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Abstract. MapReduce that is widely used in the fast processing of massive dataset is
a typical distributed computing model and its performance largely depends on the state
of data distribution. Because the data content tends to be uneven together with the
randomness of the storage, data skew often occurs during the computing in MapReduce.
The study on the data skew in MapReduce currently mainly centers on the Reduce side
and less on the Map side. This paper extracts the data features by the data sampling,
constructs the histogram of data blocks in the Map side, judges the data skew degree
of each storage node according to the distribution status of data blocks, defines the file
balance deviation as the metrics of data skew of the entire file, and reduces the file balance
deviation by the data balancing algorithm. This paper proposes a content based data
balance algorithm which adopts the greedy strategy and can achieve a better approximate
solution to the optimal solution of the data balance distribution in the Map side. Through
several experiments with different data sets and compared with the random data block
distribution algorithm, the proposed algorithm can significantly reduce the deviation of
file balance and offers a better data balancing effect.
Keywords: Sampling, Data content, Histogram, Block, Data balance

1. Introduction. With the speeding up of data generation, the data scale that needs to
be processed from all walks of life expands dramatically. In the face of mass data process-
ing requirements, big data technology has set off a worldwide study and all kinds of big
data processing systems get great development. The open source Hadoop [1] from Apache
with high reliability and low cost advantage quickly becomes a widely adopted distributed
solution in the field. Hadoop consists of two key parts: HDFS [2] and MapReduce [3].
HDFS is used to solve the problem of mass data storage while MapReduce aims to deal
with the parallel computing of mass data. MapReduce has proven to be an efficient data
processing model but the drawback is that its performance is greatly influenced by the
data distribution state [4] and the appearance of data skew will cause a (or some) task to
take more time than the others resulting in the bottleneck of the whole system. Thus, the
study on the data distribution state and the data skew problem has important significance
to improve the MapReduce performance.

The main contribution of this research is to propose a content based data balance algo-
rithm. It first describes the data distribution state in MapReduce by means of sampling
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and next judges whether there exists data skew problem. By using the greedy strategy
[5] and through the method of data block exchange, the proposed method balances the
data distribution without changing the storage capacity of each storage node; therefore,
it can achieve a better approximate solution to the optimal solution of the data balance
distribution in the Map side.

The organization of this paper is as follows: related work is presented in Section 2; pre-
liminaries and the proposed method are described in Section 3 and Section 4 respectively;
experimental tests and result analysis are shown in Section 5; Section 6 concludes this
work.

2. Related Work. The histogram is often used to describe the state of data distribution,
which lays the foundation for the efficiency optimization in the distributed parallel com-
puting [6]. By using the tuple sampling method, [7] constructed the wavelet histogram
based on MapReduce. [8] proposed a Maxdiff histogram construction method based on
MapReduce. The framework of MapReduce is extended in [9] by adding data sample and
statistics before Map and after Reduce; thus, the construction method for the same width
and depth histogram based on MapReduce is improved.

The computing process of MapReduce consists of two phases, i.e., Map and Reduce.
The parallel process of data is implemented in the Map phase and the gathering process of
data is carried out in the Reduce phase [10]. Users only need to use the Map() function and
Reduce() function to implement the service logic and complete the distributed computing.
The map() function reads and writes data in the form of < key, value >. These data are
converted into other < key, value > pairs and they are written into the disk as middle
data. The Reduce() function reads and writes the < key, value > pairs from the Map()
function through the process of Shuffle. The pairs of the same Key are merged and new
< key, value > pairs are generated. The final results are output to the HDFS.

The bottleneck of performance may occur in both the Map phase and the Reduce phase.
The reasons that data skew may be generated in the Map phase and Reduce phase are
comprehensively analyzed in [11-14] and it is indicated that the imbalance distribution of
raw data will result in one or some Map tasks spending more time in processing the same
amount of data than others, and it is also indicated that the skew in the data content
itself and unreasonable default Hash partitioning method in Hadoop lead to one or some
Reduce tasks having far more amount of data to be processed than others.

