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Abstract. In chemical processes, design margins must be added on the nominal values
of design variables during process design period, so the operating point will move into
the feasible domain and there are sufficient operating margins between current operating
point and process constraints. When plants running, process operators and engineers usu-
ally hope the operating margin consumption to be as little as possible in dynamic control
process in order to keep more operating space for operation optimization. Model predic-
tive control can deal with the problems of constrained control and multivariable control,
but the optimal control sequence may reach the boundary of the feasible domain due to
constraints. Therefore, a margin saving model predictive control algorithm is proposed
through adding a margin loss function indicating operating margin reduction amount to
the optimal control performance index function of conventional model predictive control,
making the operating point back-off from the boundary of the feasible domain. Through
the steady-state analysis, the margin saving effects for manipulated variables and the
tracking effects for controlled variables can be found. Finally, a simulation case is given
to illustrate the effectiveness of the algorithm.
Keywords: Process systems, Process control, Margin saving, Model predictive control,
Margin loss

1. Introduction. There always are all kinds of uncertainties in chemical processes, such
as slow time-varying parameters, long time lag, and disturbances. So design margins must
be added on the nominal values of design variables during process design period, then the
operating point will move into the feasible domain and there are sufficient operating mar-
gins between current operating point and process constraints [1]. When plants running,
operation optimization and dynamic control will consume the operating margin for manip-
ulated variables [2,3], but process operators and engineers usually hope the less operating
margin consumption for dynamic control and more operating space for operation optimiza-
tion. Model predictive control (MPC) can deal with the problems of constrained control
and multivariable control [4,5], so it is possible to coordinate the operating margins for
manipulated variables in dynamic control and the control errors for controlled variables.
In conventional MPC, the precision of controlled variables tracking the expectations is
taken as the control performance standard, and the consumed margins for manipulated
variables are never taken into consideration. However, the control performance cannot
be judged absolutely good or absolutely bad. When control engineers only pursue that
the controlled variables track the expectations accurately, the manipulated variables may
swing seriously, the wave crest or wave trough will touch the boundaries of process con-
straints, causing the potential safety problem. So now the optimal control of current MPC
algorithm may reach the boundary of the feasible domain due to constraints, the operating
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margins are completely consumed and process operators and engineers always think that
there are problems in MPC algorithm. To solve the above problems, adding a margin loss
function which indicates the situation of manipulated variables consuming margin into
the optimal control performance index function of conventional MPC, we build a new
framework of MPC which is called as margin saving model predictive control to trade off
the precision of controlled variables tracking the expectations and the consumed margins
for manipulated variables comprehensively in the dynamic control process.

To illustrate the correctness and scientificity of margin saving model predictive con-
trol, the philosophy principles are used to deeply analyze the existence significance and
inevitability of margin loss and margin saving problem in MPC [6]. From the perspective
of practical application, this paper discusses the effects of saving margin in margin saving
model predictive control and analyzes the influence on control effect of saving margin for
manipulated variables.

Nowadays, many scholars have done a lot of research on MPC and improved the control
performance index function in MPC. Clarke et al. [7] proposed the generalized predic-
tive control (GPC) strategy. Sentoni et al. [8] proposed the theory of model predictive
control based on state space. Bemporad and Morari [9] gave an overview of robustness
in MPC. Faced with the impact of system constraints, scholars proposed the constrained
model predictive control (CMPC) [10-12]. Garcia and Morshedi [13] proposed a new al-
gorithm which utilizes a quadratic program to compute moves on process manipulated
variables to keep controlled variables close to their targets while preventing violations of
process constraints. Kerrigan and Maciejowski [14] described a method for computing a
lower bound for the constraint violation penalty weight of the exact penalty function to
guarantee that the soft-constrained MPC solution will be equal to the hard-constrained
MPC solution. An infinite horizon controller that allows incorporation of input and state
constraints in a receding horizon feedback strategy is developed by Rawlings and Muske
[15]. Kwon and Pearson [16,17], Michalska and Mayne [18] proposed adding terminal con-
straints to control performance index function in order to ensure the stability of MPC.
Xiao and Qian [19] added static target to control performance index function in MPC,
realizing the economic indicator on the basis of the basic control requirements satisfied.
However, the above studies did not consider the consumed margins for manipulated vari-
ables, this paper improves the basic control performance index function of MPC, adding a
margin loss function indicating operating margin reduction amount to the optimal control
performance index function for margin saving.

