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Abstract. Aiming at the complex expression and tedious derivation process, the paper
discussed the analysis method to the ripple current. The universal ripple current for-
mulations for space vector PWM (SVPWM) were given and a programming algorithm
for ripple current analysis for the multi-level inverter was proposed. Finally, the ripple
currents and harmonic distortion factor (HDF) expressions for a two-level inverter and
a three-level one were analyzed using the algorithm, which verifies the convenience and
practicability of the algorithm. It provides a powerful tool for accurately comparing the
harmonic distortion performance among different PWM strategies and different level in-
verters, and even applicable to exploiting new PWM strategy.
Keywords: Space vector PWM, Ripple current, Harmonic distortion factor, Inverter

1. Introduction. The space vector pulse width modulation (SVPWM) method, as an
important subclass among all PWM techniques, has been widely used to convert electric
energy between direct current source and alternating current source [1]. Because of the
volt-second balance principle of PWM technique, the harmonic is inevitable besides the
required fundamental wave [2]. The voltage source inverter has been widely used due
to the simple structure and load carrying feature. The output of the voltage source
inverter includes a series of pulses in the aspect of voltage [3], while the current has
another shape determined by the load. The motor load presents prominent inductance
[4]. The current harmonic takes the form of amplitude frequency and phase frequency
characteristics in the frequency domain, while takes the form of ripple current in the time
domain. The ripple current has heavy effects on the losses of the load motor [5], the
dynamic operational characteristics of the closed-loop system [6], EMI (Electromagnetic
Interference) [7] and audible noise [8], but it is very difficult to get the exact mathematical
description for the effects [9]. The randomization [10], optimization [11], and variable
modulation mode [12] methods have been developed and widely utilized. The ripple
expressions differ from each other in a great number of SVPWM strategies. Holmes and
Lipo [2] presented the corresponding expressions of the ripple currents and harmonics for
the commonly used SVPWM strategies. Chen et al. analyzed the current harmonics of a
random pulse position SVPWM [13], a random zero-vector distribution SVPWM [14] and
a hybrid SVPWM based on random zero-vector distribution and random pulse position
[15]. Although the ripple current formulations are derived from simple physical theories
and mathematical equations, the ripple current expressions are complicated piecewise
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functions [16]. The derivation process is tedious and quite error-prone. The ripple current
expression forms the backbone for further research on PWM strategies.

Although the harmonic characteristic of SVPWM has gained intensive study and some
significant conclusions have been drawn, several problems should be noticed. First of
all, the harmonic formulation must be applied to the specific PWM strategy and lack
universality. Furthermore, the formulation, depending on the specific PWM strategy, is
extremely complicated. In addition, the explicit analytical expression of the harmonic
current is not necessary because it is only the intermediate link for the harmonic analysis
about the harmonic distortion factor, the harmonic spectrum, and so on. Last but not
least, the study is aimed at the PWM strategies that are already known, but a large
number of new strategies will be exploited in the future. A formulation or algorithm that
is applicable for all kinds of SVPWM strategies is clearly of great benefit. Therefore, the
paper gives the universal ripple current formulations for the space vector SVPWM strat-
egy, and proposes a programming algorithm for ripple current analysis for the multi-level
inverter using SVPWM technique. The algorithm makes full use of the symbolic compu-
tation function in some mathematical analysis software packages, for example, MATLAB.

This paper is organized as follows. In Section 2, the principles of SVPWM are presented
for the three-phase inverter, especially the two-level inverter and the three-level inverter.
Section 3 describes the derivation process of the universal ripple current formulations in
detail. In Section 4, a programming algorithm is proposed for ripple current analysis
based on the universal formulation derived in Section 3. In Section 5, the ripple current
and harmonic distortion factor (HDF) for a two-level inverter and a three-level one are
analyzed using the algorithm. Section 6 concludes this paper.

