0) > D(y = 1), it allows terminating all the remaining
RD cost computing.

Step 4: When the current mode is 2N × 2N and CBF is 1, if D(y = 1) > D(y = 0), it
skips the RD-cost computing for remaining CUs in the same depth and goes to the next
depth of the CU.

Step 5: If the current depth is less than the maximal depth, depth = depth + 1 and
repeat Steps 2 and 3. Otherwise, the best CU size is determined.
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Figure 1. Flowchart of the proposed overall algorithm

CU

CU
1

CU
2

CU
3

CU
4

Figure 2. The neighborhood system of the current CU

3.2. Markov random fields based CU size decision algorithm. In HEVC, there
is correlation between current CU and neighborhood CU. In order to utilize the spatial-
temporal correlation, the four neighborhood system M is defined as

M = {CU1, CU2, CU3, CU4}

As Figure 2 shown, CU1, CU2, CU3 denote the spatially adjacent CUs of the current CU,
and CU4 denotes the temporally adjacent CU of the current CU.
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Whereas, the prior distribution p(y) can be confirmed by the probabilistic graphical
model: Markov random fields (MRF) [8].

p(y) =
1

Z
exp

(
−
∑
j∈M

Vj(Xj)

)
(10)

From the physicists, this is the Gibbs distribution with interaction potential {Vj, j ∈M},
energy U =

∑
j Vj, and partition function of parameters Z. Configurations of lower

energies are more likely, whereas high energies correspond to low probabilities. The CU
size decision is a binary classification problem, and the binary problem can be modeled
by a simple ISING-MRF model [28]

Vj(Xj) = −β × (X0 ×Xj) (11)

where the X0 denotes the flag of the CU0 splitting or non-splitting, and Xj denotes the
flag of the CUj splitting or non-splitting in neighborhood system M . β is coupling factor,
which indicates the strength of CU correlation with neighborhood system M . Thus, the
prior p(y) exhibits a factorized form

p(y) ∝ exp

(
−
∑
j∈M

−β × (X0 ×Xj)

)
(12)

Take log function of the posterior p(y|x), and it can be written as

ln p(y|x) ∝

[
C1 −

1

2σ2
i

(x2 − µi)
2 −

∑
j∈M

−β × (X0 ×Xj)

]
(13)

where constant C1 = ln p(x1|y), i = 0, 1. Then when CU0 neighborhood system M is
valid, the decision function D(y) can be defined as

D(y) =

[
C1 −

1

2σ2
i

(x2 − µi)
2 −

∑
j∈M

−β × (X0 ×Xj)

]
(14)

However, when CU0 neighborhood system M is invalid, the p(y) can be confirmed by
Bernoulli (ψ) distribution. The decision function can be rewritten as

D(y) =

[
C1 −

1

2σ2
i

(x2 − µi)
2 + ln p(y)

]
(15)

Through the above analysis, the improved CU size decision algorithm based on ISING-
MRF model includes CUET decision and CUES decision. The condition of CUET decision
is: CBF = 0, and D(y = 0) > D(y = 1). The condition of CUES decision is: CBF = 1,
and D(y = 1) > D(y = 0).

4. Experimental Results. The proposed algorithm is implemented and verified based
on HEVC test model HM12.0. The test conditions are set to evaluate the performance
of the presented algorithm at different profiles. The quantization parameters (QPi) are
set to 22, 27, 32 and 37, respectively. The coupling factor β (0 < β < 1) indicates the
strength of CU correlation with neighborhood system M , and β is set to 0.5 and 0.75 in
this work.

The performance of this algorithm is evaluated Bjontegarrd Delta bitrate (BR) [29],
peak-signal-to-noise ratio (PSNR). The average time saving (TS) is defined as

TS(%) =
1

4

i=4∑
i=1

THM(QPi) − Tpro(QPi)

THM(QPi)
× 100% (16)
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where THM(QPi) and Tpro(QPi) are the encoding time by using the HEVC reference
software and the presented method with different QPi.

4.1. Performance of Naive Bayes based CU size decision algorithm. Table 4
shows the results of the Naive Bayes based method compared to HEVC reference software.
The third and fourth columns in the table show the performance under the low delay
(LD) profile. From the experimental results, it can be seen that, in the aspect of encoding
complexity, the method can save 50.24% encoding time, while the encoding efficiency can
be reduced by 1.36%. Thus, in the low delay profile, this method almost does not affect
the encoding quality while the encoding complexity can be reduced significantly.

