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Abstract. The robust exponential stability problem for a class of uncertain fuzzy sto-
chastic neutral neural networks systems with mixed delays is concerned about. Based on
the Lyapunov functional and the stochastic stability theory, the sufficient conditions are
developed in terms of linear matrix inequalities (LMIs). Examples and simulations are
provided to illustrate the effectiveness and the less conservatism of the proposed method.
Keywords: Robust exponential stability, Stochastic neutral neural networks, Linear
matrix inequality (LMI), Mixed time-varying delays

1. Introduction. During the past several decades, neural networks have gained great
attention because of their massively potential applications in pattern classification, re-
construction of moving image and combinatorial optimization. In such applications, to
ensure the equilibrium point of the designed networks stable is a very important issue.
In addition, time delay, uncertainties and stochastic disturbance are considered as three
main factors to affect the stability performance of various types of neural networks, so
the stability analysis of stochastic uncertain neural networks with various time delays has
been widely investigated by many researchers and many novel results have been reported,
see, e.g., [1-10] and the references therein.

On the other hand, many practical systems such as chemical engineering system, heat
exchanges and lossless transmission system are described by neutral functional differential
equation that involves the delays in both its state and the derivative of the state, this
kind of system is called neutral-type system or neutral system, which is another kind of
time-delay system, it contains the information of past state, and time delay occurs in the
derivatives of system state. Because of the existence of neutral term, the stability analysis
of neutral delay systems seems to be a more attractive and complicated issue, and during
the past decades, considerable meaningful results about stability analysis, H∞ and L2-L∞
filters design of stochastic systems with neutral term have been obtained and reported,
see [11-20] and the references therein. Especially in [19], the stability result for neutral
stochastic neural networks with time-varying delays is obtained and in [20], L2-L∞ filter
problem is studied, and the introduction of Lemma 2.2 has obtained better results than
the use of Finsler Lemma, free-weighting matrix and model-transformation.
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In recent many decades, fuzzy systems have attracted rapidly growing interest. Among
them, Takagi-Sugeno (T-S) model, which is described by a set of IF-THEN rule, has
been considered as a very powerful and convenient tool to approximate complex nonlin-
ear systems, and many significant research achievements about stability analysis, state
estimation, filter design, dissipativity analysis of the T-S model of fuzzy systems have
been obtained, see, for example, [21-26] and the reference therein. To the best of authors’
knowledge, there are not many results about the robust exponential stability on fuzzy
stochastic neutral neural networks system with mixed delay published in recent years,
which motivates our idea.

In this study, the robust exponential stability results are obtained for a class of uncertain
fuzzy stochastic neutral neural networks by constructing proper Lyapunov functional, sto-
chastic stability theory and linear matrix inequality approach. The mixed delays comprise
discrete and distributed time-delays, and the parameter uncertainties are time-varying and
norm-bounded. A new method is introduced to deal with neutral terms in the studied
systems, and more effective results are obtained by comparing with the existing results.

By comparing with the results in [19,20], the contributions of this paper exist in the
following aspects.
• A new approach is adopted in uncertain fuzzy stochastic neutral neural networks system
to deal with neutral terms, and the new results have been obtained.
• The neuron activation function is assumed to satisfy sector-bounded condition, which
is more general and less restrictive than Lipschitz condition, so less conservatism results
can be expected.

This paper is organized as follows. In Section 2, system description is formulated and
definition, lemmas are introduced. The main results are given and proved in Section 3.
In Section 4, numerical example and simulation are given to verify the proposed results.
Conclusion and future research direction have been made in Section 5.

Notation: Throughout this paper, if not explicit, matrices are assumed to have com-
patible dimensions. The notation M > (≥, <,≤) 0 means that the symmetric matrix
M is positive-definite (positive-semidefinite, negative, negative-semidefinite). λmin(·) and
λmax(·) denote the minimum and the maximum eigenvalues of the corresponding matrix.
The superscript “T” stands for the transpose of a matrix; the shorthand diag{· · · } de-
notes the block diagonal matrix; ∥ · ∥ represents the Euclidean norm for vector or the
spectral norm of matrices. I refers to an identity matrix of appropriate dimensions. E{·}
stands for the mathematical expectation, and ∗ means the symmetric terms. Sometimes,
the arguments of a function will be omitted in the analysis when no confusion can arise.

