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Abstract. This paper proposes an alternative handling method of window initial con-
dition for the FMS filter. Two kinds of moving windows are defined by the primary
window and the auxiliary window. The primary window means the most recent filtering
window and the auxiliary window means the past of the primary window. The FMS filter
is obtained from the finite observations on the primary window and the window initial
condition which is computed on the auxiliary window. On the other hand, the existing
FMS filter is obtained from the finite observations on the primary window and the window
initial condition which is also computed on the primary window, which means that the
window initial condition is obtained from future observations. The gain matrix for the
FMS filter incorporates knowledge about the window initial condition during its design
and is shown to be time-invariant. Through extensive computer simulations, the FMS
filter with the proposed method can be shown to be comparable with the Kalman filter for
the nominal system and better than that for the temporarily uncertain system.
Keywords: Estimation filtering, Filtering window, Window initial state, Finite memory
structure, Infinite memory structure

1. Introduction. As an alternative to the recursive infinite memory structure (IMS)
filter such as the well-known Kalman filter [1-3], the finite memory structure (FMS)
filter has been developed for state estimation [4-11] and applied successfully for various
applications such as mobile target tracking, computer network, RFID system, global
positioning system, wireless sensor network, and fault diagnosis, as shown in [12-17].

However, the FMS filter has a serious issue that the window initial condition has to be
handled. The window of past observations moves forward in time at each sampling time
when a new observation is available. Thus, the FMS filter requires knowledge about the
window initial condition as well as finite observations on the most recent window for each
moving window formulation. Since the window initial state is also a state variable and
thus not measurable, it is somewhat unreasonable in practical systems that knowledge
about the window initial condition is assumed to be completely known. Therefore, how
to handle the window initial condition might be a challenging issue in the FMS filter.

Several approaches have been researched to handle the window initial condition. The
FMS filter in [5] adopted the state propagator and the Lyapunov equation to get knowledge
about the window initial condition. However, the performance of this approach depends
heavily on the accuracy of the state propagator, which is seriously influenced by uncer-
tainty in the system initial state and system noises. In the FMS filter [6,7], the window
initial condition was assumed to be unknown and thus have infinite covariance. However,
this assumption might be somewhat heuristic and seems to have no physical meaning.
The FMS filter in [8] did not consider how to handle the window initial condition, which
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means the window initial condition can be handled arbitrarily and heuristically. To over-
come the resulting problems of existing FMS filters in [5-8], the FMS filter in [10] obtains
knowledge about the window initial condition from the finite observations on the most
recent filtering window, while existing FMS filters handle arbitrarily or heuristically. How-
ever, although the handling method of window initial condition in [10] has been applied
successfully as shown in [16,17], it could be somewhat awkward because the window initial
state is obtained from future observations.

Therefore, this paper proposes an alternative handling method of window initial condi-
tion for the FMS filter. To estimate states and handle window initial condition, a couple
of moving windows are defined by the primary window and the auxiliary window. The
primary window is used as the most recent filtering window to estimate states and the
auxiliary window is used as the past of the primary window to handle window initial
condition. On the other hand, in the existing FMS filter of [10], the finite observations
on the primary window are used for both estimating states and handling window initial
condition. This means that the window initial condition is obtained from future obser-
vations in the existing FMS filter of [10]. It is shown that the gain matrix for the FMS
filter incorporates knowledge about the window initial condition during its design and is
time-invariant for all moving windows. Finally, computer simulations show that the FMS
filter with the proposed method can be comparable with the Kalman filter with IMS for
the nominal system and better than that for the temporarily uncertain system.

This paper is organized as follows. In Section 2, the basic concept of FMS filtering and
its window initial condition are briefly discussed. In Section 3, an alternative handling
method of window initial condition is proposed for the FMS filter. In Section 4, extensive
computer simulations are performed. Finally, conclusions are presented in Section 5.

2. FMS Filtering and Window Initial Condition. Consider the following linear
discrete-time state-space model:

xi+1 = Axi + Gwi, (1)

zi = Cxi + vi, (2)

where xi ∈ ℜn is the unknown state and zi ∈ ℜq is the known observation. At the initial
time i0 of system, the state xi0 is a random variable with a mean x̄i0 and a covariance
Pi0 . The system noise wi ∈ ℜp and the observation noise vi ∈ ℜq are zero-mean white
Gaussian and mutually uncorrelated. The covariances of wi and vi are denoted by Q and
R assumed to be positive definite matrices, respectively. These noises are uncorrelated
with the initial condition xi0 .