Table 4. The performance of the Naive Bayes based CU size decision algorithm

LD RA
Class Sequence BR TS BR TS

2560 × 1600 Traffic 1.23 55.29 1.63 56.17
SteamLocomotive 0.40 51.56 0.74 55.86

1920 × 1080 Kimono 1.90 41.58 2.35 44.82
ParkScene 1.15 52.5 1.33 55.77
Cactus 1.56 47.66 1.78 49.56
BasketballDrive 4.01 44.66 4.94 47.35
BQTerrace 0.72 54.08 1.01 54.31

1280 × 720 Vidyo1 1.65 64.54 1.70 63.80
Vidyo3 1.30 61.83 1.41 61.95
Vidyo4 1.14 65.11 1.46 62.74

High Res. Average 1.51 53.81 1.83 55.13
832 × 480 BasketballDrill 2.14 45.59 1.97 49.20

BQMall 1.00 49.20 1.16 56.45
PartyScene 0.67 39.53 0.96 50.25
RaceHorses 1.27 36.78 1.79 43.62

416 × 240 BasketballPass 1.06 53.02 1.50 54.51
BQSquare 0.34 47.58 0.65 53.40
BlowingBubbles 1.50 43.56 1.45 49.32

Low Res. Average 1.14 45.04 1.35 50.96

Average 1.36 50.24 1.64 53.48

The fifth and sixth columns in the table show the performance under the random
access (RA) profile. In the aspect of encoding complexity, the method can save 53.48%
encoding time, while the encoding efficiency can be reduced by 1.64%. Thus, in the low
delay profile, this method almost does not affect the encoding quality while the encoding
complexity can be reduced significantly.

The results demonstrate that this method can significantly reduce the encoding time,
and the time saving in high resolution is higher than in the low resolution applications.
Furthermore, for 1280× 720 resolution, the time saving is more than 60% in the LD and
RA profiles.

4.2. Performance of Markov random fields based CU size decision algorithm.
The performance of the improvement CU size decision method is shown as Table 5. The
third to sixth columns in the table show the performance of the improvement method,
when β is set to 0.5. The third and fourth columns in the table show the performance
under LD profile. From the experimental results, it can be seen that, in the aspect of
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Table 5. The performance of the Markov random fields based CU size
decision algorithm

β = 0.5 β = 0.75
LD RA LD RA

Class Sequence BR TS BR TS BR TS BR TS
2560 × 1600 Traffic 0.85 54.72 1.07 59.99 0.89 55.29 1.06 56.17

SteamLocomotive 0.22 50.8 0.78 58.39 0.22 51.56 0.78 55.86
1920 × 1080 Kimono 1.57 41.06 1.83 49.02 1.49 41.58 1.84 44.82

ParkScene 0.99 52.19 1.15 58.54 1.07 52.5 1.10 55.77
Cactus 1.05 46.84 1.36 53.68 0.98 47.66 1.36 49.56
BQTerrace 0.73 53.76 0.69 57.8 0.71 54.08 0.70 54.31

1280 × 720 Vidyo1 0.95 64.47 1.87 66.63 0.98 64.54 0.86 63.80
Vidyo3 0.72 61.88 0.63 64.69 0.86 61.83 0.59 61.95
Vidyo4 0.61 64.77 1.01 65.26 0.32 65.11 1.09 62.74

High Res. Average 0.85 54.50 1.06 59.25 0.83 54.91 1.04 56.10
832 × 480 BasketballDrill 0.59 46.47 0.72 49.92 0.54 45.59 0.74 49.2

BQMall 0.94 50.31 1.06 55.56 0.74 49.20 0.98 56.45
PartyScene 0.66 41.09 0.78 48.63 0.59 39.53 0.75 50.25
RaceHorses 0.88 37.93 1.40 42.79 0.94 36.78 1.39 43.62

416 × 240 BasketballPass 1.02 52.83 0.85 53.17 0.81 53.02 0.66 54.51
BQSquare 0.53 47.77 0.56 52.04 0.58 47.58 0.55 53.40
BlowingBubbles 1.47 43.16 1.27 47.90 1.33 43.56 1.18 49.32

Low Res. Average 0.87 45.65 0.95 50.00 0.79 45.04 0.89 50.96
Average 0.86 50.63 1.01 55.25 0.82 50.59 0.98 53.86

encoding complexity, the method can save 50.63% encoding time, while the encoding
efficiency can be reduced by 0.86%. The fifth and sixth columns in the table show the
performance under the RA profile. In the aspect of encoding complexity, the method can
save 55.25% encoding time, while the encoding efficiency can be reduced by 1.01%. Thus,
in the low delay profile, this method almost does not affect the encoding quality while
the encoding complexity can be reduced significantly.

