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Abstract. With the rapid development of cloud computing, more and more people shift
their workload on cloud data centers, is the energy consumption of virtual machines
(VMs) is non-negligible. In order to reduce energy consumption and achieve green cloud
service, we propose a novel VM scheduling strategy. All the VMs are divided into two
groups: the main group and the reservation group. When the traffic load is light, the
reservation group is deactivated and energy will be conserved. Considering that a job is
divided into several tasks for parallel processing in multiple VMs, we establish a batch
arrival queueing model with multiple VMs. By using Gauss Seidel method, we derive the
steady-state distribution of the system model with two-dimensional Markov chain. More-
over, we evaluate the performance measures in terms of the blocking probability of tasks,
the average response time of tasks and the energy saving rate of system. We provide
numerical experiments with analysis and simulation to validate the proposed strategy and
to estimate the influence of system parameters on performance measures. We establish
a system cost function to trade off different performance measures, and develop an intel-
ligent searching algorithm to optimize the system parameters.
Keywords: Cloud computing, Data center, Energy saving, Batch arrival, Markov chain

1. Introduction. The growing demand for Internet services and cloud computing urges
more large-scale data centers to be established. More data centers across the world are
being built by cloud providers, such as Microsoft and Google, and they have more than
1 million servers in their infrastructures [1]. More data centers will cause more energy
consumption. According to McKinsey’s report [2], the total estimated electricity bill
for data centers in 2010 was $11.5 billion, and by 2020 the worldwide carbon emission
from data centers will be quadruple (commutative average growth rate (CAGR) > 11%).
Therefore, energy efficiency of data centers with cloud computing has been one of the hot
research topics.

In [3], Dabbagh et al. introduced a prediction-based power management policy to re-
duce energy consumption. By classifying requests into multiple categories and estimating
the number of requests in each category, the number of physical machines (PMs) could be
predicted. Moreover, whether and when the idle PMs should be asleep or awake could be
forecasted. In [4], in order to consolidate virtual machines (VMs) into a reduced number
of active PMs while guaranteeing quality of service (QoS) requirements, Farahnakian et
al. presented a novel dynamic VM consolidation approach called ant colony system based
VM consolidation (ACS-VMC). With the ant colony system (ACS), the VM placement
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could be adapted according to the workload. Florence et al. [5] devised an energy sav-
ing methodology based on dynamic voltage and frequency scaling scheme (DVFS). They
analyzed the behavior of the given cloud request, and identified the associated type of
algorithm with pattern analyzer. By using algorithm’s asymptotic notations, the time
complexity of the request was calculated. CPU frequency was scaled up or down using
DVFS scheme to satisfy time complexity. In [6], Chen et al. proposed an adaptive DVFS
scheme for multi-core embedded system to facilitate control over the tradeoff between
energy and performance. Some effective energy saving strategies have been proposed in
above studies. However, these studies are lack of performance evaluation and system op-
timization. We note that with a reasonable mathematical model, the system performance
of the strategy could be improved.

In [7], Liao et al. proposed a dynamic power management policy by switching on/off a
certain group of VMs. They established a mathematical model using queueing theory to
determine the activation thresholds of VMs and study the energy-performance tradeoff
in cloud data centers. In [8], Cao et al. developed a load distribution method with the
constraints of energy and performance for cloud computing in cloud data centers. They
formulated power allocation and load distribution in a cloud of clouds as optimization
problems. They established a queueing model for a group of heterogeneous multicore
servers with different sizes and speeds to study the energy-performance tradeoff. In [9],
Kuehn and Mashaly presented an energy conservation strategy in which the data centers
were controlled by a finite state machine (FSM). With a load-dependent control of server
activations, VMs were allowed to be automatically consolidated in the FSM. They also
established a queueing model for the study of the tradeoff between system energy and
user performance which were reciprocal to each other. All the queueing models in the
literature are from the view point of jobs. While in the practical cloud applications,
when a job arrives at the system, this job is always divided into several tasks for parallel
processing. So it is essential to model the energy saving strategies in cloud computing
from the perspective of tasks.