To overcome shortcomings of the IMS filter such as the Kalman filter, the FMS filter
can be considered by combining the Kalman filter with the moving window formulation
[4-10]. That is, the Kalman filter is solved over a fixed window of length M whose size
does not increase with time. The window of finite observations moves forward in time at
each sampling time when a new observation is available. Therefore, the FMS filter utilizes

only a finite number of observations on the most recent filtering window [i−M(
△
= iM), i]

and discards past observations outside the filtering window. As shown in [10], the FMS
filter x̂i can be derived from the Kalman filter on the window [iM , i] and represented by
the summation form with the window initial condition x̂iM as follows:

x̂i = ΦM x̂iM +
M−1∑
j=0

ΦM−jΣiM+jC
T R−1ziM+j

= ΦM x̂iM +
[
ΦMΣiM ΦM−1ΣiM+1 · · · Φ1ΣiM+M−1

]
CT R−1Zi−1, (3)
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where the transition matrix Φj is given by

Φj+1 = ΦjA
[
I + ΣiM+M−j−1C

T R−1C
]−1

, Φ0 = I, (4)

and the error covariance ΣiM+j is given by

ΣiM+j+1 = A
(
I + ΣiM+jC

T R−1C
)−1

ΣiM+jA
T + GQGT , (5)

and 0 ≤ j ≤ M − 1. The finite observation Zi−1 on the most recent filtering window
[iM , i] is defined as follows:

Zi−1
△
=


zi−M

zi−M+1

zi−M+2
...

zi−1

 . (6)

As shown in (3), the FMS filter requires knowledge about the window initial condition
x̂iM as well as finite observations Zi−1 on the most recent filtering window. Since the
window initial state is also a state variable and thus not measurable, it is somewhat
unreasonable in practical systems that knowledge about the window initial condition is
assumed to be completely known. Therefore, how to handle the window initial condition
might be a challenging issue in the FMS filter.

To handle the window initial condition, several approaches have been researched as
shown in [5-8]. However, these approaches were shown to have some drawbacks and
limitations. In order to overcome the resulting problems of these existing FMS filters
which handle window initial condition arbitrarily or heuristically, the another existing
work [10] obtains knowledge about the window initial condition from finite observations
on the most recent window. However, the handling method in [10] could be somewhat
awkward since the window initial state is obtained from future observations.

3. Alternative Handling of Window Initial Condition for FMS Filter. In this
section, an alternative handling method of window initial condition x̂iM is proposed for
the FMS filter in (3). Two kinds of moving windows are defined by the primary window
and the auxiliary window. The primary window means the most recent filtering window,
denoted by [iM , i] with the window length M , and the auxiliary window means the past of
the primary window, denoted by [iM −N, iM ] with the window length N . The FMS filter
x̂i in (3) is obtained from the finite observations on the primary window [iM , i] and the
window initial condition which is computed on the auxiliary window [iM − N, iM ]. That
is, the window initial condition x̂iM is solved over a fixed window of length N whose size
does not increase with time. Note that the existing FMS filter [10] is obtained from the
finite observations on the primary window [iM , i] and the window initial condition which
is also computed on the primary window [iM , i], which means that the window initial
condition is obtained from future observations.

A knowledge about the window initial condition x̂iM is denoted by x̄iM . Then, x̄iM can
be represented in the following matrix form:

x̄iM = ΓZiM−1, (7)

where Γ is the gain matrix and ZiM−1 is the finite observations on the auxiliary window
[iM − N, iM ]. The finite observations ZiM−1 are expressed in terms of the window initial
state xiM from (1) and (2) at the window initial time iM as follows:

ZiM−1 = ΛxiM + ΘWiM−1 + ViM−1, (8)
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where ZiM−1 and matrices are defined as follows:

ZiM−1
△
=


ziM−N

ziM−N+1

ziM−N+2
...

ziM−1

 , Λ
△
=


CA−N

CA−N+1

CA−N+2

...
CA−1

 ,

Θ
△
=


CA−1G CA−2G · · · CA−N+1G CA−NG

0 CA−1G · · · CA−N+2G CA−N+1G
0 0 · · · CA−N+3G CA−N+2G
...

...
...