2. Principles of SVPWM. The classic two-level three-phase inverter topology with the
DC bus voltage UDC is shown in Figure 1(a) [2,3]. The inverter has 8 permissible states.
If the load is an isolated neutral machine, the corresponding phase-to-neutral voltages
for each state can be computed. For example, if T2, T4 and T5 are turned off, using the
simple circuit shown in Figure 1(b) with the impedances ZA, ZB and ZC for phases A, B
and C, the three phase-to-neutral voltages UA, UB and UC are UA = UDC/3

UB = UDC/3
UC = 2UDC/3

(1)

where UDC is the DC bus voltage.
The voltage vector is constructed by

U⃗ =
2

3

(
UA + αUB + α2UC

)
(2)

where α = ej2π/3 and α2 = ej4π/3.
The operation mode of a two-level inverter gives five levels (0, ±UDC/3 and ±2UDC/3)

with respect to the isolated neutral. Based on Equation (2), the corresponding space

vectors for the 8 states can be derived. The construction method of U⃗2(110) is shown in
Figure 1(c). The six active vectors are

U⃗k =
2

3

(
UA + αUB + α2UC

)
=

2

3
UDCej(k−1)π

3 (k = 1, 2, . . . , 6) (3)

All the six active vectors
(
U⃗1(100), U⃗2(110), U⃗3(010), U⃗4(011), U⃗5(001) and U⃗6(101)

)
and the two zero vectors

(
U⃗0(000) and U⃗7(111)

)
are plotted in Figure 1(d). For the
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(a) Two-level three-phase inverter (b) Connection state of (110)

(c) Construction method of space vector (d) Space vectors and vector summation method

Figure 1. Two-level inverter and vector diagram

square-wave operation of the inverter, the vector sequence is

U⃗1(100) → U⃗2(110) → U⃗3(010) → U⃗4(011) → U⃗5(001) → U⃗6(101) → U⃗1(100) → · · · (4)

The phase voltage waves have the characteristics of six-stepped wave shape, and can
be expressed by Fourier series. For example, phase A

UA =
2UDC

π

(
cos ωt − 1

5
cos 5ωt +

1

7
cos 7ωt − 1

11
cos 11ωt +

1

13
cos 13ωt + · · ·

)
(5)

An arbitrary command/reference voltage vector inside the hexagon region shown in
Figure 1(c) can be expressed as

U⃗S = Uoe
jθ (6)

where Uo is the vector amplitude and θ is the phase angle.
A modulation index is given by

M =
Uo

Umax

(7)

where Umax is a norm that may be the fundamental peak value (2UDC/π) of the six-stepped
operation mode or half of the DC voltage value (UDC/2).

In the linear or undermodulation region, the constructed vector always remains within
the hexagon. The maximum value of Mmax at the end of the undermodulation region can
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be derived as

Mmax =
2UDC/3 × cos π

6

Umax

=


UDC

/√
3

2UDC/π
=

π

2
√

3
≈ 0.9069

2UDC

π
adopted

UDC

/√
3

UDC/2
=

2√
3
≈ 1.1547

UDC

2
adopted

(8)

The command voltage vector U⃗S can be generated by two adjacent active vectors
(
U⃗1

and U⃗2 in the first sextant
)

and the zero vectors. The on-state durations T1, T2 and T0 of

the three vectors are determined by identical volt-seconds balance at the periodical time
interval TS. The method to determine and obtain T1, T2 and T0 will be found in Section
4.

TSU⃗S = T1U⃗1 + T2U⃗2 (9)

Because of the volt-second balance of PWM, the harmonic is inevitable besides the
required fundamental voltage, and so do the ripple currents. There are large numbers of
vector operation modes that satisfy Equation (9).

The principle of a multi-level three-phase inverter is shown in Figure 2(a) [4,17-20]. An
N -level inverter gives N voltage levels (0, UDC/(N − 1), 2UDC/(N − 1), . . ., (N − 2)UDC/
(N − 1), UDC) with respect to the negative rail N . For example, a three-level neutral-
point clamped (NPC) inverter shown in Figure 2(b) gives three voltage levels (0, UDC/2
and UDC) with respect to the negative rail N or (−UDC/2, 0 and UDC/2) with respect
to the neutral point 0 created by two identical DC link capacitors C1 and C2. The
corresponding space vectors for the 27 states can be derived based on Equation (2). The

command voltage vector U⃗S can be generated by three vectors corresponding to the apexes
of the triangle that includes U⃗S. For example, the three vectors are PPP/OOO/NNN,
POO/ONN and PPO/OON, as shown in Figure 2(c). The corresponding symmetrical
pattern shown in Figure 3 gives excellent harmonic characteristic. The duration time t1,
t2, t3 and t4 depend on the specific SVPWM strategy and will be given in Section 4. The
vector sequences in each triangle in 60◦-Sextant 1 and 2 are shown in Table 1.