The capacity of a cloud data center is usually planned according to the expected peak
traffic load; however, the average load is about just 60% of the peak load [10]. When
VMs in a cloud data center run at low utilization, such as 10% CPU utilization, the
energy consumption is over 50% of the peak power [11]. In conventional data centers
with static VM schedule, a great deal of energy is wasted. For this, we propose an energy
saving based VM scheduling strategy with reservation VMs. All the VMs are divided
into two groups: the main group and the reservation group. The main group is always
activated. When the traffic load is light, the reservation group will be deactivated to
conserve energy. When the traffic load is heavy, the reservation group will be activated to
guarantee the user performance. In cloud data centers, when a job arrives at the system,
this job is divided into several tasks for parallel processing in multiple VMs. From the
point of view of tasks, we establish a batch arrival queueing model with two groups of
VMs to capture the VM scheduling strategy proposed in this paper. Taking account of
the number of all tasks in the system and the number of tasks in the reservation group,
we constitute a two-dimensional Markov chain to evaluate the blocking probability of
tasks, the average response time of tasks and the energy saving rate of system. Moreover,
we provide numerical results to illustrate the tradeoff between energy consumption and
user performance. We also establish a system cost function and develop an intelligent
searching algorithm to optimize the VM scheduling strategy proposed in this paper.

The rest of this paper is organized as follows. In Section 2, we propose an energy saving
based VM scheduling strategy and establish a type of batch arrival queueing model. In
Section 3, we establish an analytical framework based on Markov chain to evaluate the
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system performance. In Section 4, we present performance measures in terms of the block-
ing probability of tasks, the average response time of tasks and the energy saving rate of
system. Numerical results are provided to verify the proposed strategy and to investigate
the energy-performance tradeoff. In Section 5, we develop an intelligent searching algo-
rithm to optimize the system threshold and the service rate with the minimum system
cost. Finally, we conclude this paper in Section 6.

2. Strategy Description and System Model. In this section, we propose an energy
saving based VM scheduling strategy with reservation VMs in cloud data centers. Then,
we establish a type of batch arrival queueing model with two groups of VMs accordingly.

2.1. Strategy description. With the popularity of cloud computing, the problem of
energy consumption on VMs in cloud data centers becomes more remarkable. For the
purpose of saving energy and achieving green cloud service, we propose a VM scheduling
strategy with reservation VMs.

All the VMs in a physical host are divided into two groups: the main group and the
reservation group. The main group is always activated. The reservation group has three
states: active state, deactive state and quasi-deactive state. When a job arrives at the
system, this job is divided into several tasks for parallel processing in multiple VMs. When
the number of tasks in the system is fewer, less VMs are necessary to execute tasks. So all
the VMs in the reservation group can be closed to save energy. For this case, we say the
reservation group is in deactive state. When the number of tasks in the system is greater,
more VMs are necessary to execute tasks. So all the VMs in the reservation group will
be opened to guarantee user performance. For this case, we say the reservation group
is in active state. In order to activate/deactivate the reservation group appropriately,
we introduce a threshold a as a system parameter. In practical applications, for the
throughput-sensitive and delay-sensitive users, the threshold should be set lower, while
from the perspective of improving energy efficiency, the threshold should be set higher.
When the number of tasks in the system decreases to the threshold a, the reservation group
will switch from active state to deactive state. Only when all the VMs in the reservation
group are idle, can the reservation group be deactivated. We call the intermediate state
before the reservation group switching from activated to deactivated as quasi-deactive
state.

The state transition of the reservation group in our proposed VM scheduling strategy
is shown in Figure 1.

1) When the reservation group is in deactive state, once a job with several tasks arrives
at the system, the system will count the number of the tasks in the system. If there
are more than a tasks in the system, the reservation group will switch to active state;
otherwise, the reservation group will stay in deactive state.

2) When the reservation group is in active state, once a VM finishes its current task, the
system will count the remainder tasks in the system. If the number of tasks in the system
drops to the threshold a, the reservation group will be prepared to switch to deactive
state, i.e., the reservation group will be in quasi-deactive state.