In the Map phase, data is often treated without being preprocessed, so the data distri-
bution state cannot be obtained. In addition, the data skew in the Map phase is closely
related to the data content, but the data content is the attribute of the data itself and it
cannot be changed. Therefore, effective balance cannot be carried out in the Map func-
tion. In the Reduce phase, data has already been processed in the Map phase and the
data distribution state has been obtained; thus, the balance treatment can be done in the
Reduce function. Few studies are now centered on the data balance in the Map phase
while most focus on the data balance in the Reduce phase. The sampling strategy based
on tuple is proposed in [15,16]. The data block based sampling strategy is proposed in
[17,18] which first predict the data distribution and then adjust the partition function.
An incremental partition strategy is proposed in [19] which implements the data balance
in the Reduce side by multiple rounds of increment strategy.

Based on the above research status, this paper tries to preprocess the data by the
sampling method, based on which the data content based histogram is constructed to
implement the measurement and judgement on the data skew status in the data blocks
and the whole file. The raw data of the whole file is balanced through the data balance
algorithm which makes each node in the Map side as balanced as possible.
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3. Preliminaries.

3.1. Data sampling. Data skew in the Map side is mainly resulted from the imbalanced
distribution of the input data. If the state of data distribution can be known, it can
be adjusted and distributed reasonably and the data skew can be reduced. Because
MapReduce is targeted for the large-scale data processing, if the distribution state of the
whole data is to be analyzed, the cost would be too high. Thus, the distribution of data
can be predicted in the manner of sampling. It can be proved that the sampling data itself
is the result of multiple Bernoulli trials; therefore, it must obey the binomial distribution,
and when the number of tests is high enough, the binomial distribution approximately
obeys the normal distribution. Obviously, the more the sampling data is, the higher the
accuracy of the data distribution becomes, and the higher the sampling cost is. In this
article, the statistics information about the frequency of Key is obtained by adding a
sampling task. The details are as follows.

Step 1: the sampling size is determined by the Split size and the sampling coefficient
s, e.g., SplitSize = 128 MB, s = 5%, then SamSize = 128 ∗ 5% = 6.4 MB;

Step 2: set N sampling partitions to divide Split into N partitions with the aim to
eliminate the influence of data locality principle on the random sampling, e.g., N = 3;

Step 3: randomly sample SamSize/N data in every partition;
Step 4: compute the sum of frequencies of Key that appears in every Split sampling

data;
Step 5: count the sum of frequencies of Key in all the sampling data in the Reduce

side.
The data sampling algorithm is presented in Table 1. The sampling coefficient s is

related to the accuracy of the calculation results, and its optimal value should be deter-
mined several times according to the accuracy requirement and the computational power.
The purpose of setting up partition N is to exclude the influence of the principle of data
locality on the random sampling. It is suggested that in the sampling process, its opti-
mum value should be determined several times according to the size of data block and
the distribution of data, and 3 to 5 is recommended for N.

Table 1. Data sampling algorithm

Algorithm
Input: sampling coefficient s and the number of partitions N
Output: sum of frequencies of Key that appears in every Split sampling data
1) SamSize = SplitSize ∗ s
2) SamData[N ][SamSize/N ]
3) i = 0
4) while i < N
5) SamData[i] [SamSize/N ] ← random sampling
6) i + +
7) end while

3.2. Histogram of sampling data. According to the key status in the sampling data,
all keys are divided into KeyGNum groups, based on which the histogram of data blocks
and files are constructed.

Definition 3.1. Suppose the key value in the data sampling is x, then the frequency sum
of each subgroup is defined by

y = f(x), x ∈ KeyGi, i ∈ [1,KeyGNum]
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Definition 3.2. Set keyGi as X-axis and f(x) as Y-axis, construct histogram H and its
mathematical expression is:

H = {< keyGi, f(x) >, i ∈ [1,KeyGNum], x ∈ KeyG i}

Definition 3.3. Suppose the original data is divided into n Blocks, every Block is di-
vided into m key subgroups when the histogram is constructed, then all the data histogram
information of Block in this file can be expressed by the following matrix:

A =


a11 a12 · · · a1m

a21 a22 · · · a2m
...

...
...

an1 an2 · · · anm


where the ith line indicates the data histogram information of the ith Block, the jth column
represents the jth key subgroup in the histogram, and aij denotes the frequency information
of the ith Block in the jth key subgroup.