To study the operating margin in MPC, Sanchez-Sanchez and Ricardez-Sandoval [20]
considered MPC in dynamic optimization of the long period of chemical process to calcu-
late the design margin. Sun et al. [21] defined the operating margin and design margin in
heat exchanger. Xu and Luo [22] studied the relationship between the operating margin
and the control system performance in chemical process under the conditions of MPC.
However, the above studies all discussed how to determine the design margins through
dynamic optimization in process design period, and this paper puts forward a method of
considering margin loss in MPC in process control.

The rest of this paper is organized as follows. In Section 2, the description of margin
saving problem and margin loss function in MPC is discussed. In Section 3, the structure
of margin saving model predictive control is presented, based on which the optimization
solution of margin saving model predictive control is deduced, and the conditions for
convex optimization in margin saving model predictive control are also given. In Section
4, we find the margin saving effects for manipulated variables of margin saving model
predictive control through the steady-state optimal value analysis. In Section 5, we ana-
lyze the effects on controlled variables tracking the expectations through the steady-state
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closed-loop final value derivation of margin saving model predictive control. In Section 6,
a simulation case is given to illustrate the effectiveness of the algorithm. Finally, Section
7 concludes the paper.

2. Description of Margin Saving Problem in MPC.

2.1. Margin saving problem. In order to avoid the influences of all kinds of uncer-
tainties like slow time-varying parameters, long time lag, and disturbances in dynamic
control, we need to increase the operating space for manipulated variables and reduce the
consumption of operating margin in dynamic control. So to add a margin loss function
into MPC is necessary. The new algorithm of MPC will save the operating margin for
manipulated variables in dynamic control as shown in Figure 1, so this algorithm is called
margin saving model predictive control.

2.2. Margin loss function. To consider the changes of operating margin in dynamic
control quantitatively, we need to build a function representing the distance between the
operating point of manipulated variables and the boundary of the constraints, which is
defined as margin loss function. 2-norm is a function of the concept of “length”, and is

Figure 1. Figure of margin saving model predictive control

Figure 2. Figures of operating margin
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usually used to represent the linear distance between two points or vectors matrix, so the
mathematics expression of the margin loss function can be written as fML = ‖u − uH‖

2.
u is the operating point of manipulated variables, and uH is the upper constraint of
manipulated variables.

3. Margin Saving Model Predictive Control.

3.1. The structure of margin saving model predictive control. Conventional MPC
is a control algorithm based on optimization, and it determines the future control through
a certain optimal performance index [24]. In order to achieve the effect of increasing
operating margin in the dynamic control process and reducing the margin consumption
in control, we need to improve the structure of conventional MPC by adding margin
loss function into the performance index function. Eventually, we solve the optimization
problem by turning into a quadratic programming.

Conventional model predictive control can be written into the form of 2-norm.

min J(k) =

P
∑

i=1

‖ŷ(k + i |k ) − yd‖
2
Q +

M
∑

i=1

‖∆û(k + i − 1 |k )‖2
R

ŷ(k+ i|k) means the output prediction of system state from k moment to (k+ i) moment,
yd means the expectations or expected trajectory of output, and ∆û(k + i − 1|k) means
the increment of input in present moment. P and M are prediction horizon and control
horizon. Q is the weight matrix of tracking control item, and R is the weight matrix of
changes of control energy item.

The performance index function of MPC should be the minimum of the objective func-
tion, so the margin loss function which is added into performance index function of MPC
must have the form of negative. Therefore, the optimization performance index of margin
saving model predictive control can be shown as

min J(k) =

P
∑

i=1

‖ŷ(k + i|k) − yd‖
2
Q +

M
∑

i=1

‖∆û(k + i − 1 |k )‖2
R

−

M
∑

i=1

‖û(k + i − 1 |k ) − uH‖
2
T

(1)

T is the weight matrix of margin loss function. Since then, the new structure of margin
saving model predictive control is proposed.

