
International Journal of Innovative
Computing, Information and Control ICIC International c⃝2018 ISSN 1349-4198
Volume 14, Number 1, February 2018 pp. 341–354

TEST CASE PRIORITIZATION TECHNIQUE FOR OBJECT
ORIENTED SOFTWARE USING METHOD COMPLEXITY

Vedpal1 and Naresh Chauhan2

1Department of Information Technology and Computer Application
2Department of Computer Engineering

YMCA University of Science and Technology
NH-2, Sector-6, Mathura Road, Faridabad 121006, India

ved ymca@yahoo.co.in; nareshchauhan19@gmail.com

Received June 2017; revised October 2017

Abstract. Minimization of cost and time for testing the software is a challenging task
for every software industry. Although the new technology and testing tools are being
developed and used by the software industry, testing cost of the software is increasing
rapidly. Further the customer expectation increases, the size of test suit also increases.
So it is very difficult to execute the large test suite. In this paper, an algorithm for test
case prioritization of object oriented software based on method complexity is presented.
The method complexity is determined by using some factors which are identified by the
structural analysis of the software. For experimental verification and validation the pro-
posed approach has been applied on two case studies implemented in C++ and Java. The
analyses of the results show the efficacy of the proposed approach.
Keywords: Software testing, Test case prioritization, Method complexity, TCPOOS

1. Introduction. Software testing is a process which exists at every stage during the
development of the project. The software can be changed many times if the requirement is
changed by the customer. Due to the advancement of the software technologies, customer’s
expectation also increases. Customer is always keen to add new requirement which may
complicate the software resulting in the increase test suite.

There are many constraints on the software that affect the testing and quality of the
software. These constraints are like time, allocated budget, resource limitation, use of new
technology, and poor designing of the software architecture. For effective testing all the
test cases should be executed but due to constraint it is very time and resource consuming
and costly to execute each and every test case. To overcome these types of issues, the
test suite must be prioritized in an order such that maximum bugs are detected earlier by
executing the fewer test cases. Prioritization of test suite helps to perform the effective
testing and deliver the quality product within time and allocated budget.

The prioritization of test case is performed on the basis of some of factors which direct
to select most appropriate test case. The factors for prioritizing the test suit may be
coverage of module, cost coverage per code component, past history data of the software,
etc.

Complexity of a software shows how it is difficult to test and maintain the software. So
to overcome complexity problem, software is divided in modules and methods. In software,
a method is directly or indirectly interrelated to the other methods. The developers
use many features of the language which increase the complexity of a method. With
the multiple interfaces among the methods and to implement the complex feature, the
complexity of software may go out of control resulting in unexpected results. So for the

341



342 VEDPAL AND N. CHAUHAN

effective testing and quality of object oriented software, a method should possess the
lowest complexity. There are various reasons that increase the complexity of the software.
The complexity of a method can be measured by various structural factors that are used
by the developer to implement functionality.

In this paper a test case prioritization technique for object oriented software is pre-
sented. By structural analysis of the object oriented programming system, some factors
can be identified which are used to prioritize the test cases. Every factor has the capability
to introduce the error if they are not used in an efficient way. Among all the considered
factors, some factors are very critical such that if they introduce the errors, software may
be get out of control. Moreover, every factor is also associated with a cost in terms of
efficiency.

The presented approach prioritized the test cases on the basis of the method complexity.
The overview of the presented approach is given below.

• The source code is converted into an intermediate representation called method call
graph.

• The source code is analyzed and determines the count of the number of considered
factors existing in all methods of software.

• Determine the volume and difficulty of each method which is further used to compute
the complexity of the methods.

• All the feasible paths are identified after analyzing the method call graph.
• Path prioritization value of each path is calculated by using the complexity of the

method being used in the each path.
• Test cases are prioritized on the basis of path prioritization value.

For experimental validation and analysis, the proposed system used to prioritize the
test cases of two software is implemented in C++ and Java. The analysis of experimented
result shows the considered factors are effective to select the most appropriate test cases
resulting in detection of maximum bugs by executing the fewer test cases.