2. Problem Statement and Preliminaries. Consider the Takagi-Sugeno uncertain
fuzzy stochastic neutral neural networks system with mixed time-delays described by the
following IF-THEN rule:
Rule i: IF θ1(t) is ηi

1, θ2(t) is ηi
2,. . . , θp(t) is ηi

p, THEN

d[x(t) −Gi(x(t− τ(t)))]

=

[
−Ai(t)x(t) + A1i(t)f(x(t)) + A2i(t)f(x(t− τ(t))) + A3i(t)

∫ t

t−δ(t)

f(x(s))ds

]
dt

+

[
Di(t)x(t) +D1i(t)x(t− τ(t)) +D2i(t)

∫ t

t−δ(t)

f(x(s))ds

]
dω(t),

(1)

where i = 1, 2, . . . , r, r is the number of IF-THEN rules, x(t) ∈ Rn is the state vector, the
premise variables vector θ(t) = [θ1(t), θ2(t), . . . , θp(t)]

T is the function of state variables, ηi
j

are the fuzzy set, f(x(t)) = [f1(x(t)), f2(x(t)), . . . , fn(x(t))]T ∈ Rn is the neuron activation
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function with f(0) = 0, and n denotes the number of neurons in a neural network;
ω(t) = [ω1(t), ω2(t), . . . , ωm(t)]T ∈ Rm is an m-dimension Brownian motion defined on a
complete probability space (Ω,F , P ), which satisfies

E{dω(t)} = 0, E
{
dω2(t)

}
= dt.

τ(t) is the discrete time delay and δ(t) is the distributed delay, which are assumed to
satisfy

0 ≤ τ(t) ≤ τ, τ̇(t) = µ, 0 ≤ δ(t) ≤ δ,

where τ , µ and δ are some positive scalar constants, we denote ρ(Gi) is the spectral radius
ofGi, which satisfies ρ(Gi) < 1, Ai(t) = Ai+∆Ai(t), A1i(t) = A1i+∆A1i(t), A2i(t) = A2i+
∆A2i(t), A3i(t) = A2i + ∆A3i(t), Di(t) = Di + ∆Di(t), D1i(t) = D1i + ∆D1i(t), D2i(t) =
D2i + ∆D2i(t), Ai, A1i, A2i, A3i, Di, D1i and D2i are known real constant matrices with
appropriate dimensions, and Ai = diag{a1, a2, . . . , an} is a diagonal matrix with positive
entries ai > 0, (i = 1, 2, . . . , n), ∆Ai(t), ∆A1i(t), ∆A2i(t), ∆A3i(t), ∆Di(t), ∆D1i(t),
∆D2i(t) are unknown matrices representing norm-bounded parameter uncertainties, which
are assumed to satisfy[

∆Ai(t) ∆A1i(t) ∆A2i(t) ∆A3i(t) ∆Di(t) ∆D1i(t) ∆D2i(t)
]

= MiHi(t)
[
N1i N2i N3i N4i N5i N6i N7i

]
,

(2)

where Mi, N1i, N2i, N3i N4i, N5i, N6i and N7i are known real constant matrices and Hi(t)
is an unknown time-varying matrix function satisfying

HT
i (t)Hi(t) ≤ I, ∀i ∈ S. (3)

The parameter uncertainties ∆Ai(t), ∆A1i(t), ∆A2i(t), ∆A3i(t), ∆Di(t), ∆D1i(t), ∆D2i(t)
and ∆D3i(t) are said to be admissible if both (2) and (3) hold.

By using a standard fuzzy inference method, the defuzzified output of system (1) can
be expressed by the following global model:

d[x(t) −Gi(x(t− τ(t)))]

=
r∑

i=1

hi(θ(t))

{[
− Ai(t)x(t) + A1i(t)f(x(t)) + A2i(t)f(x(t− τ(t)))

+ A3i(t)

∫ t

t−δ(t)

f(x(s))ds

]
dt+

[
Di(t)x(t) +D1i(t)x(t− τ(t))

+D2i(t)

∫ t

t−δ(t)

f(x(s))ds

]
dω(t)

}
,

(4)

where

hi(θ(t)) =
µi(θ(t))∑r
j=1 hj(θ(t))

, µi(θ(t)) =

p∏
j=1

ηi
j(θj(t)),

and ηi
j(θj(t)) is the grade of membership of ηj(t) in ηi

j, then by the theory of fuzzy sets,
we have

µi(θ(t)) ≥ 0, (i = 1, 2, . . . , r),
r∑

i=1

hi(θ(t)) > 0.