Table 1. Switching states or vector sequences beginning with positive
small vector

Triangles in 60◦-Sextant 1 Triangles in 60◦-Sextant 2
1(A) 2(A) 3(B) 4(B) 5(D) 6(C) 1 2 3 4 5 6
PPO POO PPO POO PPO POO OPO PPO OPO PPO OPO PPO
POO OOO POO PON PPN PON OOO OPO OPN OPO OPN PPN
OOO OON PON OON PON PNN OON OOO OON OPN NPN OPN
OON ONN OON ONN OON ONN NON OON NON OON NON OON
OOO OON PON OON PON PNN OON OOO OON OPN NPN OPN
POO OOO POO PON PPN PON OOO OPO OPN OPO OPN PPN
PPO POO PPO POO PPO POO OPO PPO OPO PPO OPO PPO

3. Ripple Current Formulations. Implicit phase voltage modulation waves UA, UB

and UC and line voltages UAB, UAC and UBC can be computed using average method in
the switching period. For a two-level or three-level inverter, let uA = UA/(UDC/2)

uB = UB/(UDC/2)
uC = UC/(UDC/2)

(10)
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(a) Multi-level three-phase inverter principle

(b) Three-level three-phase inverter

(c) Space vectors and vector summation method

Figure 2. Three-level inverter and vector diagram. The notations P, O
and N refer to that the phase output terminals are positive, negative and
zero, respectively.
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(a) Beginning with the positive small vector

(b) Beginning with the negative small vector

Figure 3. PWM voltage waves for the command voltage vector U⃗S

For the delta connection and prominent inductance load with the equivalent line-line
inductance Lσ in triangle 2(A), the ripple current of line AB with respect to the time t
can be expressed as

(1) 0 ≤ t ≤ t1,

∆iAB =
UDC

2
− UAB

Lσ

t =
UDC

2
− UDC

2
(uA − uB)

Lσ

t =
UDC

2Lσ

[1 − (uA − uB)] t (11)

(2) t1 ≤ t ≤ t1 + t2,

∆iAB =
UDC

2Lσ

[1 − (uA − uB)] t1 +
−UAB

Lσ

(t − t1)

=
UDC

2Lσ

{[1 − (uA − uB)] t1 − (uA − uB) (t − t1)}
(12)

(3) t1 + t2 ≤ t ≤ t1 + t2 + t3,

∆iAB =
UDC

2Lσ

{[1 − (uA − uB)] t1 − (uA − uB) (t − t1)} (13)
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(4) t1 + t2 + t3 ≤ t ≤ t1 + t2 + t3 + t4,

∆iAB =
UDC

2Lσ

{[1 − (uA − uB)] t1 − (uA − uB) (t2 + t3)}

+
UDC

2
− UAB

Lσ

(t − t1 − t2 − t3)

=
UDC

2Lσ

{[1 − (uA − uB)] t1 − (uA − uB) (t2 + t3)

+ [1 − (uA − uB)] (t − t1 − t2 − t3)}

(14)

For the delta connection load in triangle 2(A), the ripple current of line AC can be
expressed as

(1) 0 ≤ t ≤ t1,

∆iAC =
UDC

2
− UAC

Lσ

t =
UDC

2
− UDC

2
(uA − uC)

Lσ

t =
UDC

2Lσ

[1 − (uA − uC)] t (15)

(2) t1 ≤ t ≤ t1 + t2,

∆iAC =
UDC

2Lσ

[1 − (uA − uC)] t1 +
−UAC

Lσ

(t − t1)

=
UDC

2Lσ

{[1 − (uA − uC)] t1 − (uA − uC) (t − t1)}
(16)

(3) t1 + t2 ≤ t ≤ t1 + t2 + t3,

∆iAC =
UDC

2Lσ

{[1 − (uA − uC)] t1 − (uA − uC) t2} +
UDC

2
− UAC

Lσ

(t − t1 − t2)