3.2. Optimization solution of margin saving model predictive control. It is as-
sumed that the linear time-invariant discrete state space model in model predictive control
has the following form.

{

x̂(k + 1 |k ) = Ax̂(k |k ) + Bû(k |k )

ŷ(k |k ) = Cx̂(k |k )

y(k) ∈ Rr means controlled variables, ŷ(k |k ) = y(k) means outputs at the current mo-
ment, x̂(k |k ) = x(k) means states at the current moment, x̂(k + i |k ) ∈ Rn means the
estimations of system states from k moment to k + i moment, u(k) ∈ Rm means control
variables, and û(k |k ) = u(k) means inputs at the current moment. A ∈ Rn×n is state
matrix, B ∈ Rn×m is input matrix, and C ∈ Rr×n is output matrix. P and M are pre-
diction horizon and control horizon, and it is assumed that M ≤ P . When i ≥ M , there
exists û(k + i |k ) = 0. Define ∆û(k + i |k) = û(k + i |k) − û (k+ i−1 |k ) as the increment



MARGIN SAVING MODEL PREDICTIVE CONTROL 409

of control variables. Therefore, the P -step prediction of state can be expressed as matrix
and vector form.
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∆û(k|k)
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It is assumed that system states can be measured, so we can express the prediction of
output as matrix and vector form.

Ŷ (k) = SXx(k) + SUu(k − 1) + S∆U∆Û(k) = Y0(k) + S∆U∆Û(k) (2)
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Select Equation (1) as performance index function, and define matrixes.
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,

Û(k) = E∆Û (k) + U0, U1 = U0 − UH.

In addition, the weight matrices are Q = diag {Q(1), Q(2), . . . , Q(P )}, T = diag{T (1),
T (2), . . . , T (P )}, R = diag {R(1), R(2), . . . , R(P )}. It is known as ‖α‖2

Q
= αTQα, Equa-

tion (1) can be written as Equation (3), and according to Equation (2) the above types
are defined.
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∆Û(k)

∥

∥

∥

2

R
− ‖U(k) − UH‖

2
T

=
∥

∥

∥
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E∆Û(k) + U1

)T

T
(
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1
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(3)

Consider the constraints,

umin ≤ u(k) ≤ umax

∆umin ≤ ∆u(k) ≤ ∆umax

ymin ≤ y(k) ≤ ymax
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And the above optimization problem can be expressed as the following standard secondary
planning form.

min
∆Û(k)

J(k) =
1

2
∆Û(k)TΨ∆Û(k) + Θ∆Û(k)

s.t.
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D1 =

[

E
−E

]

, D2 =

[

ImM

−ImM

]

, D3 =

[

S∆U

−S∆U

]

,

Ψ = 2
(

ST
∆UQS∆U + R − ETTE

)

, Θ = 2
(

− (Yd − Y0(k))T
QS∆U − UT

1 TE
)

,

d1 = [umax − u(k − 1), . . . , umax − u(k − 1),−umin + u(k − 1), . . . ,−umin + u(k − 1)]T ,

d2 = [∆umax, . . . , ∆umax,−∆umin, . . . ,−∆umin]
T

,

d3 =[ymax − y0(k + 1), . . . , ymax − y0(k + P ), −ymin + y0(k + 1), . . . ,−ymin + y0(k + P )]T.

If no process constraints are considered, if L =
[

Im 0m×(mM−m)

]

, we can get the
optimal control rate of unconstrained model predictive control.

∆U∗(k) = −LΨ−1ΘT= L
(

ST
∆UQS∆U + R − ETTE

)

−1
(

(Yd − Y0(k))T QS∆U + UT
1 TE

)T

3.3. Convex optimization conditions in margin saving model predictive control.

In performance index function of margin saving model predictive control, because that
the margin loss function is negative, the optimization problem in model predictive control
may become a non-convex optimization problem [25], which results in no global optimal
solution. In order to solve the above problems and get the global optimal solution in
optimization, we should deduce the condition of convex optimization for the weight matrix
T of margin loss function.