3) When the reservation group is in quasi-deactive state, if a VM in the main group
finishes its current task and becomes available, the system will migrate one of the tasks
in the reservation group to this VM. If a VM in the reservation group finishes its current
task, this VM will keep idle. The tasks in the buffer will not be executed temporarily, but
new jobs will arrive at the system. So the number of tasks in the buffer can only increase
but not decrease. If there are more than a tasks in the system, the reservation group will
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Figure 1. State transition of the reservation group

be activated again. If all the VMs in the reservation group are idle and the number of
tasks in the system is equal to or less than the threshold a, this group will be deactivated.

2.2. Model building. In cloud data centers, a job is divided into several tasks for parallel
processing in multiple VMs. The arrival of a job means a batch arrival of tasks. The
number of tasks in a job is called as the job size. Based on the proposed VM scheduling
strategy, we establish a batch arrival queueing model with two groups of VMs. In this
system model, there are n VMs in the main group and m VMs in the reservation group.
We assume that the jobs arrive at the system in a Poisson process with mean rate Λ
and the job size ξ is geometrically distributed with parameter θ. So the job with x tasks
arrives at the system in a Poisson process with mean rate λx = Λθ(1−θ)x−1, x ∈ {1, 2, . . .}.
Each VM serves only one task at a time and the service time of a task is supposed to
be exponentially distributed with parameter µ. In order to ensure that all the VMs in
the reservation group are busy when this group is in active state, we assume that the
threshold a is no less than the sum of the numbers of VMs in both the main group and
the reservation group, i.e., a ≥ n + m. Moreover, we suppose the capacity of the buffer is
r. So the capacity of the system is N = n + m + r.

Let random variable I(t) = i, i ∈ {0, 1, 2, . . . , N} be the total number of tasks in the
system and J(t) = j, j ∈ {0, 1, 2, . . . , m} be the number of tasks in the reservation group
at the time instant t. I(t) is called as system level and J(t) is called as system stage. With
the assumptions above, {I(t), J(t), t ≥ 0} constitutes a continuous-time two-dimensional
Markov chain with state space Ω = {(i, j) | i ∈ {0, 1, 2, . . . , N}, j ∈ {0, 1, 2, . . . ,m}}.

For the two-dimensional Markov chain {I(t), J(t), t ≥ 0}, we define the steady-state
distribution πi,j as follows:

πi,j = lim
t→∞

P{I(t) = i, J(t) = j}, i ∈ {0, 1, 2, . . . , N}, j ∈ {0, 1, 2, . . . , m} (1)

3. Model Analysis. In this section, we derive the queueing model established in Section
2 in steady state.

According to the working principle of the proposed VM scheduling strategy, via one
step transition, the system level will decrease one, remain unchanged or increase many.

1) The system level changing from i to i − 1 means the system level decreases one.
For the case that the system stage j fixes at 0, if i ≤ n, the transition rate is iµ; if
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n + 1 ≤ i ≤ a, the transition rate is nµ. For the case that the system stage j decreases
one, if a − m + j ≤ i ≤ a, the transition rate is (n + j)µ. For the case that the system
stage j fixes at m, if a + 1 ≤ i ≤ N , the transition rate is (n + m)µ.

2) The system level changing from i to i + y, y ∈ {1, 2, . . . , N − i} means the system
level increases many. The transition rate will be λy for following cases: the system stage
j fixes at 0 and 0 < i + y ≤ a; the system stage 1 ≤ j ≤ m − 1 remains unchanged
and (a − m + j ≤ i < a)

∩
(a − m + j < i + y ≤ a); the system stage j fixes at m and

(a ≤ i < N − 1)
∩

(a < i + y ≤ N − 1); the system stage j ranges from 0 to m and
(0 ≤ i ≤ a)