2. Related Work. M. Shahid and S. Ibrahim [2] proposed an approach to prioritize the
test cases. They prioritized the test cases based on the method coverage. More methods
covered by a test case, the highest is the priority of execution of the test case and detect
maximum faults as earlier.

M. Rava and W. M. N. W. Kadir [3] presented the review study of various types of
technique to prioritize the test cases. They observed that all presented approaches have
a common combination of coverage and faults detection. The primary concern of the
prioritization technique is shifted from the code analysis to history based. By reviewing
the work in area of test case prioritization, they also observed that the industry has
adopted the artificial technique to prioritize the test cases rather than coverage based.
However, as the size of program exceeds a certain amount, artificial technique drastically
looses effectiveness.

S. Musa et al. [4] presented a regression test case prioritization technique for object
oriented software. They used the dependency graph model to analyze the source code and
to select the test cases. The selected test cases are optimized using the genetic algorithm.
For experimental verification they applied the approach on software of vending machine.
The result shows the effectiveness of the approach.

A. Marchetto et al. [5] presented a multi-objective technique that ordered the test cases
to detect the maximum faults critical to business and technique. The proposed approach
takes account of the coverage of source code, application requirement and cost to execute
the test cases. They validated the approach by applying it on 21 Java applications and
found it adequate.



TEST CASE PRIORITIZATION TECHNIQUE 343

A. A. Acharya et al. [6] presented a novel technique to prioritize the test cases. They
determined business criticality value (BCV) of the functional and non functional require-
ments presented in the software. By using the fault model and BCV of functions the pri-
oritization of test cases performed. They compared the proposed approach using APFD
method and found that it detects the maximum faults as compared with the random test
case prioritization.

M. Yoon et al. [7] proposed a technique to prioritized test cases through correlation of
requirement and risk. They find out relevant test cases by calculating the risk exposure
value of requirement and by analyzing risk items. The basic concept of the risk based
testing is to have more focus on area of software which has higher risk exposure rather
than other area. They also presented comparison of the proposed technique with the
other prioritization techniques.

T. Muthusamy and K. Seetharaman [8] presented an algorithm to reorder the test
cases to detect the maximum faults. They discussed prioritization algorithm based on
four groups of weight factors. These factors are customer allotted priority, developer
observed code related complexity, change in requirement, fault impact, completeness and
traceability.

K. U. Maheshwar and S. Vasundra [9] used coarse grained technique to prioritize the
test suits which is based on functional coverage. They focus on how much extent the test
suites are dependent on each other.

N. Prakash and T. R. Rangaswamy [10] presented a coverage based test case prioritiza-
tion technique. They used the statement, function, path, and branch and fault coverage
as criteria to prioritize the test cases. The weight is evaluated for each test case using
coverage information of considered criteria. They determined and used the average weight
to prioritize the test cases.

S. Tahvili et al. [11] proposed a novel technique to prioritize the test cases. They
combine the TOPSIS decision making with principal of fuzzy. The discussed method is
based on many criteria such as probability fault detection, execution time and complexity.
For evolution of efficiency of test cases they used the fault failure rate as an indicator to
compare the capability of fault detection with the other set of test cases.

H. Sarikanth et al. [12] presented the study of prioritization of the test cases of build
acceptance tests for an enterprise cloud application. Their prioritization process is based
on the historical data of field failure. They found that the two or three interacting services
have a tendency to be involved in the field failure. They also found that the efficiency
of the testing is impacted by the order of build test acceptance, use of historical data to
prioritize the build acceptance test and simple random heuristic works better than a fix
order of non historical information.

J. A. Parejo et al. [13] presented a case study of multi-objective test case prioritiza-
tion technique for highly configurable system. They address two limitations of test case
prioritization technique for highly configurable system. The first one is that the current
prioritization technique is driven by single objective and the second is that they used
synthetic data to evaluate instead of industry strength case studies.