According to the definition of convex function, the general method for discriminat-
ing the convex function on the real number set is to solve its second derivative. If the
function’s second derivative is non-negative, it is called a convex function [26]. There-

fore, if the weight matrix T of margin loss function meets the condition,
∂2J(k)

∂2∆U(k)
≥ 0,

the optimization in margin saving model predictive control can be considered as convex
optimization, and the global optimal solution can be obtained.

We can get the following equation from the optimal control in margin saving model
predictive control.

∂2J(k)

∂2∆U(k)
= ST

∆UQS∆U + R − ETTE

Therefore, the conditions for convex optimization in margin saving model predictive con-
trol are

ETTE ≤ ST
∆UQS∆U + R

If the matrix ST
∆UQS∆U +R−ETTE is positive, the optimization in margin saving model

predictive control is convex optimization.
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4. Margin Saving Effects for Manipulated Variables of Margin Saving Model

Predictive Control. Assumed that the initial steady-state point is 0, we introduce the
optimization Equation (4) of conventional MPC. We can get the optimal steady-state
solution of conventional MPC [27].

min
u

J1(k) = ‖u − ud‖
2
GTQG

+ ‖∆u‖2
R

s.t. u = G−1y
(4)

In Equation (4), G is steady-state gain matrix. In the same way, the solution (5) can
obtain the optimal solution of margin saving model predictive control which has the same
parameter with conventional MPC.

min
u

J2(k) = ‖u − ud‖
2
GTQG + ‖∆u‖2

R − ‖u − uH‖
2
T

s.t. u = G−1y
(5)

So we have Theorem 4.1.

Theorem 4.1. If u∗

1 is the steady-state optimal value of conventional MPC, and u∗

2 is the

steady-state optimal value of margin saving model predictive control which has the same

parameter with conventional MPC, then there exists ‖u∗

2 − uH‖
2
T ≥ ‖u∗

1 − uH‖
2
T .

Proof: In performance index function of conventional MPC, there exists J1(u
∗

1) ≤
J1(u

∗

2), which can be written as

‖u∗

1 − ud‖
2
GTQG + ‖∆u∗

1‖
2
R ≤ ‖u∗

2 − ud‖
2
GTQG + ‖∆u∗

2‖
2
R (6)

In performance index function of margin saving model predictive control, there exists
J2(u

∗

2) ≤ J2(u
∗

1), which can be written as

‖u∗

2 − ud‖
2
GTQG + ‖∆u∗

2‖
2
R − ‖u∗

2 − uH‖
2
T ≤ ‖u∗

1 − ud‖
2
GTQG + ‖∆u∗

1‖
2
R − ‖u∗

1 − uH‖
2
T (7)

Equation (6) plus Equation (7), we can get Equation (8)

‖u∗

2 − uH‖
2
T ≥ ‖u∗

1 − uH‖
2
T (8)

This procedure completes the proof.
From Theorem 4.1, we know that u∗

1 is closer to the upper constraints of the manipulated
variables than u∗

2. Compared with conventional MPC, the margin saving model predictive
control can increase operating margin in the current dynamic control process and make
manipulated variables reduce the margin consumption in control. At the same time, it
can make manipulated variables far away from constraint boundary on-line.

Now we deduce the steady-state effect of margin saving model predictive control. It is
assumed that the initial steady-state point is 0, and we can get

min J(k) = ‖u(k) − ud‖
2
Q

′ + ‖∆u(k)‖2
R − ‖u(k) − uH‖

2
T

s.t. u = G−1y

G is steady-state gain matrix, Q
′

= QTGQ, and ud is input variables after transforma-
tion by the output expectations. Because of ∆u(k) = u(k) − u(k − 1), then

min J(k) = ‖u(k) − ud‖
2
Q

′ + ‖∆u(k)‖2
R − ‖u(k) − uH‖

2
T

= const + uT(k)Q
′

u(k) − 2uT(k)Q
′

ud + uT(k)Ru(k)

− 2uT(k)Ru(k − 1) − uT(k)Tu(k) + 2uT(k)TuH

Then
∂J(k)