∩
(a+1 ≤ i+ y ≤ N − 1); the system stage j ranges from 1 ≤ j ≤ m− 1 to m

and (a−m + j ≤ i ≤ a)
∩

(a + 1 ≤ i + y ≤ N − 1). The transition rate will be
∑∞

k=0 λy+k

for following cases: the system stage j fixes at m and (a ≤ i ≤ N − 1)
∩

(i + y = N); the
system stage j ranges from 0 to m and (0 ≤ i ≤ a)

∩
(i + y = N); the system stage j

ranges from 1 ≤ j ≤ m − 1 to m and (a − m + j ≤ i ≤ a)
∩

(i + y = N).
3) The system level remaining unchanged means the number of all tasks in the system

is unchanged. For the case that the system stage j fixes at 0, if the system level i = 0,
the transition rate is −Λ; if 0 < i ≤ n, the transition rate is −Λ− iµ; if n+1 ≤ i ≤ a, the
transition rate is −Λ − nµ. For the case that the system stage remains unchanged and
1 ≤ j ≤ m − 1, if a − m + j ≤ i ≤ a, the transition rate is −Λ − (n + j)µ. For the case
that the system stage j fixes at m, if a ≤ i < N , the transition rate is −Λ − (n + m)µ; if
i = N , the transition rate is −(n + m)µ.

Based on the discussions above, the state transition of the queue model is illustrated
in Figure 2.

Figure 2. State transition of the queue model

According to different system stages j, we get the balance equations of the queue model
as follows:

1) j = 0 means the reservation group is in deactive state. For this case, the system

service rate on state (i, 0) is

{
iµ, i ≤ n

nµ, i > n
. The balance equations are given as follows:
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µπ1,0 − Λπ0,0 = 0, i = 0
i−1∑
k=0

λi−kπk,0 + (i + 1)µπi+1,0 − (Λ + iµ)πi,0 = 0, 0 < i < n

i−1∑
k=0

λi−kπk,0 + nµπi+1,0 − (Λ + nµ)πi,0 = 0, n ≤ i < a − m

i−1∑
k=0

λi−kπk,0 + nµπi+1,0 + (n + 1)µπi+1,1 − (Λ + nµ)πi,0 = 0, a − m ≤ i ≤ a

πi,0 = 0, a < i ≤ N

(2)

2) 1 ≤ j ≤ m− 1 means the reservation group is in quasi-deactive state. For this case,
the system service rate on state (i, j) is (n + j)µ. The balance equations are given as
follows:

πi,j = 0, 0 ≤ i < a − m + j

(n + j + 1)µπi+1,j+1 − (Λ + (n + j)µ)πi,j = 0, i = a − m + j
i−1∑

k=a−m+j

λi−kπk,j + (n + j + 1)µπi+1,j+1 − (Λ + (n + j)µ)πi,j = 0, a − m + j < i < a

i−1∑
k=a−m+j

λi−kπk,j − (Λ + (n + j)µ)πi,j = 0, i = a

πi,j = 0, a < i ≤ N

(3)
3) j = m and i > a mean the reservation group is in active state, and j = m and i = a

mean the reservation group is in quasi-deactive state. For these two cases, the system
service rate on state (i,m) is (n + m)µ. The balance equations are given as follows:

πi,m = 0, i < a

(m + n)µπi+1,m − (Λ + (n + m)µ)πi,m = 0, i = a
i−1∑
k=0

m∑
h=0

λi−kπk,h − (Λ + (n + m)µ)πi,m + (m + n)µπi+1,m = 0, a < i < N

i−1∑
k=0

m∑
h=0

πk,h

∞∑
b=i−k

λb − (n + m)µπi,m = 0, i = N

(4)

By using Gauss Seidel method, solve Equations (2)-(4). Combining normalized con-

dition
∑N

i=0

∑m
j=0 πi,j = 1, we can obtain the steady-state probability distribution πi,j

recurrently.

4. Performance Measures and Experiments Results. In this section, we present
performance measures to evaluate the proposed VM scheduling strategy and provide sta-
tistical experiments to investigate the energy-performance tradeoff.