C. Hettiarachchi et al. [14] presented risk based test case prioritization technique. The
risk related to the requirements is estimated by using the fuzzy expert system. From the
result outcome it has been observed that the proposed approach can detect maximum
faults earlier in highly risk components compared to other techniques.

J. Ding and X. Y. Zhang [15] compared the two test case prioritization techniques:
adaptive random testing and dynamic random testing. They found that both techniques
are extension of the random testing. ART is good for detection of failure whereas DRT
is good at understanding the faults. Both the techniques used the different heuristics.



344 VEDPAL AND N. CHAUHAN

P. Saraswat et al. [16] used meta-heuristics techniques to optimize and prioritize the
test cases. They comprised the genetic algorithm and particle swarm algorithm. Initially
the generating algorithm generates the initial population randomly and genetic operators
are applied on population. The output of the genetic algorithm is given to the particle
swarm optimizer as input.

R. Haung et al. [17] presented an aggregate strength prioritization strategy for inter-
action test suite. The proposed technique combined the interaction coverage at different
strengths whereas fixed strengths prioritization technique used the high coverage at fixed
strength.

R. Khan and M. Amjad [18] proposed a structural testing technique to generate the
test cases. For generating the test cases, a genetic algorithm is applied. The generating
test cases cover its defuse associations. They used the K-means clustering algorithm to
categorize the generated test cases in the different groups.

S. Mahajan et al. [19] presented a test case prioritization technique for component
based software module level testing. They developed the component based software pri-
oritization framework with the objective to detect the more extreme bugs at earlier stage
and quality enhancement by using the genetic algorithm and java decoding technique.
For prioritization they proposed prioritization keys which are project size, scope of the
code, information stream, bug inclination and impact of bug and faults.

S. Nayak et al. [20] proposed a test case prioritization technique to improve the fault
detection rate. They considered the four factors for prioritizing the test cases which are
test case effectiveness, rate of fault detection, number of faults detected and test case
ability of risk detection.

S. Ghai and S. Kaur [21] proposed a test case prioritization technique using hill climb-
ing approach. They prioritized the test cases according to their functional importance.
Functional importance is calculated using automated slicing.

W. Rahman and V. Saxena [22] proposed a model for prioritizing the test cases based on
fuzzy logic. For capturing the behavior of the system, state diagram and risk information
associated with the test cases are used. They classified the test cases in resettlement,
reuse and obsoleteness.

A critical review of literature indicates that researchers use various factors like code
coverage, method coverage, past history, genetic algorithm fuzzy expert system, and fault
coverage to prioritize the test cases. The complexity of the method and various factors that
are contributed to introducing in software are not addressed and used. In object oriented
software there are various concepts if they are not used in efficient way they may become
reason of severe faults in software which are also not considered to prioritize the test
cases. So there is need to use some object oriented programming system (OOPS) related
factors to detect the hidden faults and enhance the effectiveness of the prioritization
process for detecting the maximum faults as earlier as possible. With this aim a new test
case prioritization technique for object oriented software based on method complexity is
presented in this paper. To determine the complexity of a method, some object oriented
programming system related factors are proposed.

3. Proposed Work. The software industries have developed various frameworks and
software testing tools for effective testing within time and budget but still they are failed
to cut the testing cost. Companies are spending the 33% of allocated budget to the
activity related to the testing of software but it is expected to rise to a range of 41-50%
by 2018 [23]. The main challenge in testing of object oriented software (OOS) is that
there are thousands of thousand test cases which are not possible to execute all of them
within constrained time and budget. So there is need of test case prioritization technique



TEST CASE PRIORITIZATION TECHNIQUE 345

to organize the test cases in such order that maximum faults are discovered by consuming
less time and cost. In the presented approach firstly source code is represented in the
intermediate form called the method call graph (MCG) followed by the determination of
the complexity of the each method used in the call graph. The complexity of method is
calculated by using volume and difficulty of a method, which are further determined by
the factors identified by the structural analysis of the source code. The factors which are
used to determine the method complexity are given in Table 1.