Therefore, it is implied that

hi(θ(t)) ≥ 0, (i = 1, 2, . . . , r),
r∑

i=1

hi(θ(t)) = 1. (5)
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The following lemmas, assumption and definition are introduced for the convenient proof
of our main results.

Definition 2.1. The neutral stochastic delay system (1) is said to be mean-square expo-
nentially stable if there exist a pair of scalars α, β such that

E
{
∥x(t)∥2

}
≤ αe−βt sup

θ∈[−τ,0]

E
{
∥ϕ(0)∥2

}
.

Assumption 2.1. For i ∈ {1, 2, . . . , n}, ∀x, y ∈ R, x ̸= y, the neuron activation function
f(·) is continuous, bounded and satisfies:

[f(x) − f(y) − Λ1(x− y)]T [f(x) − f(y) − Λ2(x− y)] < 0, (6)

where Λ1 and Λ2 are some constant known matrices.

Remark 2.1. In this paper, the above assumption is made on neuron activation function,
which is called sector-bounded neuron activation function. When Λ1 = Λ2 = −Λ, the
condition (6) becomes

[f(x) − f(y)]T [f(x) − f(y)] ≤ (x− y)T ΛT Λ(x− y).

So it is less restrictive than the descriptions on both the sigmond activation functions
and the Lipschitz-type activation functions.

Lemma 2.1. [20] For σ > 0 and two scalars: a, b with 0 < a < b < σ, let n-dimensional

vector functions x(t), f̂(t), and a matrix D ∈ Rn×n satisfy the neutral differential equa-
tions:

d[x(t) −Dx(t− σ)]

dt
= f̂(t), t ≥ 0, (7)

where the initial condition x(θ) = ψ(θ) (θ ∈ [−σ, 0]). For any constant matrix W > 0,
W = W T ∈ Rn×n, if the following integrals are well defined, then

−(b− a)

∫ t−a

t−b

f̂T (s)Wf̂(s) ≤ η(t)ΩηT (t), (8)

where η(t) =
[
xT (t− a) xT (t− b) xT (t− a− σ) xT (t− b− σ)

]
, and

Ω =


−W W WD −WD
∗ −W −WD WD
∗ ∗ −DTWD DTWD
∗ ∗ ∗ −DTWD

 (9)

Lemma 2.2. [7] For any positive matrix M = MT ∈ Rn×n, scalar ϱ > 0, vector function
ω : [0, ϱ] → Rn such that the integrations are well defined, the following inequality holds:[∫ ϱ

0

ω(s)ds

]T

M

[∫ ϱ

0

ω(s)ds

]
≤ ϱ

∫ ϱ

0

ωT (s)Mω(s)ds.

Lemma 2.3. [7] For given proper matrices D, E and F with F TF ≤ I and scalar ϵ > 0,
the following inequality holds

DFE + ETF TDT ≤ ϵDDTQ+ ϵ−1EET .
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3. Main Results. In this section, firstly, when the parameter uncertainties are not taken
into account, the system (4) becomes the following one:

d[x(t) −Gi(x(t− τ(t)))]

=
r∑

i=1

hi(θ(t))

{[
− Aix(t) + A1if(x(t)) + A2if(x(t− τ(t))) + A3i

∫ t

t−δ(t)

f(x(s))ds

]
dt

+

[
Dix(t) +D1ix(t− τ(t)) +D2i

∫ t

t−δ(t)

f(x(s))ds

]
dω(t)

}
,

(10)

then we have the following Theorem 3.1.

Theorem 3.1. For given τ > 0, µ > 0, δ > 0, the system described by (10) is mean
square exponentially stable in the sense of Definition 2.1, if there exist positive-definition
matrices P , Q1, Q2, Q3, Q4, Q5 and real matrix of appropriate dimensions matrices Wi

such that the following LMIs hold:

Θi =



Θ11i Θ12i −Q3Gi PiA3i Θ15i PA2i −AT
i W

T
i DT

i Pi

∗ Θ22i Θ23i −GT
i PA3i −GT

i PA1i Θ26i 0 DT
1iPi

∗ ∗ Θ33i 0 0 0 0 0

∗ ∗ ∗ −Q5 0 0 AT
3iW

T
i DT

2iPi

∗ ∗ ∗ ∗ Θ55i 0 AT
1iW

T
i 0

∗ ∗ ∗ ∗ ∗ Θ66i AT
2iW

T
i 0

∗ ∗ ∗ ∗ ∗ ∗ Θ77i 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −Pi


< 0, (11)

where

Θ11i = Q1 +Q2 −Q3 − PiAi − AT
i P − λ1iF1, Θ12i = AT

i PiGi +Q3(Gi + I),

Θ15i = PA1i − λ1iF2, Θ22i = −(1 − µ)Q1 − (Gi + I)TQ3(Gi + I) − λ2iF1,

Θ23i = (Gi + I)TQ3Gi, Θ26i = −GT
i PA2i − λ2iF2,

Θ33i = −(1 − 2µ)Q2 −GT
i Q3Gi, Θ55i = δ2Q5 +Q4 − λ1iI,

Θ66i = −(1 − µ)Q4 − λ2iI, Θ77i = −Wi −W T
i + τ 2Q3.

Proof: For the convenience of proof, we denote

gi(t) = −Aix(t) + A1if(x(t)) + A2if(x(t− τ(t))) + A3i

∫ t

t−δ(t)

f(x(s))ds,

σi(t) = Dix(t) +D1ix(t− τ(t)) +D2i

∫ t

t−δ(t)

f(x(s))ds,

and

d[x(t) −Gix(t− τ(t))]

dt
= η(t). (12)

Then system (10) can be rewritten as

d[x(t) −Gix(t− τ(t))] =
r∑

i=1

hi(θ(t)) {gi(t)dt+ σi(t)dω(t)} . (13)
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By Lemma 2.1 and (12), the following equation can be obtained (see Lemma 2.2 in [20])∫ t

t−τ(t)

η(s)ds = x(t) −Gix(t− τ(t)) − x(t− τ(t)) +Gix(t− 2τ(t))

= x(t) − (Gi + I)x(t− τ(t)) +Gix(t− 2τ(t)).

(14)

Choose a Lyapunov-Krasovskii functional candidate as

V (x(t), t) =
5∑

n=1

Vn(x(t), t), (15)

where

V1(x(t), t) = [x(t) −Gi(x(t− τ(t)))]TP [x(t) −Gi(x(t− τ(t)))],

V2(x(t), t) =

∫ t

t−τ(t)

xT (s)Q1x(s)ds+

∫ t

t−2τ(t)

xT (s)Q2x(s)ds,

V3(x(t), t) = τ

∫ 0

−τ(t)

∫ t

t+α

ηT (s)Q3η(s)dsdα,

V4(x(t), t) =

∫ t

t−τ(t)

fT (x(s))Q4f(x(s))ds,

V5(x(t), t) = δ

∫ t

t−δ(t)

∫ t

t+θ

fT (x(s))Q5f(x(s))dsdθ,

Then, the stochastic differential of V (x(t), t) along system (10) can be obtained as follows:

dV (x(t), t) = LV (x(t), t)dt+ 2x(t)TPσi(t)dω(t), (16)

where

LV (x(t), t) = L
5∑

n=1

Vn(x(t), t), (17)

and

LV1(x(t), t) =
r∑

i=1

hi(θ(t))
{

2 [x(t) −Gix(t− τ(t))]T Pgi(t) + σT
i (t)Pσi(t)

}
, (18)

LV2(t, x(t)) = xT (t)(Q1 +Q2)x(t) − (1 − µ)xT (t− τ(t))Q1x(t− τ(t))

− (1 − 2µ)xT (t− 2τ(t))Q2x(t− 2τ(t)),
(19)

LV3(t, x(t)) ≤ τ 2ηT (t)Q3η(t) − τ(t)

∫ t

t−τ(t)

ηT (s)Q3η(s)ds, (20)

LV4(x(t), t) = fT (x(t))Q4f(x(t)) − (1 − µ)fT (x(t− τ(t)))Q4f(x(t− τ(t))), (21)

LV5(x(t), t) = δ2fT (x(s))Q5f(x(s)) − δ

∫ t

t−δ(t)

fT (x(s))Q5f(x(s))ds, (22)
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By Lemma 2.2, we have

−δ
∫ t

t−δ(t)

fT (x(s))Q5f(x(s))ds ≤ −δ(t)
∫ t

t−δ(t)

fT (x(s))Q5f(x(s))ds

≤ −
[∫ t

t−δ(t)

f(x(s))ds

]T

Q5

[∫ t

t−δ(t)

f(x(s))ds

]
.