...
...

0 0 · · · 0 CA−1G

 , (9)

and WiM−1, ViM−1 have the same forms with ZiM−1 for wi, vi, respectively.
The noise term ΘWiM−1 + ViM−1 in (8) is zero-mean white Gaussian with covariance Π

given by

Π
△
= Θ

[
diag(

N︷ ︸︸ ︷
Q Q · · · Q)

]
ΘT +

[
diag(

N︷ ︸︸ ︷
R R · · · R)

]
. (10)

The following series of equations are the procedure to obtain knowledge x̄iM about the
window initial condition x̂iM . This procedure is based on the approach of best linear
unbiased estimation in [18].

Taking the expectation both sides of (7), the following relation is obtained:

E
[
x̄iM

]
= E

[
ΓZiM−1

]
= ΓΛE

[
xiM

]
.

Then, with the following constraint:

ΓΛ = I, (11)

x̄iM is unbiased, i.e., E
[
x̄iM

]
= E

[
xiM

]
. Thus, the constraint (11) can be called the unbi-

asedness constraint for knowledge about the window initial condition x̂iM . The objective
is now to obtain the gain matrix Γ∗, subject to the unbiasedness constraint (11), in such
a way that the error of x̄iM has a minimum variance as follows:

Γ∗ = arg min
Γ

E
[
(xiM − x̄iM )T (xiM − x̄iM )

]
. (12)

Using the approach of best linear unbiased estimation in [18], knowledge x̄iM about the
window initial condition x̂iM is obtained by the solution of (12) as follows:

x̄iM = Γ∗ZiM−1, (13)

where

Γ∗ =
(
ΛT Π−1Λ

)−1
ΛT Π−1. (14)

In addition, the error covariance of x̄iM , denoted by Σ̄iM , is obtained by

Σ̄iM = E
[
(xiM − x̄iM )(xiM − x̄iM )T

]
= E

[
(xiM − Γ∗ZiM−1)(xiM − Γ∗ZiM−1)

T
]

=
(
ΛT Π−1Λ

)−1
. (15)

Note that, as shown in (15), Σ̄iM is constant value. Thus, the error covariance ΣiM+j

(5) defined on the primary window [iM , i] can be independent of time index iM and thus
rewritten as follows:

Σj+1 = A
(
I + ΣjC

T R−1C
)−1

ΣjA
T + GQGT (16)
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with Σ0 = Σ̄iM .
Therefore, knowledge

{
x̄iM , Σ̄iM

}
obtained from the auxiliary window [iM −N, iM ] can

be applied as the window initial condition {x̂iM , ΣiM} for the FMS filter on the primary
window [iM , i] in the unbiasedness sense. By applying knowledge

{
x̄iM , Σ̄iM

}
in (13) and

(15), the FMS filter (3) can be represented by

x̂i = ΦM

(
ΛT Π−1Λ

)−1
ΛT Π−1ZiM−1 +

[
ΦMΣ0 ΦM−1Σ1 · · · Φ1ΣM−1

]
CT R−1Zi−1, (17)

where

Φj+1 = ΦjA
[
I + ΣM−j−1C

T R−1C
]−1

, Φ0 = I.

Finally, the FMS filter x̂i with knowledge
{
x̄iM , Σ̄iM

}
about the window initial condition

{x̂iM , ΣiM} can be defined as the following theorem.

Theorem 3.1. Assume that {A,C} is observable, M ≥ n, and N ≥ n. Then, the
FMS filter x̂i on the primary window [iM , i] is defined using knowledge

{
x̄iM , Σ̄iM

}
on the

auxiliary window [iM − N, iM ] as follows:

x̂i
△
=

[
HA HP

] [
ZiM−1

Zi−1

]
, (18)

where HA is the gain matrix for the auxiliary window as follows:

HA = ΦM

(
ΛT Π−1Λ

)−1
ΛT Π−1, (19)

and HP is the gain matrix for the primary window as follows:

HP =
[
ΦMΣ0 ΦM−1Σ1 · · · Φ1ΣM−1

]
CT R−1, (20)

and ZiM−1 and Zi−1 are defined by (6) and (9).