Table 1. Considered factors and assigned weight

S. No Factor Name Weight
1 Degree of method (DM) 0.6
2 No. of input variable (IV) 0.3
3 Decision statement (DS) 0.4
4 Type casting (TC) 0.6
5 Numerical computations (NC) 0.4
6 Number of loops (LS) 0.5
7 Number of variables reused (VR) 0.2
8 Copying of objects (CO) 0.3
9 Object/Data reads from database/file (RW) 0.6
10 Exception handling (EH) 0.7
11 Virtual function (VF) 0.9
12 Dynamic memory allocation and deallocation (MA) 0.8
13 Reference counting (RC) 0.2
14 Proxy objects (PO) 0.3
15 Type binded inherited function (TIF) 0.8
16 Copy constructor having pointer type variable (CPV) 0.4
17 Non virtual destructor (NVD) 0.2
18 Return object by reference (RO) 0.2

Every considered factor has been assigned a factor weight which indicates the difficulty
to test the factor and possesses the higher probability of the errors. For determination
of the weight of considered factors a survey was performed in various industries (See
Appendix). The survey was performed among developers, senior developer. Technology
lead, associate architect group leader and project manager are with an average experience
of seven years. From the survey approximate 80 responses were received from participants
and the same data was compiled for determination of the assigned weight. The overview
of the proposed approach is shown in Figure 1.

For process of prioritization of test cases, value of volume and difficulty of a method
can be used. The determination of the value of the volume, difficulty and complexity of
a method can be given as below.

Volume of a method is

V (mi) = FM /FP (1)

where FM is the number of considered factors in the ith method and the FP is the total
count of considered factors in the whole software, i.e., in whole method existing in the
software.

Difficulty of a particular method can be calculated by Formula (2)

DM(mi) = Fi ∗ Wi (2)



346 VEDPAL AND N. CHAUHAN

where Fi is the number of determined ith factors in an ith method and Wi is the weight
assigned to the ith factors.

Thus complexity (CM) of each method can be calculated by Formula (3)

CM (mi) = VM ∗ DM (3)

where VM is the volume of the ith method and DM is the estimated difficulty of the ith
method.

Figure 1. Overview of the proposed approach

After calculating the value of CM for all methods, all the feasible independent paths
from method call graph are identified. The path prioritization value (PPV) is determined
for each path which is sum of the calculated method complexity (CM) of methods that
are used in the path. The PPV is calculated by Formula (4)

PPV =
n∑

i=1

CMi (4)

where CM is the complexity of the ith method.
The more PPV value of the path, the more complexity of the path and having the

higher chances of error. So paths are prioritized on the basis of the PPV. After path
prioritization test cases are selected corresponding to each path and executed in the order
of the paths. If any path has more than one test case, then these are prioritized on the
basis of considered factors covered by the individual test case.

The algorithm of the proposed approach is shown in Algorithm 1. The presented
algorithm takes the source code as an input and converts them into method call graph
(MCG) by using Create MCG function. The volume and difficulty of each method are



TEST CASE PRIORITIZATION TECHNIQUE 347

calculated by identifying the considered factors in each method and using Formulas (1)
and (2). The function Compute complexity determined the method complexity by using
the volume of a method and difficulty of a method. The MCG is used to identify all
the feasible paths in the software and determine the methods covered in each path. The
output of Compute complexity is used to calculate the path prioritization value which is
further used to prioritize the test cases.

Let S be a source code, T be the set of non prioritized test cases and T’ be the
prioritized test cases.
1. Create MCG (S)
Find out all the methods used in the source code and create the method call graph
(MCG) of source code
2. while (method)
Begin

Determine the volume of each method using Formula (1)
End
3. While (method)
Begin

Determine the difficulty of each method by using Formula (2)
End
4. While (method)
Begin

Compute complexity (VM, DM)
Begin

Find out the value of complexity of each method (CM) by using
Formula (3)

End
End
5. All the feasible independent method call paths are identified.
6. Determine the PPV of the each path using Formula (4).
7. Paths are prioritized on the basis of the determined value of PPV.
8. Test cases are selected corresponding to each path and T’ be the set of prioritized
test cases.