(23)

By Lemma 2.1,

−τ(t)
∫ t

t−τ(t)

ηT (s)Q3η(s)ds ≤ ζ(t)ΩζT (t), (24)

where ζ(t) =
[
xT (t) xT (t− τ(t)) xT (t− 2τ(t))

]
and

Ω =

 −Q3 Q3(Gi + I) −Q3Gi

∗ −(Gi + I)TQ3(Gi + I) (Gi + I)TQ3Gi

∗ ∗ −GT
i Q3Gi

 ,
then by (5) and (13), for any compatible dimensions matrix Wi, we can get

2ηT (t)
r∑

i=1

hi(θ(t))
{
Wi

[
(gi(t) − η(t))dt+ σi(t)dω(t)

]}
= 0. (25)

From (6), for i = 1, 2, 3, . . . , n, we have[
fi(xi(t)) − l−i x(t)

]T [
fi(xi(t)) − l+i x(t)

]
≤ 0,[

fi(xi(t− τ(t))) − l−i x(t− τ(t))
]T [

fi(xi(t− τ(t))) − l+i x(t− τ(t))
]
≤ 0.

(26)

Then there exist scalars λ1i > 0 and λ2i > 0 such that

−λ1i

[
xi(t)

fi(xi(t))

]T [
F1 F2

∗ I

] [
xi(t)

fi(xi(t))

]
≥ 0, (27)

−λ2i

[
xi(t− τ(t))

fi(xi(t− τ(t)))

]T [
F1 F2

∗ I

] [
xi(t− τ(t))

fi(xi(t− τ(t)))

]
≥ 0, (28)

where F1 =
l−i l+i +l+i l−i

2
, F2 = − l−i +l+i

2
.

By adding (19)-(25) and (27) and (28) to the right side of (16), we have

dV (t, x(t)) = LV (x(t), t)dt+ 2x(t)TPσi(t)dω(t)

≤ ξT (t)Θ̄iξ(t)dt+ 2ηT (t)Wiσi(t)dω(t) + 2x(t)TPσi(t)dω(t),
(29)

where

ξT (t)=

[
xT (t)xT (t− τ(t))xT (t− 2τ(t))

[∫ t

t−δ(t)

f(x(s))ds

]T

fT (x(t))fT (x(t− τ(t)))ηT (t)

]
,

Θ̄i =



Θ11i Θ12i −Q3Gi PA3i Θ15i PA2i A
T
i W

T
i

∗ Θ22i Θ23i −GT
i PA3i −GT

i PA1i Θ26i 0

∗ ∗ Θ33i 0 0 0 0

∗ ∗ ∗ −Q5 0 0 AT
3iW

T
i

∗ ∗ ∗ ∗ Θ55i 0 AT
1iW

T
i

∗ ∗ ∗ ∗ ∗ Θ66i AT
2iW

T
i

∗ ∗ ∗ ∗ ∗ ∗ Θ77i


+



DT
i

DT
1i

0

DT
2i

0

0

0


P



DT
i

DT
1i

0

DT
2i

0

0

0



T

(30)
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By Schur complement, Θ̄i < 0 is equal to Θi < 0, and then integrating from 0 to t on
both sides of (29) and taking the mathematical expectation, we have

E{V (x(t), t)} ≤ E{V (x(0), t)} +

∫ t

0

E
{
ξT (t)Θiξ(t)dt

}
≤ E{V (x(0), t)} − λ

∫ t

0

E
{
|x(t) |2 dt

}
,

(31)

where λ = min
{
λmin

(
−Θ̄i

)}
> 0. From (15), it is easy to know that there exists a scalar

a = min{λmin(Pi)} such that the following inequality holds:

V (x(t), t) ≥ a |x(t) |2 . (32)

From (30), we can have

E
{
|x(t)|2

}
≤ a−1E{V (x(0), t)} − a−1λ

∫ t

0

E
{
|x(t)|2dt

}
. (33)

By Gronwall’s inequality and (33) we can obtain

E
{
|x(t)|2

}
≤ a−1V (x(0), t)e−a−1λt. (34)

Note that there exists a scalar c > 0 such that

a−1V (x(0), t) ≤ c sup
θ∈[−τ,0]

|ϕ(θ)|2, (35)

and then we can obtain

E
{
|x(t)|2

}
≤ α sup

θ∈[−r,0]

E
{
|ϕ(0)|2

}
e−λ̃t, (36)

where α = a−1c, λ̃ = a−1λ. By Definition 2.1, we can obtain system (10) is exponentially
stable in mean square sense. This completes the proof.