4.1. Performance measures. With the proposed energy saving strategy, from the per-
spective of QoS of users, we will investigate the blocking probability and the average
response time of tasks. On the other hand, from the perspective of energy efficiency of
the proposed strategy, we will investigate the energy saving rate of system.

We define the blocking probability Pblock of a task as the probability that this task
cannot enter the buffer due to the finite capacity. We focus on an arbitrary task arriving
at the system in batch called tagged task T , we suppose that the position of the tagged
task T in a batch is uniformly distributed. The probability Pz that the tagged task T
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belongs to a job with z tasks is given as follows:

Pz =
z × θ(1 − θ)z−1

E[ξ]
(5)

where E[ξ] is the mean value of the job size, i.e., E[ξ] = 1
θ
.

The blocking probability Pblock of a task is given as follows:

Pblock =
N∑

i=0

m∑
j=0

∞∑
z=N−i+1

πi,j × Pz ×
z − (N − i)

z
(6)

We define the response time of a task as the time duration from the arrival of a task
to the execution termination of this task. The average response time W of tasks is the
sum of the average wait time of tasks and the average execution time of tasks. By using
Little’s law, the average response time W of tasks is given as follows:

W =
1

λe

(
a∑

i=n+1

(i − n)πi,0 +
a∑

i=a−m+j

m−1∑
j=1

(i − n − j)πi,j +
N∑

i=a

(i − n − m)πi,m

)
+

1

µ
(7)

where λe is the effective arrival rate of tasks, λe = Λ × E[ξ] × (1 − Pblock).
We define the energy saving rate of system as the energy conservation per unit time

in the proposed VM scheduling strategy. Only when the reservation group is in deactive
state, can the energy be saved. Let C be the energy-saving degree of a VM per unit time
during deactive state. The energy saving rate S of system is given as follows:

S = C × m ×
a∑

i=0

πi,0 (8)

4.2. Statistical experiments. In this section, we provide some statistical experiments
to estimate the influence of system parameters on system performance for the proposed
strategy in this paper, and give simulation results to validate the system model estab-
lished in this paper. We also add numerical experiments about the conventional strategy
without reservation, and conduct a comparison between the conventional strategy and
our proposed strategy. The analysis results are carried out in Matlab 2010a on Intel(R)
Core(TM) i7-4790 CPU @ 3.60 GHz 3.60 GHz, 6.00 GB RAM. The simulation results
are obtained by averaging over 10 independent runs using MyEclipse2014. We create the
TASK class with attributes in terms of UNARRIVE, WAIT, RUN, FINISH and BLOCK
to record the state of a task. We also create the SERVER class with attributes in terms of
OFF, IDLE and BUSY to record the state of a VM. From Figures 3-5, we can see that the
analysis results match well with the simulation results. In the established mathematical
model of system, the capacity of system is supposed to be finite. For any experimental
parameters, the system will always achieve steady-state. The setting of the parameters
will not affect the trends and laws of the experiments results. As an example, in numerical
experiments, we set the parameters as follows: n = 20; m = 20; r = 70; θ = 0.2 and
C = 3.

By setting different service rates µ, Figure 3 demonstrates the blocking probability
Pblock of tasks versus the arrival rate Λ of jobs for different thresholds a.

In Figure 3, the lines with a = 45, 65 and 85 are for our proposed energy saving strategy,
and the line with a = 0 is for the conventional strategy without reservation. We notice
that the blocking probability of tasks in our proposed strategy is a bit higher than that
in the conventional strategy without reservation.

From Figure 3, we observe that for the same threshold a, the blocking probability Pblock

of tasks will increase as the arrival rate Λ of jobs increases. This is because as the arrival
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(a) µ = 0.8 (b) µ = 1.0 (c) µ = 1.2

Figure 3. Blocking probability Pblock of tasks

rate of jobs increases, the number of tasks in the system becomes greater, and the buffer
of the system is more likely to be overflowed. So the blocking probability of tasks will
increase accordingly.