Algorithm 1. Algorithm of the proposed approach

4. Result and Analysis. For experimental verification and analysis, the presented ap-
proach has been applied on a billing management system [24] implemented in the C++
programming language. The considered software performs various functions like place
order, create product, modified product, and delete product. For experimental verifica-
tion, intentionally some errors are introduced in the software and introduced errors were
discovered by applying the proposed approach. The finding of the case study is given
below.

Figure 2 shows the method call graph of the considered case study. In this graph, all
the methods that are used are connected by using the direction arrows which shows the
sequence of the calling of the methods. By analyzing the sequence of the calling methods
all the feasible independent paths and methods covered in each path are determined.

Table 2 shows the methods used in the software and the count of considered factors
identified in each method. The value of volume, difficulty and complexity of each method
after computation is also given in Table 2.



348 VEDPAL AND N. CHAUHAN

Figure 2. Method call graph (MCG) of the case study

Table 2. Determined value of VM, DM and CM

S. No. Method name
Factor

determined
VM DM CM

1 Place order

IV = 7, LS = 3,
NC = 1, RW = 2
NC = 3, VR = 1,
DM = 2

19/47 = 0.40

(7 ∗ 0.3) + (3 ∗ 0.5)
+(1 ∗ 0.4) + (2 ∗ 0.6)
+(3 ∗ 0.5) + (1 ∗ 0.2)
+(2 ∗ 0.6) = 8.1

3.24

2 Menu
RW = 1, DS = 1,
LS = 01, DM = 3

6/47 = 0.12 3.3 0.39

3 admin menu
IV = 2, CS = 1,
DM = 12

15/47 = 0.31 9.2 2.8

4 write product RW = 1, DM = 2 3/47 = 0.06 1.8 0.10
5 create product IV = 4, DM = 1 5/47 = 0.1 1.4 0.14

6 modify product

IV = 3, RW = 2,
CS = 2, LS = 1,
VR = 1, NC = 1,
DM = 2

12/47 = 0.25 5.3 1.32

7 display all
RW = 1, LS = 1,
DM = 2

4/47 = 0.08 2.3 0.18

8 show product IV = 4, DM = 3 7/47 = 0.14 3.0 0.42

9 delete product
IV = 1, RW = 2,
LS = 1, CS = 1,
DM = 2

7/47 = 0.14 3.6 0.50

10 display sp
RW = 1, IV = 2,
VR = 1, CS = 2,
DM = 2

8/47 = 0.17 3.4 0.57

11 retpno IV = 1, DM = 8 9/47 = 0.19 5.1 0.96
12 retname IV = 1, DM = 3 4/47 = 0.08 2.0 0.16
13 retprice IV = 1, DM = 2 3/47 = 0.06 1.5 0.09
14 retdis IV = 1, DM = 2 3/47 = 0.06 1.5 0.09



TEST CASE PRIORITIZATION TECHNIQUE 349

Table 3. PPV of all feasible independent paths

S. No. Path ID Path Estimated PPV

1 Path7
main(), palce oreder(),
menu(), retpno(), retname(),
retprice(), retdis

3.24 + 0.43 + 1.12 + 0.18
+0.10 + 0.10 = 4.93

2 Path1
main(), admin menu(),
write product(),
create product()

3.04

3 Path2
main(), admin menu(),
display all(), show product()

3.4

4 Path3
main(), admin menu,
modify product(), retpno(),
show product

5.5

5 Path4
main(), admin menu,
display sp, retpno(),
show product()

4.75

6 Path5
main(), admin menu,
delete product(), retpno()

4.26

7 Path6
main(), admin menu,
menu()retpno(), retname(),
retprice()

4.4

Table 4. Paths covered by test cases

S. No. Path ID Test cases
Estimated path

prioritization value (PPV)
1 Path3 T3, T4 5.5
2 Path7 T9, T10 4.93
3 Path4 T5, T6 4.75
4 Path6 T8 4.4
5 Path5 T7 4.26
6 Path2 T2 3.4
7 Path1 T1 3.04

Table 3 shows all the feasible and independent paths that are determined after analyzing
the method call graph and the estimated path prioritization value of each identified path.