Remark 3.1. Lemma 2.1 is a good way to reducing conservatism when studying the
stability of neutral stochastic time-delay systems, so it has been utilized widely in neutral
time-delay systems (see Example 5.1 in [20] and the references therein).

When uncertainties exist, for system (1), the following Theorem 3.2 can be easily ob-
tained.

Theorem 3.2. For given scalars τ > 0, µ > 0, δ > 0, the system described by (1) is
robust exponentially stable for all admissible uncertainties satisfying (2) and (3), if there
exist positive-definition matrices P , Q1, Q2, Q3, Q4 and Q5, positive scalars λ1i, λ2i, β1i

and β2i such that the following LMIs hold:

∆i =



∆11i ∆12i −Q3Gi ∆14i ∆15i ∆16i −AT
i W

T
i DT

i P PMi 0

∗ ∆22i ∆23i ∆24i −GT
i PA1i Θ26i 0 DT

1iP −GT
i PMi 0

∗ ∗ ∆33i 0 0 0 0 0 0 0

∗ ∗ ∗ ∆44i ∆45i ∆46i AT
3iW

T
i DT

2iP 0 0

∗ ∗ ∗ ∗ ∆55i ∆56i AT
1iW

T
i 0 0 0

∗ ∗ ∗ ∗ ∗ ∆66i AT
2iW

T
i 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∆77i 0 WiMi 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −P 0 PMi

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −β1i 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −β2i



< 0, (37)
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where

∆11i = Θ11i + β1iN
T
1iN1i + β2iN

T
5iN5i, ∆12i = AT

i PiGi +Q3(Gi + I) + β2iN
T
5iN6i,

∆14i = PA3i − β1iN
T
1iN4i + β2iN

T
5iN7i, ∆15i = PA1i − λ1iF2 − β1iN

T
1iN2i,

∆16i =PA2i − β1iN
T
1iN3i,∆22i =−(1 − µ)Q1 − (Gi + I)TQ3(Gi + I) − ϵ2iF1 + β2iN

T
6iN6i,

∆23i = (Gi + I)TQ3Gi, ∆24i = −GT
i PA3i + β2iN

T
6iN7i,

∆26i = −GT
i PA2i − λ2iF2, ∆33i = −(1 − 2µ)Q2 −GT

i Q3Gi,

∆44i = −Q5 + β1iN
T
4iN4i + β2iN

T
7iN7i, ∆45i = β1iN

T
4iN2i,

∆46i = β1iN
T
4iN3i, ∆55i = δ2Q5 +Q4 − U1 + β1iN

T
2iN2i, ∆56i = β1iN

T
2iN3i,

∆66i = −(1 − µ)Q4 − λ2I + β1iN
T
3iN3i, ∆77i = −Wi −W T

i + τ 2Q3.

Proof: Substituting (3) into (9), according to Schur complement, (9) is equal to

Θi + ϕT
1Hi(t)ϕ2 + ϕT

2H
T
i (t)ϕ1 + ϕT

3Hi(t)ϕ4 + ϕT
4H

T
i (t)ϕ3 < 0, (38)

where

ϕ1 = [MT
i P −MT

i PGi 0 0 0 0 MT
i W

T
i 0], ϕ2 = [−N1i 0 0 N4i N2i N3i 0 0],

ϕ3 = [0 0 0 0 0 0 0 MT
i P ], ϕ4 = [N5i N6i 0 N7i 0 0 0 0].