For the same arrival rate Λ of jobs, we obtain following observations. When the arrival
rate is smaller, all the tasks in the system can be executed. No matter whatever the
system threshold is, the blocking probability of tasks always tends to 0. When the arrival
rate is larger, the smaller the system threshold is, the more likely the reservation group is
in active state, and the system can accommodate more tasks. So the blocking probability
of tasks is lower. When the arrival rate further increases, the reservation group is more
likely in active state even for a greater system threshold. So the system threshold has no
impact on the blocking probability of tasks.

Combining Figures 3(a)-3(c), we notice that the blocking probability Pblock of tasks will
decrease as the service rate µ increases. This is because as the service rate increases, tasks
finish service more quickly, and then the VMs can execute more tasks. So the blocking
probability of tasks decreases.

By setting different service rates µ, Figure 4 illustrates the average response time W of
tasks versus the arrival rate Λ of jobs for different thresholds a.

(a) µ = 0.8 (b) µ = 1.0 (c) µ = 1.2

Figure 4. Average response time W of tasks

Similar to Figure 3, the lines with a = 45, 65 and 85 are for our proposed energy saving
strategy, and the line with a = 0 is for the conventional strategy without reservation. We
notice that the average response time of tasks in our proposed strategy is a bit larger than
that in the conventional strategy without reservation.

From Figure 4, we observe that for the same threshold a, as the arrival rate Λ of jobs
increases, the average response time W of tasks presents three stages.
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When the arrival rate of jobs is smaller, the average response time of tasks will increase
as the arrival rate of jobs increases. This is because when the arrival rate of jobs is smaller,
the reservation group is more likely in deactive state. As the arrival rate increases, more
tasks have to wait in the buffer, and the average waiting time of tasks will increase. So the
average response time of tasks will be longer. When the arrival rate of jobs is larger, as the
arrival rate of jobs increases, the average response time of tasks will increase slowly, and
even decrease slightly. This is because as the arrival rate of jobs increases, the reservation
group is more likely in active state. The throughput of system increases, so the average
response time of tasks will increase slowly, and even decrease slightly. When the arrival
rate of jobs further increases, the reservation group is more likely in active state. Because
of the finite capacity, the average response time of tasks will flatten and tend to a certain
value.

We also can see that for the same arrival rate Λ of jobs: When 1 ≤ Λ ≤ 13, the average
response time W of tasks will increase as the threshold a increases. This is because when
the system threshold is smaller, the reservation group is more likely in active state. So
the average response time of tasks will be lower. When the arrival rate of jobs further
increases, i.e., Λ ≥ 13, the reservation group is more likely in active state even for a
greater system threshold. So the system threshold has no impact on the average response
time of tasks. In other words, when the arrival rate of jobs is greater enough, the average
response time of tasks is almost invariable for all the system thresholds.

Combining Figures 4(a)-4(c), we notice that the average response time W of tasks will
decrease as the service rate µ increases. This is because as the service rate increases, the
service time of a task is shorter, and the time of tasks waiting in the buffer is shorter.
So the average response time of tasks decreases. The experimental results are consistent
with our predictions.

By setting different service rates µ, Figure 5 illustrates the energy saving rate S of
system versus the arrival rate Λ of jobs for different thresholds a.

(a) µ = 0.8 (b) µ = 1.0 (c) µ = 1.2

Figure 5. Energy saving rate S of system

From Figure 5, we observe that for the same threshold a, the energy saving rate S of
system will decrease as the arrival rate Λ of jobs increases. When the arrival rate of jobs
is 1 ≤ Λ ≤ 11, as the arrival rate of jobs increases, the number of tasks in the system is
greater, and the probability of the reservation group to be active will increase accordingly.
For this case, the energy saving rate of system will decrease. When the arrival rate of
jobs increases to a certain value, i.e., Λ ≥ 11, the reservation group is more likely to be
active, and the energy saving rate of system tends to 0.

We also notice that for the same arrival rate Λ of jobs, when 1 ≤ Λ ≤ 11, the energy
saving rate S of system will increase as the threshold a increases. This is because when
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the system threshold is greater, the reservation group is more likely in deactive state,
so the energy saving rate of system will be greater. As the arrival rate of jobs further
increases, the reservation group is more likely in active state even for a greater system
threshold. So the system threshold has no impact on the energy saving rate of tasks.