Table 4 shows estimated path prioritization value of each considered path obtained
from MCG and the test cases that execute the identified independent paths.

Now the test cases are prioritized on the basis of estimated cost of paths that are
executed by the test cases. The prioritized order of the test suit is T3, T4, T9, T10,
T5, T6, T8, T7, T2, T1. Now the proposed approach is being compared with random
approach and method coverage [2] based approach. For this purpose first we are detecting
the faults.

Table 5 shows the faults detected by test cases when these test cases are executed in
random order.

To show the efficacy of the approach, a metric called average percentage faults detection
(APFD) has been used.

APFD value of random order of test cases is 54%.



350 VEDPAL AND N. CHAUHAN

Table 6 shows the faults detected by the test cases when these test cases are executed
in prioritized order that has been obtained after applying the proposed approach.

The APFD value of prioritized order of test case by applying the proposed approach is
69%.

Table 7 shows the faults detected by the prioritized test cases obtained by applying the
method coverage based approach.

Table 5. Fault detected by test cases in random order

Test case F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16
T1 * *
T2 * *
T3 * * * * *
T4 * *
T5 * *
T6 *
T7 * *
T8 * *
T9 * * * * * *
T10 * * * *

Table 6. Faults detected by test cases in prioritized order

Test case F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16
T3 * * * * *
T4 * *
T9 * * * * * *
T10 * * * *
T5 * *
T6 *
T8 * *
T7 * *
T2 * *
T1 * *

Table 7. Faults detected by ordered test cases obtained from method cov-
erage based approach

Test case F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16
T9 * * * * * *
T10 * * * *
T8 * *
T3 * * * * *
T4 * *
T5 * *
T6 *
T1 * *
T2 * *
T7 * *



TEST CASE PRIORITIZATION TECHNIQUE 351

The APFD value of prioritized order of test case by applying the method coverage
based approach is 65%.

Figure 3 shows the APFD graph of random approach, method coverage based approach
and proposed approach showing the efficacy of the proposed approach.

The same approach was applied on another software room reservation [25] which per-
formed all the operations related to reserve a room in hotel. The considered software has
total 1936 line of code and 74 test cases are executed to detect the 56 faults, inserted in-
tentionally. The APFD graph of the random approach, method coverage based approach
and proposed approach is shown in Figure 4.

Figure 3 and Figure 4 show the APFD graph of the random approach and proposed
approach. It has been observed from the results that the proposed technique has the
higher rate of fault detection as compared to the random approach and method coverage
approach. The graph shows that test cases in prioritized order detected the maximum

Figure 3. APFD graph of random approach, method coverage based ap-
proach and proposed approach

Figure 4. Comparison graph of random approach, method coverage based
approach and proposed approach



352 VEDPAL AND N. CHAUHAN

faults by executing fewer test cases. The considered factors contribute efficiently to de-
tecting the maximum faults by consuming less time, resource and cost.

5. Conclusion. In the presented approach complexity of method is used to prioritize
the test cases for object oriented software. For measuring the complexity of the method
some parameters are used. Every parameter has been assigned a weight which shows the
capability of introducing the error. The applicability of the parameters and their weight is
assured by performing a survey in various reputed industries. After determination of the
complexity of a method, all the feasible independent method call paths are determined.
For these paths the source code is represented in intermediate form called method call
graph. Further these paths are mapped with the test cases covering the determined paths.
If a path has more than one test cases, then they are prioritized on the basis of covering
the factors. For experimental verification the proposed approach was applied on two case
studies implemented in C++ and Java and results are compared with the existing similar
approach of object oriented software. The promising result shows that the achievement
of the objectives meets the desired goal.