By Lemma 2.3, there exist positive scalars β1i and β2i such that the following inequality
holds:

Θi +
1

β1i

ϕT
1 ϕ1 + β1iϕ

T
2 ϕ2 +

1

β2i

ϕT
3 ϕ3 + β2iϕ

T
4 ϕ4 < 0. (39)

By Schur complement, (39) is equal to (37). So the proof is completed.
When there are no fuzzy rule and distribution delay, system (1) will reduce to the

following one, which has been researched and discussed by [19,20]

d[x(t) −G(x(t− τ(t)))] = [−A(t)x(t) + A1(t)f(x(t)) + A2(t)f(x(t− τ(t)))]dt

+ [D(t)x(t) +D1(t)x(t− τ(t))]dω(t),
(40)

where
A(t) = A+ ∆A(t), A1(t) = A1 + ∆A1(t), A2(t) = A2 + ∆A2(t),

D(t) = D + ∆D(t), D1(t) = D1 + ∆D1(t),

and[
∆A(t) ∆A1(t) ∆A2(t) ∆D(t) ∆D1(t)

]
= MH(t)

[
N1 N2 N3 N5 N6

]
, (41)

then for system (40), we have the following Corollary 3.1.

Corollary 3.1. For given scalars τ > 0, µ > 0, the system (40) is robustly exponen-
tially stable for all admissible uncertainties satisfying (2) and (3), if there exist positive-
definition matrices P , Q1, Q2, Q3 and Q4, matrix W , positive scalars λ1, λ2, β1 and β2

such that the following LMI holds:

∆ =



∆11 ∆12 −Q3G ∆15 ∆16 −ATW T DTP PM 0
∗ ∆22 ∆23 −GTPA1 ∆26 0 DT

1 P −GTPM 0
∗ ∗ ∆33 0 0 0 0 0 0
∗ ∗ ∗ ∆55 ∆56 AT

1W
T 0 0 0

∗ ∗ ∗ ∗ ∆66 AT
2W

T 0 0 0
∗ ∗ ∗ ∗ ∗ ∆77 0 WM 0
∗ ∗ ∗ ∗ ∗ ∗ −P 0 PM
∗ ∗ ∗ ∗ ∗ ∗ ∗ −β1 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −β2


< 0, (42)
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where

∆11 = Q1 +Q2 −Q3 − PA− ATP − λ1F1 + β1N
T
1 N1 + β2N

T
5 N5,

∆12 = ATPG+Q3(G+ I) + β2N
T
5 N6, ∆15 = PA1 − λ1F2 − β1N

T
1 N3,

∆16 = PA2 − β1N
T
1 N2, ∆22 = −(1 − µ)Q1 − (G+ I)TQ3(G+ I) − λ2F1 + β2N

T
6 N6,

∆23 = (G+ I)TQ3G, ∆26 = −GTPA2 − λ2F2,

∆33 = −(1 − 2µ)Q2 −GTQ3G, ∆55 = Q4 − λ1I + β1N
T
2 N2,

∆56 = β1N
T
2 N3, ∆66 = −(1 − µ)Q4 − λ2I + β1N

T
3 N3, ∆77 = −W −W T + τ 2Q3.

The proof of Corollary 3.1 is similar to that of Theorem 3.1, so it is omitted here.

4. Numerical Example. In this section, two numerical examples are presented to demo-
nstrate the effectiveness of the developed method on the obtained results.

Example 4.1. Consider system (4) with the following defuzzified output (i = 1, 2):

d[x(t) −Gi(x(t− τ(t)))]

=
2∑

i=1

hi(θ(t))

{[
− Ai(t)x(t) + A1i(t)f(x(t)) + A2i(t)f(x(t− τ(t)))

+ A3i(t)

∫ t

t−δ(t)

f(x(s))ds

]
dt+

[
Di(t)x(t) +D1i(t)x(t− τ(t))

+D2i(t)

∫ t

t−δ(t)

x(s)ds

]
dω(t)

}
,

(43)