=
UDC

2Lσ

{[1 − (uA − uC)] t1 − (uA − uC) t2 + {1 − (uA − uC)} (t − t1 − t2)}
(17)

(4) t1 + t2 + t3 ≤ t ≤ t1 + t2 + t3 + t4,

∆iAC =
UDC

2Lσ

{[1 − (uA − uC)] t1 − (uA − uC) t2 + {1 − (uA − uC)} (t − t1 − t2)} (18)

For the delta connection load in triangle 2(A), the ripple current of line BC can be
expressed as

(1) 0 ≤ t ≤ t1,

∆iBC =
−UBC

Lσ

t =
−UDC

2
(uB − uC)

Lσ

t = −UDC

2Lσ

(uB − uC) t (19)

(2) t1 ≤ t ≤ t1 + t2,

∆iBC = −UDC

2Lσ

(uB − uC) t (20)

(3) t1 + t2 ≤ t ≤ t1 + t2 + t3,

∆iBC = − UDC

2Lσ

(uB − uC) (t1 + t2) +
UDC

2
− UBC

Lσ

(t − t1 − t2)

= − UDC

2Lσ

{(uB − uC) (t1 + t2) − [1 − (uB − uC)] (t − t1 − t2)}
(21)
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(4) t1 + t2 + t3 ≤ t ≤ t1 + t2 + t3 + t4,

∆iBC

= − UDC

2Lσ

{(uB − uC) (t1 + t2) − [1 − (uB − uC)] t3} +
−UBC

Lσ

(t − t1 − t2 − t3)

=
UDC

2Lσ

{− (uB − uC) (t1 + t2) + [1 − (uB − uC)] t3 − (uB − uC) (t − t1 − t2 − t3)}

(22)

Let (S1i, S2i, S3i) stand for the switching state of the ith working vector, and Sji (j =
1, 2, 3) is −1, 0 and 1 for N, O and P, respectively. As discussed above, the ripple currents
Equations (11) to (22) can be summarized and expressed using the following universal
formulas. For example, Equation (11) is corresponding to the specific case of the first
formula in Equation (23) for that S11 = 1 and S21 = 0.

(1) 0 ≤ t ≤ t1,

∆iAB =

(
S11 · UDC

2
− S21 · UDC

2

)
− UAB

Lσ

t =
UDC

2Lσ

[(S11 − S21) − (uA − uB)] t

∆iAC =

(
S11 · UDC

2
− S31 · UDC

2

)
− UAC

Lσ

t =
UDC

2Lσ

[(S11 − S31) − (uA − uC)] t

∆iBC =

(
S21 · UDC

2
− S31 · UDC

2

)
− UBC

Lσ

t =
UDC

2Lσ

[(S21 − S31) − (uB − uC)] t

(23)

(2) t1 ≤ t ≤ t1 + t2,

∆iAB =
UDC

2Lσ

{[(S11 − S21) − uAB] t1 + [(S12 − S22) − uAB] (t − t1)}

∆iAC =
UDC

2Lσ

{[(S11 − S31) − uAC] t1 + [(S12 − S32) − uAC] (t − t1)}

∆iBC =
UDC

2Lσ

{[(S21 − S31) − uBC] t1 + [(S22 − S32) − uBC] (t − t1)}

(24)

(3) t1 + t2 ≤ t ≤ t1 + t2 + t3,

∆iAB =
UDC

2Lσ

{[(S11 − S21) − uAB] t1 + [(S12 − S22) − uAB] t2

+ [(S13 − S23) − uAB] (t − t1 − t2)}

∆iAC =
UDC

2Lσ

{[(S11 − S31) − uAC] t1 + [(S12 − S32) − uAC] t2

+ [(S13 − S33) − uAC] (t − t1 − t2)}

∆iBC =
UDC

2Lσ

{[(S21 − S31) − uBC] t1 + [(S22 − S32) − uBC] t2

+ [(S23 − S33) − uBC] (t − t1 − t2)}

(25)

(4) t1 + t2 + t3 ≤ t ≤ t1 + t2 + t3 + t4,

∆iAB =
UDC

2Lσ

{
[(S11 − S21) − uAB] t1 + [(S12 − S22) − uAB] t2
+ [(S13 − S23) − uAB] t3 + [(S14 − S24) − uAB] (t − t1 − t2 − t3)