Threats and Limitations. The major threats and limitation for the proposed approach
are given below.

(1) The considered case studies are not industry based projects and not having all con-
sidered factors.

(2) For analyzing the faults detection performance, the faults are introduced in the soft-
ware manually.

(3) It is very difficult to create MCG manually to identify the considered factors in case
of big projects.

(4) The considered approach is probabilistic in nature so the result may not be effective
for every software whose test cases are prioritized.

Future Scope. The presented approach is manually validated which may not show
the result very accurately, so a tool may be created with the aim to prioritize the test
cases. In the presented approach some other non structural factors may be included which
may increase the effectiveness of the presented approach, like risk, type of projects, and
developers skill set.

REFERENCES

[1] M. V. D. Brink, D. Frasher and Y. Seynaeve, World Quality Report 2015-2016, Benelux, 2015.
[2] M. Shahid and S. Ibrahim, A new code based test case prioritization technique, International Journal

of Software Engineering and Its Applications, vol.8, no.6, pp.31-38, 2014.
[3] M. Rava and W. M. N. W. Kadir, A review on prioritization techniques in regression testing, Inter-

national Journal of Software Engineering and Its Applications, vol.10, no.1, pp.221-232, 2016.
[4] S. Musa, A. B. M. Sultan, A. A. B. A. Ghani and S. Baharom, Software regression test case prior-

itization for object-oriented programs using genetic algorithm with reduced-fitness severity, Indian
Journal of Science and Technology, vol.8, no.30, 2015.

[5] A. Marchetto, M. M. Islam, W. Asghar, A. Susi and G. Scanniello, A multi-objective technique to
prioritize test cases, IEEE Trans. Software Engineering, vol.42, no.10, pp.918-940, 2016.

[6] A. A. Acharya, S. Khandai and D. P. Mohapatra, A novel approach for test case prioritization using
business criticality test value, International Journal of Computer Application, vol.46, no.15, 2012.

[7] M. Yoon, E. Lee, M. Song and B. Choi, A test case prioritization through correlation of requirement
and risk, Journal of Software Engineering and Applications, vol.2012, no.5, pp.823-835, 2012.

[8] T. Muthusamy and K. Seetharaman, A new effective test case prioritization for regression testing
based on prioritization algorithm, International Journal of Applied Information Systems (IJAIS),
vol.6, no.7, 2014.



TEST CASE PRIORITIZATION TECHNIQUE 353

[9] K. U. Maheshwar and S. Vasundra, Automated functional test case prioritization for increased rate
of fault detection, International Journal for Innovative Research in Science & Technology, vol.1,
no.7, 2014.

[10] N. Prakash and T. R. Rangaswamy, Weighted method for coverage based test case prioritization,
Journal of Theoretical and Applied Information Technology, vol.56, no.2, 2013.

[11] S. Tahvili, W. Afzal, M. Saadatmand, M. Bohlin, D. Sundmark and S. Larsson, Towards earlier fault
detection by value-driven prioritization of test cases using fuzzy TOPSIS, The 13th International
Conference on Information Technology: New Generations, 2016.

[12] H. Sarikanth, M. Cashman and M. B. Cohen, Test case prioritization of build acceptance tests for
an enterprise cloud application: Industrial case study, The Journal of System and Software, vol.119,
pp.122-135, 2016.

[13] J. A. Parejo, A. B. Sanchez, S. Sagura, A. R. Corets, R. E. Lopez-Herrejon and A. Egyed, Multi-
objective test case prioritization technique for highly configurable systems: A case study, The Journal
of System and Software, vol.122, pp.287-310, 2016.

[14] C. Hettiarachchi, H. Do, B. Choi et al., Risk based test case prioritization using a fuzzy expert
system, Information and Software Engineering, vol.69, pp.1-15, 2016.

[15] J. Ding and X. Y. Zhang, Comparison analysis of two test case prioritization approaches with the
core idea of adaptive, The 29th Chinese Control and Decision Conference (CCDC), 2017.