The seventh to tenth columns in the table show the performance of the improvement
method, when β is set to 0.75. The seventh and eighth columns in the table show the
performance under the LD profile. From the experimental results, it can be seen that, in
the aspect of encoding complexity, the method can save 50.59% encoding time, while the
encoding efficiency can be reduced by 0.82%. The ninth and tenth columns in the table
show the performance under the RA profile. In the aspect of encoding complexity, the
method can save 53.86% encoding time, while the encoding efficiency can be reduced by
0.98%. Thus, in the low delay profile, this presented method almost does not affect the
encoding quality while the encoding complexity can be reduced significantly.

Through the analysis of experimental results, it is noted that the coupling factor β is
a sensitivity parameter. When the value of β changes from 0.5 to 0.75, the BR and TS
are decreased. In order to achieve the target that BR is less than 1%, a suitable value of
β is set to 0.75 in this work.

Comparing Table 4 and Table 5, the encoding complexity of the improvement method
is almost the same as the encoding complexity of the Naive Bayes based method, while
the encoding efficiency of the improvement is better than the encoding efficiency of the
Naive Bayes based method. That is, the improvement method can make a better trade-off
between the encoding complexity and encoding efficiency.
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Figure 3. R-D curve of the improvement method (β = 0.75, low delay)
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Figure 4. R-D curve of the improvement method (β = 0.75, random access)

To evaluate the steady performance, the R-D curves of the typical sequences are as
shown in Figure 3 and Figure 4 for the LD and RA profiles. It can be noticed that, no
matter in high bitrate or in low bitrate, the R-D performance of the proposed method is
almost similar to the HEVC reference software.

4.3. Comparison with previous work. Furthermore, the performance of the MRF
based method is compared to the previous work [4,8,15,18,24,25] with β = 0.75, and the
results are shown in Table 6. Shen et al.’s method [4] is based on the middle encoding
parameters of inter prediction. Shen et al.’s [8] is based on the neighboring CU depth of
inter CU fast selection. Zhang et al.’s method [18] and Lee et al.’s method [15] are based
on the RD-cost of inter CU fast selection. Xiong et al.’s methods [24,25] are based on the
RD-cost and the middle encoding parameters of inter prediction.

It can be seen from the comparison of experimental results that, no matter in high
resolution or low resolution, the encoding complexity of the MRF based method can be
reduced, significantly; meanwhile, the encoding efficiency of this method is better than
previous work. Moreover, our approach can reduce the encoding complexity with less
than 1% for LD and RA profiles when β is set to 0.75, respectively.
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Table 6. The performance of the proposed method compared with previ-
ous work

Method
(BR, TS)

High Res. Low Res. Average

LD

Proposed (0.83, 54.91) (0.79, 45.04) (0.82, 50.59)
Shen et al.’s [8] (0.97, 47.11) (1.33, 33.89) (1.15, 41)
Lee et al.’s [15] (1.31, 69) (1.13, 53) (1.22, 61)
Zhang et al.’s [18] (2.41, 62.59) (1.55, 40.31) (1.98, 51.45)
Xiong et al.’s [24] (2.78, 66.13) (1.6, 53.21) (2.19, 59.67)
Xiong et al.’s [25] (2.59, 44.40) (1.83, 36.26) (2.21, 40.33)

RA

Proposed (1.04, 56.10) (0.89, 50.96) (0.98, 53.86)
Shen et al.’s [4] (1.25, 51.05) (1.33, 38.61) (1.35, 44.7)
Shen et al.’s [8] (1.30, 45.25) (1.65, 38.78) (1.49, 42)
Lee et al.’s [15] (1.49, 65.43) (1.37, 58.57) (1.43, 62)
Xiong et al.’s [24] (3.3, 69.24) (2.18, 57.10) (2.74, 63.17)

5. Conclusion. In this paper, a fast CU size decision algorithm is presented. The pro-
posed algorithm consists of CU termination and CU skip methods to reduce the redundant
computing of inter prediction in HEVC. The offline learning method is used to obtain the
statistical parameters. Furthermore, in order to reduce the encoding complexity with neg-
ligible loss of encoding efficiency, the MRF-based improvement CU size decision method is
presented. The simulation results demonstrate that the overall algorithm can significantly
reduce the encoding complexity.

To further enhance the accuracy of CU size decision process, future work can be done
by improving the Markov random fields model with neighboring CUs. Furthermore, the
parallel computing strategies would be explored to achieve the real-time process for en-
coder.
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