}
∆iAC =

UDC

2Lσ

{
[(S11 − S31) − uAC] t1 + [(S12 − S32) − uAC] t2
+ [(S13 − S33) − uAC] t3 + [(S14 − S34) − uAC] (t − t1 − t2 − t3)

}
∆iBC =

UDC

2Lσ

{
[(S21 − S31) − uBC] t1 + [(S22 − S32) − uBC] t2
+ [(S23 − S33) − uBC] t3 + [(S24 − S34) − uBC] (t − t1 − t2 − t3)

} (26)
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4. Programming Algorithm. The symbolic computation function in the technical
computing language should be used to analyze the ripple current characteristics because
the symbolic computation can provide the analytical expression. Based on the ripple
current Equations (23) to (26), the algorithm can be expressed as follows.

Step 1: Create symbolic variables. The variables include the switching period TS,
modulation index M , DC bus voltage UDC, equivalent inductance Lσ and so on.

Step 2: Store the switching states and vector sequences in a matrix S for each triangle.
Each column is corresponding to a voltage space vector. The format of S is shown in Figure
4.

Figure 4. Format of switching states and vector sequences matrix S

Step 3: Compute on-state durations of the basic vectors. The on-state durations are
computed based on volt-second balance. For example, the solution of (9) for the two-level
inverter in the first sextant is

T1 =

√
3

2
MTS sin (π/3 − θ)

T2 =

√
3

2
MTS sin θ

(27)

T1 + T2 =

√
3

2
MTS sin (π/3 + θ) (28)

The total duration of two zero vectors (T00 for U⃗0 and T07 for U⃗7) is

T0 = TS − T1 − T2 = T00 + T07 (29)

The on-state durations of the basic vectors for the three-level inverter in the Sextant 1 is
T0 =

[
1 −

√
3M sin (π/3 + θ)

]
TS

T10 =
√

3MTS sin (π/3 − θ)

T20 =
√

3MTS sin θ

(Triangle A) (30)


T10 =

(
1 −

√
3M sin θ

)
TS

T20 =
[
1 −

√
3M sin (π/3 − θ)

]
TS

T3 =
[√

3M sin (π/3 + θ) − 1
]
TS

(Triangle B) (31)


T10 =

[
2 −

√
3M sin (π/3 + θ)

]
TS

T3 =
√

3MTS sin θ

T1 =
[√

3M sin (π/3 − θ) − 1
]
TS

(Triangle C) (32)
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T3 =

√
3MTS sin (π/3 − θ)

T2 =
(√

3M sin θ − 1
)

TS

T20 =
[
2 −

√
3M sin (π/3 + θ)

]
TS

(Triangle D) (33)

Step 4: Compute the duration of each segment based on the modulation strategy and
store these durations into a matrix ST. The format is as follows.

ST =
[

t1 t2 t3 · · · tZ
]

(34)

For the commonly used symmetrical 7-segment pulse pattern of the two-level inverter,

ST =
[

T0/4 T1/2 T2/2 T0/2 T2/2 T1/2 T0/4
]

(35)

For the symmetrical pulse pattern of the three-level inverter with a control factor kc,
in the triangle A

ST =
[

kcT20/2 T10/2 T0/2 (1 − kc) T20 T0/2 T10/2 kcT20/2
]

(36)

Step 5: Compute the average line voltages using the following equations.

Ur =
1

TS

Z∑
i=1

S(r, i) × ST(i)
UDC

N − 1
(r = 1, 2, 3 for A, B, C respectively) (37)

Step 6: Compute ripple currents. The ripple current expressions are piecewise func-
tions, and the kth segment can be expressed using the following universal formulas that
are applied to the N -level inverter if N is odd and the (N − 1)-level inverter if N is even.