Because the data file uses fixed partition size when it is divided into Blocks, if the end of
the Block differences can be ignored, the following constraint condition can be obtained.

k=m∑
k=1

aik =
k=m∑
k=1

ajk, (i ̸= j) (1)

The above matrix A and the constraint condition can be treated as a mathematical
expression of file histogram based on data content.

If n Blocks are distributed and stored on N storage nodes (n≫ N) without changing
the storage capacity of each node and the frequency sum of each subgroup tries to achieve
a balanced distribution, the problem is transformed into dividing n row vectors into N
shares and making the values of m components in each share tend to be equal in matrix A
that contains constraint condition. The nature of the problem is to find a global optimal
solution of balanced distribution of a block without changing the data content and the
number of blocks of each node.

4. Content Based Data Balance Algorithm. The sampling data histogram can ap-
proximate to describe the distribution status of the original file on each storage node in a
distributed system. According to the distribution, the related mathematical models can
be defined.

4.1. Related definitions. If n blocks are equally allocated to N nodes, some nodes may
have more Blocks and others may have less Blocks. Obviously under the condition of the
same MapTask, nodes with more Blocks will have more computing time overhead than
those with less Blocks.

Definition 4.1. (Node balanced vectors). Suppose the maximum number of Blocks that
each node has is k, then node balanced vectors can be defined as

Aavg = (av1 av2 . . . avm) =

∑n
i=1 ai1

∑n
i=1 ai2

∑n
i=1 aim

n
∗ k

The arbitrary k row vectors in matrix A are added and combined into a new row vector,
the newly constructed matrix is defined as Ak, and then Ak must have Ck

n row vectors.
There are many similarity measurements between the row vectors and the balanced

vectors in Ak, e.g., Euclidean distance, Manhattan distance, Markov distance, and Angle
cosine. Considering the proposed algorithm focusing on whether the frequency of related
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components on each storage node is equal or not and placing more weight on the numer-
ical values, the Euclidean distance is selected as measurement for the similarity between
vectors in the proposed method.

Definition 4.2. (Combined matrix Ak). Suppose p is a row vector and p = (ai1 ai2 . . .
aim), the Euclidean distance between p and balance vector is

d =
√

(ai1 − av1)2 + (ai2 − av2)2 + . . . + (aim − avm)2

Definition 4.3. (File balancing deviation fd). Add all the distance between the row
vectors (constructed by all the nodes that have k blocks) and the balance vectors, define
the sum as the file balancing deviation, and suppose there are Nk nodes that have k Blocks.

fd = d1 + d2 + · · ·+ dNk

4.2. Algorithm description. The proposed data balance algorithm achieves the content
balance of every node by exchanging the Block without changing the number of Blocks of
each node. Thus to determine how many Blocks are stored on each node is the premise
of the proposed algorithm. According to the histogram information and Block number
distribution information, this paper proposes the data balance algorithm based on data
histogram. The details are as follows.

Step 1: Compute the node balancing vectors;
Step 2: Construct the combined matrix Ak;
Suppose the max Block number is k in the Block distribution information table, the

combined matrix Ak needs to be constructed. For example, a file is distributed on 5 nodes
and the block distribution on each node is presented in Table 2, it can be noticed that
the max Block number is 3, and then the combined matrix needed to be constructed is
A3 which has C3

14 = 364 row vectors.

Table 2. Block distribution of a file

Node1 Node2 Node3 Node4 Node5
Block 3 3 3 3 2

Step 3: Compute vector distance;
Compute the distance between all the row vectors in Ak and the node balanced vectors.
Step 4: Allocate Blocks according to the distance;
Select N unrelated row vectors with minimum d value from Ak, and allocate several

Blocks that construct the row vector to the same storage node.
The data balance algorithm is shown in Table 3.

5. Experimental Tests.

5.1. Settings. In order to verify the algorithm validity and superiority, we use the virtual
machine to build a Hadoop cluster composed of 6 nodes to carry out the test. The Hadoop
cluster has 2 NameNode nodes and 4 DataNode nodes and each node has 512 MB memory
and 8 GB hard drive. The OS is CentOS 6.5 and the Hadoop version is 2.6.0. Further,
the values of sampling coefficient s and the values of sampling partition N are set based
on several repeated experiments in order to highlight the experimental contrast effect.
Their values can be adjusted with almost no influence over the test results.