∂u(k)
= 2

(

Q
′

+ R − T
)

u(k) − 2
(

Q
′

ud + Ru(k − 1) − TuH

)

= 0
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We can get the optimal value of control,

u∗(k) =
(

Q
′

+ R − T
)

−1 (

Q
′

ud + Ru(k − 1) − TuH

)

(9)

Through the z transform of Equation (9), we can get Equation (10)

u∗(z) =
(

Q
′

+ R − T − Rz−1
)

−1
(

Q
′

ud
z

z − 1
− TuH

z

z − 1

)

(10)

Therefore, the final value theorem is used to deduce the steady-state value of manipulated
variables.

u(∞) = lim
z→1

z − 1

z
u(z)

= lim
z→1

z − 1

z

(

Q
′

+ R − T − Rz−1
)

−1
(

Q
′

ud
z

z − 1
− TuH

z

z − 1

)

=
(

Q
′

− T
)

−1 (

Q
′

ud − TuH

)

The necessary condition for control to achieve steady state is the definite matrix
(

Q
′

− T
)

to be positive, and Theorem 4.2 is proposed.

Theorem 4.2. When
(

Q
′

− T
)

is a positive matrix and the constraints for manipulated

variables are hard constraints uH ≥ ud, there must be steady-state values of the manipu-

lated variables that meet u(∞) ≤ ud.

Proof: As it is known uH ≥ ud, we multiply both sides by T and a minus sign. As T

is positive, we can get Equation (11).

−TuH ≤ −Tud (11)

Adding Q
′

ud to both sides of Equation (11), we can get Equation (12)

Q
′

ud − TuH ≤ Q
′

ud − Tud (12)

Because
(

Q
′

− T
)

is positive, we can get
(

Q
′

− T
)

−1 (
Q

′

ud − TuH

)

≤ ud, which is the
same as u(∞) ≤ ud.

This procedure completes the proof.
By Theorem 4.2, the steady-state value of margin saving model predictive control must

be less than the expectations of manipulated variables, which realize the effect of increas-
ing the operating margin.

5. Tracking Effect for Controlled Variables of Margin Saving Model Predictive

Control. Increasing the operating margin in the dynamic control process can save margin
for control, but at the same time it has a certain effect on the condition of the controlled
variable tracking the given values. In order to discuss the control effect quantitatively, it
is necessary to analyze the steady-state tracking effect for controlled variables of margin
saving model predictive control. However, it is difficult for constrained control system to
solve the analytical solution and analyze the steady-state control effect of control system.
To the same control system, the stability under no constraints is the necessary condition
for the stability of the constrained control system under the same control parameter
[28]. At the same time, considering margin in constrained MPC, we usually make the
operating point run within the constrained feasible region. Therefore, assuming that
the initial steady-state points are 0, if we want to analyze the steady-state conditions
of margin saving model predictive control, we must analyze the closed-loop of control
system under no constraints firstly. We can know the condition of steady-state solution
by putting optimal control action into the closed-loop of control system.



414 X. LUO, Y. ZHOU AND F. XU

The discrete state space model of the controlled process is

{

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k)
(13)

y(k) ∈ Rr is output variables, u(k) ∈ Rm is input variables, and x(k) ∈ Rn is state
variables. A ∈ Rn×n is state matrix, B ∈ Rn×m is output matrix, and C ∈ Rr×n is input
matrix.

To simplify the analysis process, we will use single value MPC algorithm [29] to analyze
the steady-state solutions, only taking the P -step predictive value of the output variables
in the future.