∆iAB(k, t) =
1

Lσ

k−1∑
i=1

i≤k−1

[
(S(1, i) − S(2, i))

UDC

N − 1
− UAB

]
ti

+
1

Lσ

[
(S(1, k) − S(2, k))

UDC

N − 1
− UAB

]t −
k−1∑
i=1

i≤k−1

ST(i)


∆iAC(k, t) =

1

Lσ

k−1∑
i=1

i≤k−1

[
(S(1, i) − S(3, i))

UDC

N − 1
− UAC

]
ti

+
1

Lσ

[
(S(1, k) − S(3, k))

UDC

N − 1
− UAC

]t −
k−1∑
i=1

i≤k−1

ST(i)


∆iBC(k, t) =

1

Lσ

k−1∑
i=1

i≤k−1

[
(S(2, i) − S(3, i))

UDC

N − 1
− UBC

]
ti

+
1

Lσ

[
(S(2, k) − S(3, k))

UDC

N − 1
− UBC

]t −
k−1∑
i=1

i≤k−1

ST(i)



(38)

Step 7: Analyze ripple current characteristics. For example, the analytical expressions
and characteristics of the harmonic distortion factor (HDF) can be gotten from the ripple
currents. The HDF is corresponding to the total harmonic distortion (THD) and can be
defined using the ripple currents. The micro HDF is defined to evaluate the current THD
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in a switching period while the macro HDF is defined to evaluate the current THD in a
fundamental period of the implicit modulation wave. The micro HDF is defined as [2]

f(M, θ) =
1
TS

∫ TS

0

(
∆i2AB + ∆i2AC + ∆i2BC

)
dt

3
(

UDC

2Lσ

)2
T 2
S

48

(39)

The macro HDF is defined as [2]

F (M) =
1

2π

∫ 2π

0

f(M, θ)dθ (40)

5. Analysis and Discussion.

5.1. Two-level three-phase inverter. Because of the pulse symmetry shown in Equa-
tions (35) and (36) to some SVPWM schemes, the ripple currents are almost zero at the
middle of the switching period and substantially centrosymmetric about the middle. It is
sufficient to analyze the ripple currents in the half period.

The random SVPWM strategy can suppress the clustered harmonic amplitude peak
value that is the most serious in the deterministic SVPWM strategy [21-23]. Among the
most intuitional random schemes, the switching signal waveforms shown in Figure 1(d)
and the ripple currents in the random zero-vector distribution SVPWM (RZDSVPWM)
scheme are substantially centrosymmetric about the middle. Therefore, the RZDSVPWM
scheme can be easily realized in plenty of microcontroller units. For one novel RZDSVP-
WM scheme, the matrix ST shown in Equation (34) is given by

ST =
[

T00/2 T1/2 T2/2 T07 T2/2 T1/2 T00/2
]

(41)

where R is a random variable that represents the random zero-vector distribution factor,
T00 = RT0min +

1

2
(T0 − T0min)

T07 = (1 − R)T0min +
1

2
(T0 − T0min)

(0 ≤ R ≤ 1)

and

T0min = TS

(
1 −

√
3

2
M

)
Using the algorithm stated in Section 4, the micro HDF can be gotten as

f(M, θ) =
M4

32

 − 9 cos 4θ + 72
√

3R cos 3θ − 36
√

3 cos 3θ − 18 cos 2θ

− 72
√

3R cos θ + 36
√

3 cos θ + 9
√

3 sin 4θ − 18
√

3 sin 2θ
+ 216R sin θ − 108 sin θ + 432R2 − 432R + 162


+

M3

4

(
− 18R cos 3θ + 9 cos 3θ + 18R cos θ − 18 cos θ +

√
3 sin 3θ

− 18
√

3R sin θ + 6
√

3 sin θ − 72
√

3R2 + 72
√

3R − 18
√

3

)
+
(
18R2 − 18R + 6

)
M2

(42)

The macro HDF can be gotten as

F (M) =
27

2

(
R2 − R − 3

√
3

32
+

3

8

)
M4

+

(
−18

√
3R2 + 18

√
3R − 9

√
3

2
− 4

√
3

π

)
M3

+
(
18R2 − 18R + 6

)
M2

(43)
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Let R = 0.5, the micro and macro HDF expressions of the commonly used symmetrical
7-segment pulse pattern can be gotten. Therefore, the macro HDF is

F (M) =
9

8

(
3

2
− 9

8
·
√

3

π

)
M4 − 4

√
3

π
M3 +

3

2
M2 (44)

Equation (44) is in full accord with the result given and verified by Holmes and Lipo [2].
The correctness and universality of the proposed model and algorithm are consequently
confirmed to a great extent.