[16] P. Saraswat, A. Singhal et al., A Hybrid Approach for Test Case Prioritization and Optimization
Using Meta-Heuristics Techniques, 2016.

[17] R. Haung, J. Chen, D. Towey, A. T. S. Chan and Y. Lu, Aggregate-strength interaction test suite
prioritization, The Journal of System and Software, vol.99, pp.36-51, 2015.

[18] R. Khan and M. Amjad, Automatic test case generation of test cases for data flow test path using
K-means clustering and genetic algorithm, International Journal of Applied Engineering Research,
vol.11, no.1, pp.473-478, 2016.

[19] S. Mahajan, S. D. Joshi and V. Khanna, Component based software system test case prioritiza-
tion with genetic algorithm decoding technique using java platform, International Conference on
Computing, Communication, Control and Automation, 2015.

[20] S. Nayak, C. Kumar and S. Tripathi, Enhancing efficiency of the test case prioritization technique
by improving the rate of fault detection, Arab Journal of Science and Engineering, 2017.

[21] S. Ghai and S. Kaur, A hill climbing approach for test case prioritization, International Journal of
Software Engineering and Its Applications, vol.11, no.3, pp.13-20, 2017.

[22] W. Rahman and V. Saxena, Fuzzy expert system based test case prioritization from UML state
machine diagram using risk information, I.J. Mathematical Sciences and Computing, vol.2017, no.1,
pp.17-27, 2017.

[23] M. V. D. Brink, D. Fraser and Y. Seynaeve, World Quality Report 2015-2016, Capgemini, Sogeti and
HP, https://www.sogeti.lu/globalassets/global/downloads/testing/wqr-2015-16/wqr-2015 country-
pullouts benelux v1.pdf, 2015.

[24] http://www.cppforschool.com/project/super-market-billing.html.
[25] https://github.com/.
[26] A. Madi, O. K. Zein and S. Kadry, On the improvement of cyclomatic complexity metric, Interna-

tional Journal of Software Engineering and Its Applications, vol.7, no.2, 2013.
[27] N. Chauhan, Software Testing Principal and Practice, Oxford University Press, 2010.
[28] http://oovcde.sourceforge.net/articles/Complexity.html.

Appendix. Survey to check the viability of some factors and assigned weight.
Test case prioritization is a process to order test cases with the intention of finding maxi-
mum faults as earlier as possible. Prioritization of the test cases is performed on the basis
of some factors. In this survey some factors are considered to prioritize the test cases.
Every considered factor has been assigned a positive weight within range of the 0 to 1
which shows the probability to introduce the error in the object oriented software if the
developer did not use it in right way. So you are requested to assign a weight that suits
to you on the basis of your experience. Table 8 shows the questionnaire of the survey.

The result of survey analysis is given in Figure 5. In the given figure weight ranges are
represented by the slabs as given below

Slab1 = 0 ≤ Weight < 0.3



354 VEDPAL AND N. CHAUHAN

Slab2 = 0.3 ≤ Weight < 0.5
Slab3 = 0.5 ≤ Weight < 0.8
Slab4 = 0.8 ≤ Weight <1
The weight is determined by calculating the mean average of the weight assigned by

the participants.

Table 8. Questionnaire of performed survey

S. No. Factor Name Slab1Slab2Slab3Slab4
1 Degree of method (DM)
2 No. of input variable (IV)
3 Decision statement (DS)
4 Type casting (TC)
5 Numerical computations (NC)
6 Number of loops (LS)
7 Number of variables reused (VR)
8 Copying of objects (CO)
9 Object/Data reads from database/file (RW)
10 Exception handling (EH)
11 Virtual function (VF)
12 Dynamic memory allocation and deallocation (MA)
13 Reference counting (RC)
14 Proxy objects (PO)
15 Type binded inherited function (TIF)
16 Copy constructor having pointer type variable (CPV)
17 Non virtual destructor (NVD)
18 Return object by reference (RO)

Figure 5. Analysis of feedback from participations