Step 1: The sampling algorithm is used to construct the data histogram of the entire
file. The 240 billion score data set collected by the GroupLens project team in the college
of computer science from the university of Minnesota is stored to the Hadoop cluster
constructed by the test, set the sampling coefficient s as 5%, 20% and 100%, set the
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Table 3. Data balance algorithm

Algorithm
Input: Matrix A and Block distribution quantity
Output: Block distribution information
1) Aavg[group] ← A[n][group];
2) while A is not null and n > k
3) Ak[i][group] ← A[n][group]; // Take any k rows data from matrix A

// accumulate into one row into matrix Ak

4) Index[i][k] ← 1 . . . k; // Mark the k rows subscript composed of Ak[i][group]
from matrix A

5) di ← |Ak[i][group]− Aavg[group]|;
6) min ← di // Search minimum value in di

7) A[Index[i][0]][group] . . .A[Index[i][k]][group]; //Find k rows data from matrix A
8) A[n− k][group] ← A[n][group] // Delete the k row data from matrix A
9) n = n− k;
10) end while

sampling partition N as 3, construct the data histogram of the data block and the data
histogram of the entire file and analyze the status of the data skew.

Step 2: According to the related information of the data histogram of the entire file
and the data histogram of every data Block, allocate the two schemes of using random
distribution and data histogram based data balance algorithm, compare the file balancing
deviation, and analyze the data skew status according to the node data histogram.

5.2. Results and analysis. The data set that is used in the test is the 24000000 score
data of 40000 movies from 260000 users, the score range is (0, 5), the data set size is
632.69 MB, data update time is in October 2016. Because the Block size is set to be 64
MB in the test clusters, the experimental data file is divided into 10 Blocks.

5.2.1. Data histogram. When s = 5%, the subgroup, the frequency of each group and the
statistics information in every Block are presented in Table 4.

Table 4. Sampling data I

[0, 1) [1, 2) [2, 3) [3, 4) [4, 5]
Block 1 6674 6376 29883 45014 34073
Block 2 4101 15935 21667 42892 37425
Block 3 16813 6993 49254 35180 13780
Block 4 3659 8595 17629 65541 26596
Block 5 13815 10240 27463 50131 20371
Block 6 4750 11825 51924 18450 35071
Block 7 8869 14358 30807 46770 21216
Block 8 5367 25892 7165 50514 33082
Block 9 5955 9562 42788 39454 24261
Block 10 16445 13819 46275 12116 33365

Use the sampling data information from the above table to construct the sampling data
histogram of each Block which is presented in Figure 1.

All sampling data Block histogram information is combined on the Reduce node, and
the histogram of the entire file sampling data is obtained as shown in Figure 2.
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Figure 1. s = 5%, block sampling data histogram

Figure 2. s = 5%, file sampling data histogram

Table 5. Sampling data II

[0, 1) [1, 2) [2, 3) [3, 4) [4, 5]
Block 1 14692 37506 119532 100057 216295
Block 2 16410 47741 86670 211560 125701
Block 3 67255 27965 197016 140723 55123
Block 4 14636 34380 80516 232165 126385
Block 5 15262 40962 109852 240529 81477
Block 6 19000 47301 207693 113802 140286
Block 7 15479 17426 83228 257082 114867
Block 8 21474 63569 28651 182059 152329
Block 9 33822 58254 123154 185776 57076
Block 10 25771 55276 245103 58465 103467

When s = 20%, the subgroup, the frequency of each group, and the statistics informa-
tion in every Block are presented in Table 5.
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Figure 3. s = 20%, block sampling data histogram

Figure 4. s = 20%, file sampling data histogram

Use the sampling data information from the above table to construct the sampling data
histogram of each Block which is presented in Figure 3.

All sampling data Block histogram information is combined on the Reduce node, and
the histogram of the entire file sampling data is obtained as shown in Figure 4.

When s = 100%, the subgroup, the frequency of each group and the statistics informa-
tion in every Block are presented in Table 6.

The data histogram of every Block is constructed according to the above table as is
shown in Figure 5.

All sampling data Block histogram information is combined on the Reduce node, and
the histogram of the entire file sampling data is obtained as shown in Figure 6.