5.2. Three-level three-phase inverter. Using the algorithm stated above, the ripple
current characteristic for the symmetrical pulse pattern of a three-level inverter with
a control factor kc will be analyzed. The implicit phase voltage modulation waves[

UAi UBi UCi

]T
for i = 1, 2, 3, 4, 5, 6 in the six triangles are as follows.

 UA1

UB1

UC1

 = MUDC


1

4

(
3 cos θ −

√
3 sin θ + 2

√
3kc sin θ

)
1

2

√
3kc sin θ

1

2

√
3 (kc − 1) sin θ



 UA2

UB2

UC2

 = MUDC


−1

2

√
3kc sin

(
θ − π

3

)
−1

2

√
3 (kc − 1) sin

(
θ − π

3

)
1

2

√
3 (kc − 1) sin θ



 UA3

UB3

UC3

 = UDC


1

4

(
2kc + M (1 − kc)

(
3 cos θ −

√
3 sin θ

))
−1

2
kc

(√
3M sin

(π

3
− θ
)
− 1
)

1

4

(
2kc − 3Mkc cos θ −

√
3M (2 − kc) sin θ

)



 UA4

UB4

UC4

 = UDC


1

2

(√
3M sin

(π

3
+ θ
)
− 1 − kc

(√
3M sin θ − 1

))
−1

2

(√
3M sin θ − 1

)
(kc − 1)

−1

2

(√
3Mkc sin θ − kc + 1

)



 UA5

UB5

UC5

 = UDC


1

4

(
4kc + M (1 − kc)

(
3 cos θ +

√
3 sin θ

)
− 2
)

1

2

(√
3M sin θ − 1 − kc

(√
3M sin

(
θ +

π

3

)
− 2
))

−1

4
(3Mkc (cos θ + sin θ) − 4kc + 2)
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 UA6

UB6

UC6

 = UDC


1

4

(
4kc + M (1 − kc)

(
3 cos θ +

√
3 sin θ

)
− 2
)

−1

4

(
Mkc cos θ −

√
3 (2 − kc) M sin θ + 2 − 4kc

)
−1

4

(
3Mkc

(
3 cos θ +

√
3 sin θ

)
− 4kc + 2

)


The three line voltages expressions are identical in the six triangles, which are shown

as follows. This well known fact can be explained through the vector definition and
construction Equation (2). The control factor kc has only heavy effect on the zero sequence
component and implicit phase voltage modulation waves with respect to the neutral point
0 created by the two identical capacitors C1 and C2. UAB

UAC

UBC

 =

√
3

4
MUDC

 √
3 cos θ − sin θ√
3 cos θ + sin θ

2 sin θ

T

The ripple current expressions are consistent with Equations (11) to (22). The micro
HDF expression fi(M, θ) for i = 1, 2, 3, . . . , 6 in each triangle shown in Figure 2(c) can
be gotten using Equation (39) and are very complicated. The size of the capacitors C1

and C2 has heavy effects on the fluctuation of the neutral voltages. The assumption
that capacitors have enough size has important theoretic significance. Because of the
symmetry, it is sufficient to analyze the macro HDF in the first 60◦-Sextant. The solving
process and expressions can be expressed as follows.

(1) 0 ≤ M ≤ 1
/√

3

F (M) =
3

π

[∫ π/6

0

f2(M, θ)dθ +

∫ π/3

π/6

f1(M, θ)dθ

]

=
27

16

(
2 −

√
3

π

)
M4 − 16

√
3 − 18

π
M3 +

9

4

(
1 −

√
3

π

)
M2

(45)

(2) 1
/√

3 < M ≤ 2/3,

F (M) =
3

π

[∫ θ1

0

f2(M, θ)dθ +

∫ π/6

θ1

f4(M, θ)dθ +

∫ π/3−θ1

π/6

f3(M, θ)dθ

+

∫ π/3

π/3−θ1

f1(M, θ)dθ

]
θ1=arcsin(1/

√
3M)−π/3

=
27

16

(
2 +

7
√

3

π

)
M4 − 4

π

(
4
√

3 + 5

√
3 − 1

M2
+ 9

)
M3

+
1

π

(
99π

4
− 45arc sin

√
3

3M
+

99
√

3

4

)
M2 − 1

π

(
55

3

√
3 − 1

M2
+ 18

)
M

+
1

π

(
5π − 10arc sin

√
3

3M
+

3
√

3

2

)