Combining Figures 5(a)-5(c), we notice that the energy saving rate S of system will
increase as the service rate µ increases. This is because as the service rate increases, the
number of tasks in the system is less possible to reach the system threshold, and then
the reservation group is more likely in deactive state. So the energy saving rate of system
increases.

Compared with the conventional strategy without reservation, we find that our proposed
energy saving strategy performs better on saving energy consumption. However, we have
to sacrifice a bit of QoS of users, such as the blocking probability and the average response
time of tasks. For guaranteeing the QoS of users, the system threshold should be set lower.
While for reducing energy consumption, the system threshold should be set higher. In
practical cloud systems, the tradeoff among the blocking probability of tasks, the average
response time of tasks and the energy saving rate of system should be investigated when
setting the system threshold in our proposed VM scheduling strategy.

5. System Optimization. In this section, we establish a cost function of system to trade
off different performance measures and develop an improved teaching-learning-based op-
timization (TLBO) algorithm to obtain the optimal combination of the system threshold
and the service rate.

In cloud data centers, a higher blocking probability of tasks will make the cloud service
provider lose more customers, a longer average response time of tasks will make users
impatient, a larger service rate will increase the expenditure on servers. While, cloud data
centers will benefit from a greater energy saving rate of system. For this, we establish a
cost function F(a,µ) of system as follows:

F(a,µ) = fbPblock + fwW + fµµ − fsS (9)

where fb, fw, fµ and fs are the impact factors of the blocking probability of tasks, the
average response time of tasks, the expenditure on cloud data centers and the energy
saving rate of system, respectively on the system cost. Pblock, W and S are obtained in
Equations (6)-(8), and µ is a system parameter to be determined.

We provide numerical experiments to investigate the change trend of the system cost
function versus the system threshold, the service rate and the arrival rate of jobs. In the
numerical experiments, we employ the parameters used in Subsection 4.2, and set the
impact factors fb = 5.0, fw = 0.8, fµ = 10.0 and fs = 0.2 as an example.

(a) Λ = 5 (b) Λ = 6 (c) Λ = 7

Figure 6. The cost function F(a,µ) of system
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Table 1. Iteration algorithm to obtain the optimal combination (a∗, µ∗)

Step 1: Set the number N of students and the maximum iterations L. Initialize the current
iteration as l = 1, the combination of system threshold and service rate as (a∗, µ∗) = 0,
and the minimum cost function as F ∗

(a,µ) = 0. Set the initial system threshold as a = 40,
the upper boundary of the system threshold as amax = 90.

Step 2: Initialize each student as (a, µ)n, n ∈ {1, 2, . . . , N}, µ ∈ [1, 2] using chaotic equations and
calculate the cost function Fn

(a,µ):
(a, µ)1 = rand + 1
calculate the cost function F 1

(a,µ) with (a, µ)1

For n = 2 : N
(a, µ)n = r ×

(
(a, µ)n−1 − 1

)
×
(
2 − (a, µ)n−1

)
+ 1

calculate the cost function Fn
(a,µ) with (a, µ)n

End
% r is the chaotic factor, r = 3.85.

Step 3: Calculate the mean value (a, µ)mean for all students and select the student with the
minimum cost function as a teacher (a, µ)teacher:

(a, µ)mean = mean
n∈{1,2,...,N}

{(a, µ)n}, (a, µ)teacher = argmin
n∈{1,2,...,N}

{
Fn

(a,µ)

}
Step 4: The teaching operation:

For n = 1 : N
g = round(1 + rand)
(a′, µ′)n = w × (a, µ)n + rand × ((a, µ)teacher − g × (a, µ)mean)
% w is the weight factor, w = wmax − (wmax − wmin) × (l/L).
% wmax and wmin are the maximum and minimum weight factors.
If Fn

(a′,µ′) < Fn
(a,µ)