Through the contrast of Figure 1, Figure 3, and Figure 5, when the sampling coefficient
s = 5%, the difference between the sampling data in every Block and the real data is big,
but when s = 20%, the difference is relatively small. Through the contrast of Figure 2,
Figure 4, and Figure 6, although the difference between the sampling data in every Block
and the real data is obvious, the difference of the histogram of file sampling data and
the histogram of the real data is relatively small, which can basically reflect the real file
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Table 6. Sampling data III

[0, 1) [1, 2) [2, 3) [3, 4) [4, 5]
Block 1 73456 187530 597664 500285 1081475
Block 2 82038 238708 433354 1057804 628506
Block 3 336277 139819 985084 703615 275615
Block 4 73184 171900 352580 1310825 531921
Block 4 76313 204812 549261 1202638 407386
Block 6 95002 236505 838461 569012 701430
Block 7 77397 87119 416143 1535412 324339
Block 8 107359 317847 143259 1210298 661647
Block 9 119114 191250 515772 1328890 285384
Block 10 128857 276382 1325504 42326 667337

Figure 5. Block data histogram

Figure 6. File data histogram
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distribution status. Through many experiments, when the sampling coefficient reaches
10%-15%, the requirements can be met.

In addition, through the entire file data histogram, the data content itself in the en-
tire file is not balanced distributed. The forth subgroup has obviously more data, the
first subgroup has less data. Through the Block data histogram, the data distribution
difference among several Blocks is obvious.

5.2.2. Data balance algorithm. 10 Blocks are distributed onto 4 storage nodes and the
Block distribution status is supposed to be: three triple Block nodes and one single Block
node. The two Block distribution algorithms are compared.

Plan 1: random distribution algorithm with file balancing deviation fd = 2495267.
The Block distribution status is presented in Table 7 and node data histogram is shown

in Figure 7.

Table 7. Block distribution status I

Node1 Node2 Node3 Node4
Block Numbers 3 3 3 1
Block Distribution Blocks 1, 2, 3 Blocks 4, 5, 6 Blocks 7, 8, 9 Block 10

Figure 7. Node data histogram in the random algorithm

Plan 2: data balance algorithm with file balancing deviation fd = 675231. The Block
distribution status is presented in Table 8 and node data histogram is shown in Figure 8.

Table 8. Block distribution status II

Node1 Node2 Node3 Node4
Block Numbers 3 3 3 1
Block Distribution Blocks 7, 8, 10 Blocks 2, 5, 6 Blocks 1, 3, 4 Block 9

NodeEV denotes the node expectation value in Figure 7 and Figure 8. Through the
contrast among NodeEV and Node1-Node4, it can be seen that the histogram difference
among NodeEV and Node1-Node4 is obvious in the random Block algorithm, and that the
histogram difference among Node1 to Node4 is small in the data balance algorithm which
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Figure 8. Node data histogram in the balance algorithm

is very close to the histogram distribution of NodeEV. Thus, the data balance algorithm
has better data balancing effect than the random Block distribution algorithm. Through
multiple experiment tests with different data, the data balance algorithm has significant
improvement in the file balancing deviation compared with the random Block distribution
algorithm (increased by (2495267 − 675231)/2495267 = 72.94% in the test result of this
paper).

6. Conclusions. Regarding the data skew in the Map side appearing in the MapReduce
model, this paper proposes a data balance algorithm based on the sampling histogram.
The proposed algorithm defines the file balancing deviation and reduces the file balancing
deviation through exchanging the data blocks stored in the nodes under the condition of
keeping the storing capacity of all nodes unchanged. Through multiple experiment tests
with different data, the proposed algorithm has better balancing effect than the random
Block distribution algorithm. It should be pointed out that the proposed algorithm uses
the greedy strategy in the computing process and the strategy does not guarantee to
find the global optimal solution to the data balancing distribution, but it can find a
good approximate solution to the global optimal solution. Thus, the proposed method
has great application value in the engineering field. In addition, the proposed algorithm
combines three different research angles of data balance from the data content algorithm,
data storage balance algorithm, and data computing balance algorithm. Such a multi-
dimensional data balance study method, we believe, has potential research value and
further research achievements are expected in the future.
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