where

G1 =

[
−0.2 0
0.06 0.15

]
, A1 =

[
−0.4 0

0 −0.3

]
, A11 =

[
−5 0.1
1 −3

]
, A21 =

[
0.1 0
0 0.1

]
,

D1 =

[
0.2 0
0 0.2

]
, D11 =

[
0.5 −0.3
0.5 2

]
, D21 =

[
0.5 −0.3
0.5 2.0

]
, A31 =

[
0.2 0.1
−0.1 −0.3

]
,

G2 =

[
−0.1 0
0.2 0.2

]
, A2 =

[
−0.5 0

0 −0.2

]
, A12 =

[
3 0
0 2

]
, A22 =

[
0.3 1.2
2 −0.5

]
,

D2 =

[
0.2 1
2.5 −0.6

]
, D12 =

[
1.2 0.2
−0.5 1.0

]
, D22 =

[
1.0 0.3
−0.4 0.8

]
, A32 =

[
−0.2 0.1
−0.3 0.25

]
,

and M11 = 0.2I, M12 = 0.3I, M21 = 0.2I, M22 = 0.2I, N11 = 0.2I, N12 = 0.1I,
N21 = 0.2I, N22 = 0.2I, N31 = 0.1I, N32 = 0.2I, τ = 0.4, µ = 0.5, δ = 0.1. Substituting
the parameters above into LMI (37), by Matlab LMI toolbox, one feasible solution can be
obtained as follows:

P =

[
0.1536 −0.0046
−0.0046 0.1497

]
, R1 =

[
0.0812 −0.0415
−0.0415 0.0864

]
, R2 =

[
1.4662 −0.4043
−0.4043 1.2144

]
,

R3 =

[
0.0088 −0.0058
−0.0058 0.0122

]
, R4 =

[
0.0520 0.0051
0.0051 0.0565

]
, Q1 =

[
0.0881 −0.0174
−0.0174 0.0902

]
,

Q2 =

[
0.0704 −0.0139
−0.0139 0.0717

]
, Q3 =

[
0.0529 −0.0102
−0.0102 0.0537

]
, Q4 =

[
0.0318 −0.0060
−0.0060 0.0322

]
,

Q =

[
0.0318 −0.0060
−0.0060 0.0322

]
, γ = 297.6609.

The fuzzy membership functions are taken as h1(θ(t)) = sin2(x(t)), h2(θ(t)) = 1 −
sin2(x(t)), the four random initial values are chosen for x1(t) and x2(t) respectively, and
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Figure 1. State curves of x(t)

the simulation results of the state response are plotted in Figure 1. From the simulation
results we can see that for different initial values of state, the considered system is robustly
stable.

Example 4.2. Consider the neutral stochastic neural networks (40) with the following
parameters (Example 1 in [20]):

G =

[
0.35 0
0.2 0.6

]
, A =

[
1.2 0
0 1.15

]
, A1 =

[
−0.1 0.4
0.2 −0.5

]
, A2 =

[
0.1 −1
−1.4 0.4

]
,

D1 =

[
0.23 0.1
0.3 0.2

]
, D2 =

[
0.1 −0.2
0.2 0.3

]
, M =

[
0.1
0.2

]
, N1 =

[
0.1 0.2

]
,

N2 =
[
0.5 0.1

]
, N3 =

[
−0.2 0.2

]
, N5 =

[
−0.1 0.2

]
, N6 =

[
0.3 0.1

]
.

Take the activation function as f1(x(t)) = f2(x(t)) = tanh(x(t)), so it can be verified
from Assumption 2.1 that F1 = diag{0, 0}, F2 = diag{−0.5,−0.5}.

When the activation function is chosen as f1(x(t)) = f2(x(t)) = tanh(x(t)), l−i and l+i
in (26) are 0 and 1 respectively, so F1 and F2 can be obtained easily.

In order to testify the effectiveness of our proposed method, theory analysis has been
done and the results about the upper bounds of delays τ for different µ are listed in Table
1, where “−” means that the LMI has no feasible solution. From Table 1 we can see that
our approach is effective.

Table 1. Maximum allowable bounds of τ for different µ

µ 0.003 0.005 0.05 0.1 0.15
Corollary 3.1 1.1194 1.0918 0.6119 0.2110 0.0691

[19] − − − − −
[20] − − − − −
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Remark 4.1. It must be pointed out that when µ is set by 0.0035, the maximum allowable
value of τ in Corollary 3.1 is 1.1124, but in [19,20], the upper bounds τmax of time delay
value are more than 5 × 109 and 2.8263 × 1018, respectively.

5. Conclusions. In this paper, we have investigated the robust stability for a class of
uncertain fuzzy stochastic neutral neural networks with mixed delays. By constructing
a proper Lyapunov functional, employing stochastic stability analysis theory, the delay-
dependent conditions have been proposed such that the studied systems are robust ex-
ponentially stable. Finally, examples and simulations are provided to illustrate the less
conservatism and effectiveness of the developed approach. Our future research direction
can be extended to the l2-l∞ and l∞ filtering design of stochastic neutral neural networks
and Markovian jump systems.
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