The matrix Λ is of full rank since {A,C} is observable for N ≥ n. In addition, the
matrix Π is positive definite and thus its inversion exists. Therefore, the matrix ΛT Π−1Λ
is nonsingular and thus its inversion exists. It is noted that gain matrices HA (19) and
HP (20) require computation only on the interval [0, N ] and [0,M ], respectively, once and
is time-invariant for all windows. This means the FMS filter x̂i (18) is time-invariant.

4. Computer Simulations. To illustrate the validity of the FMS filter with the pro-
posed handling method of the window initial condition and to compare with the Kalman
filter having the recursive IMS structure, extensive computer simulations are performed
for a pair of discrete-time noisy signal models with an uncertain model parameter δi.
The Van der Pol oscillation signal model for an electronic circuit with vacuum tubes is
considered as follows [19]:

A =

 1 + 0.25δi T + 0.25δi T 2/2 + 0.25δi

0 1 T
0 0 1

 ,

G =

 1
0.3
0.3

 , C =
[

1 + 0.5δi 0.5δi 0.5δi

]
. (21)

In the Van der Pol oscillation signal model (21), system and observation noise covariances
are taken as Q = 0.12 and R = 0.22, respectively. The sampling time is taken as T = 0.01
as shown in [19].

The FMS filter with two kinds of windows and the Kalman filter with IMS are com-
pared for the temporarily uncertain systems. The important issue might be how to choose
an appropriate primary window length M and auxiliary window length N to make the
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filtering performance as good as possible. As shown in [10], it is well known that FMS
structure filters have better noise suppression as the window length grows. Thus, the
noise suppression of the FMS filter might be closely related to the window length. How-
ever, although the FMS filter can have greater noise suppression as the window length
increases, the tracking speed of state estimate for actual state worsens as the window
length grows. This illustrates the FMS filter’s compromise between the noise suppression
and the tracking speed of state estimate.

For the FMS filter, the primary window length is set by M = 60 and two cases of
auxiliary window lengths are considered by N = 20 and N = 30. The uncertain model
parameter is taken as δi = 0.02 for the interval 220 ≤ i ≤ 250 for the Van der Pol oscilla-
tion signal model (21), respectively. As shown in Figure 1, for both cases, the estimation
error of the FMS filter is smaller than that of the Kalman filter on the interval where
modeling uncertainty exists. In addition, the convergence of estimation error is much
faster than that of the Kalman filter after temporary modeling uncertainty disappears.
Of course, the Kalman filter can outperform the FMS filter after the effect of temporary
modeling uncertainty completely disappears. Therefore, the proposed FMS filter can be
more robust than the Kalman filter with the recursive IMS structure when applied to
temporarily uncertain systems, although the proposed FMS filter is designed with no
consideration of robustness.
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Figure 1. Estimation error for Van der Pol oscillation signal model with
temporary modeling uncertainty

To show the relationship between the auxiliary window length and the tracking speed of
the proposed FMS filter, four cases of auxiliary window lengths are considered by N = 10,
N = 20, N = 30 and N = 40 and then compared. The primary window length is set
by M = 60 for all cases. As shown in Figure 2, the tracking speed of state estimation
for actual state can be better as the auxiliary window length N decreases. However, the
magnitude of estimation error worsens in proportion with N . This observation means
that there can be a tradeoff in the proposed FMS filter between the estimation error and
the tracking speed of state estimate.
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Figure 2. Comparison of estimation error for diverse auxiliary window
lengths when M = 60

5. Conclusions. In this paper, an alternative handling method of window initial con-
dition has been proposed for the FMS filter using two kinds of moving windows: the
primary window and the auxiliary window. The FMS filter has been obtained from the
finite observations on the primary window and the window initial condition which is com-
puted on the auxiliary window. It has been shown that the gain matrix for the FMS
filter incorporates knowledge about the window initial condition during its design. Via
extensive computer simulations on the Van der Pol oscillation signal model, the FMS filter
with the proposed method has been shown to be comparable with the Kalman filter with
IMS for the nominal system and better than that for the temporarily uncertain system.
Moreover, the simulation result for diverse auxiliary window lengths has shown that there
can be a tradeoff between the estimation error and the tracking speed of state estimate.

In future works, the systematic procedure for choosing primary window length M and
auxiliary window length N should be researched to improve filtering performance.
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