ŷ(k + P ) = CAP x(k) +

P
∑

i=1

CAi−1Bu(k + P − i)

P is the prediction horizon. In addition, for single-valued MPC, the control horizon
M = 1. When i > 0, there exits u(k + i) = u(k). At the same time, if K = CAP ,

S(P ) =
∑P

i=1 CAi−1B, the predictive value of the output variables in the future can be
written as

ŷ(k + P ) = Kx(k) + S(P )u(k) (14)

In order to facilitate the analysis of tracking effect when the final output achieves the
steady state, we express the margin loss function as the form of output.

min J(k) = ‖ŷ(k + P ) − yd‖
2
Q + ‖∆u(k)‖2

R − ‖ŷ(k + P ) − yH‖
2
S
′ (15)

yH is the value of output variables which correspond with the upper constraints of manip-
ulated variables, and T

′

is the weight matrix of margin loss function which corresponds
with output variables. As ∆u(k) = u(k)−u(k−1), Equation (14) is brought in Equation
(15), and there exits

min J(k)

= ‖ŷ(k + P ) − yd‖
2
Q + ‖∆u(k)‖2

R − ‖ŷ(k + P ) − yH‖
2
T

′

= ‖S(P )u(k) + Kx(k) − yd‖
2
Q + ‖u(k) − u(k − 1)‖2

R − ‖S(P )u(k) + Kx(k) − yH‖
2
T

′

= const + uT(k)ST(P )QS(P )u(k) + 2uT(k)ST(P )Q(Kx(k) − yd) + uT(k)Ru(k)

− 2uT(k)Ru(k − 1) − uT(k)ST(P )T
′

S(P )u(k) − 2uT(k)ST(P )T
′

(Kx(k) − yH)

And

∂J(k)

∂u(k)
= 2ST(P )QS(P )u(k) + 2ST(P )Q(Kx(k) − yd) + 2Ru(k) − 2Ru(k − 1)

− 2ST(P )T
′

S(P )u(k) − 2ST(P )T
′

(Kx(k) − yH) = 0

The optimal value of control is

u∗(k) =
(

ST(P )QS(P ) + R − ST(P )T
′

S(P )
)

−1(

ST(P )Q(yd − Kx(k))

+ Ru(k − 1) − ST(P )T
′

(yH − Kx(k))
)

(16)
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The z transformation for Equation (16) is available, and we can get

u∗(z) =
(

ST(P )QS(P ) + R − Rz−1 − ST(P )T
′

S(P )
)

−1

(

ST(P )Q

(

yd
z

z − 1
− Kx(k)

)

− ST(P )T
′

(

yH
z

z − 1
− Kx(k)

))

=
(

ST(P )QS(P ) + R − Rz−1 − ST(P )T
′

S(P )
)

−1

(

−ST(P )
(

Q − T
′

)

Kx(k) + ST(P )Qyd
z

z − 1
− ST(P )T

′

yH
z

z − 1

)

(17)

It is assumed that the actual process also follows Equation (13), and the z transformation
for Equation (13) is available,

zx(z) = Ax(z) + Bu(z)

y(z) = Cx(z)
(18)

Equation (17) is brought in Equation (18), and we can get

y(z) = C

(

zI − A + B
(

ST(P )QS(P ) + R − Rz−1 − ST(P )T
′

S(P )
)

−1

ST(P )

(

Q − T
′

)

K

)

−1

B
(

ST(P )QS(P ) + R − Rz−1 − ST(P )T
′

S(P )
)

−1

(

ST(P )Qyd
z

z − 1
− ST(P )T

′

yH
z

z − 1

)

(19)

In order to determine the steady-state situation, the final value theorem is used for Equa-
tion (19).

y(∞) = lim
z→1

z − 1

z
y(z)

= lim
z→1

z − 1

z
C

(

zI − A + B
(

ST(P )QS(P ) + R − Rz−1

− ST(P )T
′

S(P )
)

−1

ST(P )
(

Q − T
′

)

K

)

−1

B
(

ST(P )QS(P ) + R − Rz−1 − ST(P )T
′

S(P )
)

−1

(

ST(P )Qyd
z

z − 1
− ST(P )T

′

yH
z

z − 1

)

= C

(

I − A + B
(

ST(P )QS(P ) − ST(P )T
′

S(P )
)

−1

ST(P )
(

Q − T
′

)

K

)

−1

B
(

ST(P )QS(P ) − ST(P )T
′

S(P )
)

−1 (

ST(P )Qyd − ST(P )T
′

yH

)

= C(I − A)−1B
(

ST(P )
(

Q − T
′

)

K(I − A)−1B + ST(P )QS(P )

− ST(P )T
′

S(P )
)