(a, µ)n = (a′, µ′)n

End
End

Step 5: The learning operation:
For n = 1 : N

randomly select another student (a, µ)s, (s ̸= n)
If Fn

(a,µ) > F s
(a,µ)

(a′, µ′)n = w × (a, µ)n + rand × ((a, µ)n − (a, µ)s)
Else

(a′, µ′)n = w × (a, µ)n + rand × ((a, µ)s − (a, µ)n)
End
If Fn

(a′,µ′) < Fn
(a,µ)

(a, µ)n = (a′, µ′)n

End
End

Step 6: Check the number of iterations:
If l < L

l = l + 1, go to Step 3
End

Step 7: Select the minimum cost function:
If F ∗

(a,µ) = 0
∥∥∥ min

n∈{1,2,...,N}

{
Fn

(a,µ)

}
< F ∗

(a,µ)

F ∗
(a,µ) = min

n∈{1,2,...,N}

{
Fn

(a,µ)

}
, (a∗, µ∗) = argmin

n∈{1,2,...,N}

{
Fn

(a,µ)

}
End
If a < amax

a = a + 1, go to Step 2
End

Step 8: Output (a∗, µ∗)
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By setting different arrival rates Λ of jobs, Figure 6 shows the change trend for the cost
function F(a,µ) of system in relation to the system threshold a and the service rate µ.

From Figure 6, we conclude that there is an optimal combination of the system thresh-
old a∗ and the service rate µ∗ with the minimum system cost function F ∗

(a,µ). For the
batch arrival based system model established in this paper, the performance measures
are difficult to be given in a close-form. The monotonicity of the system cost function
is uncertain. The traditional optimization algorithms, such as the steepest descent opti-
mization method or the Lagrange multiplier method, are inappropriate to get the optimal
system parameters. So we develop an improved TLBO intelligent searching algorithm to
get the optimal combination (a∗, µ∗) with the minimum system cost function F ∗

(a,µ).
The TLBO intelligent searching algorithm is a newly developed and efficient meta-

heuristic optimization method which imitates the natural phenomena of knowledge dis-
semination [12]. The advantage of this algorithm is that it does not need any algorithm-
specific parameters, and it is easy to understand. In the improved TLBO searching
algorithm, we use chaotic equations to initialize a group of (a, µ) as the students. By this
way, the initialization is more random. Moreover, we introduce a weight factor [13] to
promote the teaching and the learning operations.

The main steps of the improved TLBO intelligent searching algorithm are given in
Table 1. By employing the parameters used in Figure 6, and setting N = 100, L = 50 as
an example, we obtain the optimal combination of the system threshold and the service
rate. The results are summarized in Table 2.

Table 2. Optimal combination (a∗, µ∗) and minimum cost function F ∗
(a,µ)

Arrival rate Optimal combination Minimum cost
Λ of jobs (a∗, µ∗) function F ∗

(a,µ)

5 (80, 1.2254) 3.0239
6 (76, 1.3942) 5.1618
7 (71, 1.5204) 7.2241

6. Conclusions. In this paper, for reducing energy consumption and achieving green
cloud service, we proposed a novel VM scheduling strategy with VM reservation. Con-
sidering that jobs are divided into several tasks for parallel processing in multiple VMs,
we established a batch arrival based two-dimensional Markov chain model, and derived
the steady-state distribution of the system model by using Gauss Seidel method. Then
we evaluated the system performance measures in terms of the blocking probability of
tasks, the average response time of tasks and the energy saving rate of system. We pro-
vided statistical experiments with analysis and simulation to investigate the influence of
system parameters on system performance with the proposed strategy. We note that
the system threshold and the service rate have major impact on the performance mea-
sures. Accordingly, we established a system cost function to show the trade-off among
different performance measures and the expenditure on VMs. By initializing the students
with chaotic equations and introducing a weight factor, we developed an improved TLBO
based intelligent searching algorithm, and jointly optimized the system threshold and the
service rate with the minimum system cost function.

In future work, we will investigate the dependence between the service rate and the
number of VMs in the reservation group with the energy saving strategy.
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