(46)
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(3) 2/3 < M ≤ 2
/√

3,

F (M) =
3

π

[∫ θ2

0

f6(M, θ)dθ +

∫ π/6

θ2

f4(M, θ)dθ +

∫ π/3−θ2

π/6

f3(M, θ)dθ

+

∫ π/3

π/3−θ2

f5(M, θ)dθ

]
θ2=π/3−arcsin(1/

√
3M)

=
27

8

(
1 −

√
3

π

)
M4 +

1

16π

 128
√

3 +
√

3
(
1 − 1

3M2

)√
1 − 1

3M2

+ 63
√

1 − 1
3M2 − 576

M3

+
1

4π

(
27π + 36arc sin

√
3

3M
− 9

√
3

)
M2 +

1

16π

(
59

√
3 − 1

M2
− 288

)
M

+
1

2π

(
2 + 4arc sin

√
3

3M
− 3

√
3

)

(47)

Holmes and Lipo [2] presented the resultant closed-form solutions of the macro HDFs of
the two-level inverter for several modulation strategies: simple sinusoidal PWM, one-sixth
third-harmonic injection PWM, one-quarter third-harmonic injection PWM, space vector
PWM, DPWMMIN, DPWMMAX, DPWM0, DPWM2 discontinuous PWM, DPWM1
discontinuous PWM, and DPWM3 discontinuous PWM. The switching frequency of the
inverter phase legs for discontinuous modulation is about two-third of that for continuous
modulation, so the switching frequency of discontinuous strategies can be increased by 3/2
for the same switching losses. Combined with Equations (45) to (47), the macro HDFs are
shown in Figure 5, which shows the prominent harmonic distortion difference between the
three-level inverter and the commonly used two-level inverter. It can be found that the
number of the levels, the zero-vector distribution factor and the modulation index have

Figure 5. Harmonic distortion factors (HDF) for three-level inverter space
vector PWM and different modulation strategies of two-level space vector
PWM with discontinuous strategy switching frequencies increased by 3/2
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heavy effect on the ripple current, usually evaluated using the HDF. The HDF of the three-
level inverter does not depend on the zero-vector distribution factor (called control factor)
in Equation (36), while the HDF of the two-level inverter highly depends on the zero-vector
distribution factor. The essential difference of the SVPWM of the two-level inverter shown
in Figure 5 lies in the zero-vector distribution factor. The distribution factor is either 1
or 0 for DPWM0, DPWM1, DPWM2, DPWM3, DPWMMIN and DPWMAX, while the
distribution factor is a constant value 0.5 for the space vector PWM in Figure 5. The HDF
reaches the maximum value if the modulation index is about 0.65 for the 6 discontinuous
PWM strategies, while the HDF presents a very small value in the whole linear modulation
range for the three-level inverter.

6. Conclusions. The ripple current and harmonic distortion depends very heavily on
the topology of the inverter and the PWM strategy. There are many strategies and more
new strategies are expected in the future. The quantitative and qualitative analysis of the
harmonic distortion and ripple current plays an important role in assessing the perfor-
mance. The derivation process is tedious and the expression is very complicated, so the
universal formulas for the ripple current formulations for space vector PWM (SVPWM)
were given. And then a programming algorithm for ripple current analysis for the multi-
level inverter was proposed. Additionally, the ripple current and harmonic distortion for a
two-level inverter and a three-level one were discussed using the algorithm, which verifies
its convenience and practicability. The universal ripple formulas and algorithm are fully
applicable to all kinds of space vector PWM strategies. Therefore, it provides a power-
ful tool for accurately comparing the harmonic distortion performance among different
PWM strategies and different level inverters, and even applicable to exploiting new PWM
strategy. In the future, the proposed universal formulations and computation algorithm
may be utilized to develop new SVPWM strategies. For example, if the HDF is set as the
objective function, the duration of each segment in Equation (34) can be determined using
the optimization method, and a current harmonic optimal strategy can be developed.
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