−1(

ST(P )Qyd − ST(P )T
′

yH

)
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= C(I − A)−1B
(

ST(P )
(

Q − T
′

)

(

K (I − A)−1
B + S(P )

)

)

−1

(

ST(P )Qyd − ST(P )T
′

yH

)

= Gm(1)
(

ST(P )
(

Q − T
′

)

Gm(1)
)

−1 (

ST(P )Qyd − ST(P )T
′

yH

)

(20)

Gm(z) represents the transfer function of the model, and there exists C(I − A)−1B =
Gm(1). From Equation (20) we can get

y(∞) = Gm(1)ST(P )
(

Q − T
′

)

Gm(1)−1
(

ST(P )Qyd − ST(P )T
′

yH

)

=
(

Q − T
′

)

−1 (

Qyd − T
′

yH

)
(21)

That the matrix
(

Q − T
′
)

is non-singular is the necessary condition to determine
whether the output variables have steady-state solution. From Equation (21), the steady-
state values of the output variables are functions between the output expectations yd and
the process upper constraints yH. Therefore, in margin saving model predictive control,
when the weight Q, T

′

do not tend to zero, the steady-state values of outputs cannot
track the expectations accurately, and there will be some loss. However, the thought of
constrained control can allow the controlled variables to follow the expectations within a
certain zone. Therefore, when using margin saving model predictive control, we need to
choose reasonable weight matrix of margin loss function. In order to achieve reducing the
margin consumption in control, we must ensure that the controlled variables are within
the given zones.

6. Simulation and Example. In order to verify the correctness of this method, the
isothermal continuous stirred tank reactor (CSTR) is used as a simulation example [20].
The present analysis assumes that an exothermic, irreversible, first order reaction that
transforms reactant A into product B takes place in the CSTR, i.e., A → B. In the CSTR,
the density and the heat capacity of the mixture are assumed to be constant, and the
volume hold-up keeps constant because it is perfectly controlled by the outlet flow rate of
the CSTR. Figure 3 shows the CSTR system.

Figure 3. Model of CSTR system
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The model of the CSTR is

V
dC

dt
= −k0e

−
E

RT CV + Q0(C0 − C)

V ρCp
dT

dt
= Dhk0e

−
E

RT CV + Q0ρCp(T0 − T ) − qc

qc =
UaQcwCpc

Ua + QcwCpc

(T − Tc)

(22)

where k0 is the reaction rate constant; E is the reaction activation energy; R is the ideal
gas constant; V is the reactor volume; C is the concentration of A in the reactor; T is
the temperature of the reactor; Cp is the heat capacity of the mixture; ρ is the density
of the mixture; Dh is the reaction heat; Q0 is the inlet flow rate; C0 and T0 are the inlet
concentration of A and the inlet temperature; qc is the heat transfer rate of cooling water;
Qcw is the cooling water flow rate; Tc is the temperature of the cooling water; Cpc is the
heat capacity of the cooling water; Ua is the heat transfer coefficient.

The inlet flow rate Q0 and the cooling water flow rate Qcw represent the process manip-
ulated variables u(t) whereas the temperature and the concentration of reactant A in the
reactor are variables that can be measured online and represent the controlled (output)

variables y(t). That is u =
[

Q0 Qcw

]T
, y =

[

C T
]T

.

Its linear discrete state space model is shown as Equation (23)

x(k + 1) =

[

0.74154 −0.00154
1.19354 0.06567

]

x(k) +

[

0.15 0
0 −0.912

]

u(k) (23)

s.t.
−1.5 ≤ u1 ≤ 6, −1.5 ≤ u2 ≤ 2
−1 ≤ y1 ≤ 3, −1 ≤ y2 ≤ 2

When the output expectations are yd =
[

2.38 1.09
]T

, we use conventional MPC to
control the system. The simulation gives the curves of the controlled variables and the
manipulated variables as shown in Figure 4.

From Figure 4, we can see that, the manipulated variable u2 reaches the boundary of the
feasible domain, the operating margins are completely consumed and process operators
and engineers have no space for operation optimization, which is not hoped in process
control.

(a) The response curves of manipulated variables (b) The response curves of controlled variables

Figure 4. The simulation of conventional MPC
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Using margin saving model predictive control, the simulation is carried out and used
to analyze the simulation results.

(1) Convex optimization analysis in margin saving model predictive control.
When the weight matrix Q, R are unit matrixes, the coefficient of T is t = 0.03.

Through calculation the matrix ST
∆UQS∆U +R−ETTE is the symmetric matrix, and the

eigenvalue of this matrix is

det
(

ST
∆UQS∆U + R − ETTE

)

= 116.54 > 0

So the optimization is convex optimization, and the global optimal solution can be ob-
tained.

(2) Dynamic response comparison between margin saving model predictive control and
conventional MPC.

When the output expectations are yd =
[

2.38 1.09
]T

, the controlled variables are

allowed to be controlled in the range of y1 =
[

2.18 2.58
]

and y2 =
[

0.89 1.29
]

.
We implement the simulation of margin saving model predictive control and conventional
MPC. We can get the comparison figures as shown in Figure 5.

(a) The response curves of manipulated variables (b) The response curves of controlled variables

Figure 5. The comparison simulation of conventional MPC and margin
saving model predictive control

In Figure 5, the dotted lines are the response curves of conventional MPC, the solid
lines are the response curves of margin saving model predictive control, bold lines are the
response curves of u1 and y1, and thin lines are the response curves of u2 and y2. Figure
5(a) is the response curve of manipulated variables, where the dotted line is the constraints
of manipulated variables. Figure 5(b) is the response curve of controlled variables, and
the dotted lines are the expected zones of the controlled variables. As you can see from

Figure 5, when the system expectation is yd =
[

2.38 1.09
]T

, the operating variable u2

reaches the boundary. By using margin saving model predictive control, the manipulated
variable will back off within the constraint boundary. It not only saves the margins of
manipulated variables, but also can keep more space for the future process control and
optimization effectively. At the same time, the final steady-state values of the controlled

variable are y =
[

2.18 1.10
]T

, which are in the expect zones of the controlled variables,
and satisfy the requirement for the control effect.

(3) The relationship between the performance index functions in margin saving model
predictive control.



MARGIN SAVING MODEL PREDICTIVE CONTROL 419

To analyze the control influence quantitatively when adding margin loss function into
performance index function of MPC, we need to analyze the relationship between the
performance index functions in margin saving model predictive control. J0 is the sum
function value of tracking control item and control energy item. J is the sum function
value of tracking control item, control energy item and margin loss item. JMargin is the
function value of margin loss item. We draw the curves of the three function values in
the dynamic process, as shown in Figure 6.

Figure 6. Dynamic curves of performance index function values

In Figure 6, the solid line is the curve of J , the short dotted line is the curve of J0, the
dotted line is the curve of JMargin, as you can see from Figure 6.

a) Because of the existence of margin loss function, J0 has been lost, and the whole
function value J is reduced.

b) In general, the bigger the function value of margin loss item is, the more difficult
the optimization becomes convex optimization. From Figure 6, the margin loss function
value JMargin accounts for the proportion of J about 1/3, which is large, and MPC still
belongs to the convex optimization. Thus, we can draw the conclusion that margin saving
model predictive control has good effect, and it can generally guarantee the optimization
of convex optimization, which can get the global optimal solution.

7. Conclusion. In order to save more space for operation optimization, this paper pro-
posed an algorithm of margin saving model predictive control to back off the operating
point. Through adding a margin loss function into the performance index function of
conventional MPC, we established a new framework of margin saving model predictive
control. We deduced the optimization solution and analyzed the margin saving effect for
manipulated variables and the tracking effects for controlled variables after adding the
margin loss function.

Some future research directions of our work can be given as follows.
(1) In the long running period of chemical processes, the constraints of control variables

are getting narrow with the process margin consumption. Therefore, we must analyze the
situations of saving margin when the constraints get narrow.

(2) Based on multi-layer hierarchical structure in process control, we must consider the
online optimization implementation of margin saving model predictive control. We can
design the objective function of steady-state optimization of conventional MPC consider-
ing not only the optimal expectations but also margin loss function.
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