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Abstract. Industrial systems require healthy controllers with high level of control per-
formance. Controller performance assessment (CPA) is very crucial to recognize and
correct the process control with malfunctions. Minimum variance control (MVC) intro-
duces a method to evaluate the performance of controller, and is widely used in CPA
because of the attractive theoretical and computational properties associated with it. The
measurement noise is not explicitly considered in the MVC based CPA. However, the
evaluated control system cannot work under the ideal condition in the actual process. It
is usually influenced by the measurement noise. This paper analyzes the influence of the
measurement noise on the results of MVC based CPA. The digital filter combined with
MVC based CPA is proposed to reduce the influence of measurement noise and improve
the results of MVC based CPA. The effectiveness of the proposed method is demonstrated
by the theoretical derivation, simulations of both univariate and multivariate control sys-
tems and experiments of a constant-current constant-frequency DC/AC converter.
Keywords: Minimum variance control, Controller performance assessment, Measure-
ment noise, Digital filter

1. Introduction. There are a large number of control loops operating under different
conditions in industrial processes. The performance of these control loops may be influ-
enced by many factors such as the change of feedstock, malfunction of the equipment and
different types of disturbance and will gradually deteriorate [1]. Controller performance
assessment (CPA), which indicates the condition of the current control performance com-
pared with the ideal control performance, is very important to recognize and correct
the process control with malfunctions. Therefore, CPA has attracted growing research
interests in both academic and industrial societies.

As pointed out by Hoo et al. (2003), about 60% of all the industrial controllers have
performance problems [2]. Thus, the practical application of CPA is very important and
a rapid development of research in CPA in the last two decades. Moving CPA from
an academic research paper to an industrial application introduces new and interesting
engineering problems. Paulonis and Cox (2003) reported a CPA application for 40 plants
located at nine international sites and involving some 14,000 control loops [3]. These
different industrial company situations will influence how the implementation should be
achieved. Some companies may construct a global solution, and other companies may
prefer a local plant solution. Jelali (2006) provided a list of research articles and their
industrial applications in the chemical, petrochemical and other industries [4]. Bauer et
al. (2016) presented results from a survey on industrial application of CPA in the process
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industries [5]. The practical application of CPA has been crucial in the past and will
remain to be important in the future.

As a classical method for CPA, minimum variance control (MVC) plays an important
role in the controller benchmarking and design. The basic idea of MVC is to express the
minimum variance prediction of the plant output in terms of the control input such that
the predicted output can be driven to follow a desired output by solving a simple linear
equation for appropriate control action [6]. Since Åström (1970) firstly developed the
theory for MVC of stochastic control systems [7], MVC has become an active research
area and many techniques for MVC have been proposed in the past decade. Harris (1989)
used the MVC theory and proposed an MVC based index for CPA [8]. Accordingly,
this index is defined as the ratio of the minimum achievable variance and the actual
output variance, whose value varies from 0 to 1. The MVC benchmark has been widely
accepted in the research field of CPA. Many researchers develop the extended use of the
MVC based benchmark. Chen and Kong (2009) developed a new method to estimate
the minimum variance bounds and the achievable variance bounds for the assessment
of the batch control system where the iterative learning control was applied [9]. Ko
and Edgar (2001) extended the use of MVC to the CPA of cascade control system [10].
Within recent years, MVC is extended to be used in time-variant process systems [11-13],
model predictive controller [14-17], decentralized controller [18], adaptive optics systems
[19], nonlinear multivariate systems [20,21], data mining [22,23] and batch processes [1,24].
Other types of CPA benchmarks have also been developed based on the MVC theory, such
as generalized minimum variance (GMV) benchmark [20,25,26], and the linear quadratic
Gaussian (LQG) benchmark [27].

The theory for MVC of stochastic control systems does not explicitly consider the
influence of measurement noise. In fact, it is impractical that the evaluated control
system can work under the ideal condition. Measurements from the physical sensors
always contain unwanted noise. Most process measurements are generally corrupted by
measurement noise [28]. With the influence of measurement noise, the feedback signal is
no longer the actual output signal, but the measured signal. The results of CPA will be
gradually deteriorated. However, the influence of the measurement noise on the results
of MVC based CPA is rarely analyzed in theory.

Shown in this paper are several developments on MVC based CPA as follows.

a) Considering measurement noise in the sensor device, the influence of the measurement
noise on the results of MVC based CPA is analyzed.

b) The digital filter combined with MVC based CPA is proposed to reduce the influence
of measurement noise and improve the results of MVC based CPA.

c) The effectiveness of the proposed method is demonstrated by the theoretical deriva-
tion, the simulations of both univariate and multivariate control systems and the ex-
periments of a constant-current constant-frequency DC/AC converter.

The rest of the paper is organized as follows. The MVC based CPA is briefly reviewed
in Section 2. The influence of the measurement noise on the results of MVC based CPA
is analyzed through mathematical derivation in Section 3. The digital filter combined
with MVC based CPA is proposed to be used to reduce the influence of measurement
noise on the results of CPA in Section 4. Three case studies, including simulations and
experiments, are used to illustrate the effectiveness of the digital filter combined with
MVC based CPA in Section 5. Finally, conclusions are discussed in Section 6.
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2. MVC Based CPA.

2.1. MVC based CPA in ideal stochastic univariate system. Considering an ideal
single input single output (SISO) control system, the structure is shown in Figure 1, where
the set point is r(t), and the output signal is y(t). In MVC based CPA, r(t) is generally
assumed to be zero. The output signal is measured by an ideal sensor and compared
with the set point to generate the error e(t). And then the controller C0 (z−1) derives the
control signal u(t). A disturbance d(t), which is assumed to be zero mean and Gaussian
white noise of variance σ2, is introduced into the control system. The output signal of
the SISO control system can be described by:

y(t) = z−k B
(
z−1
)

A
(
z−1
)u(t) +

D
(
z−1
)

A
(
z−1
) d(t) (1)

Figure 1. The ideal SISO control system structure

Since z−k in Equation (1) represents a k-step delay in the control signal. The output
signal can be rewritten as:

y(t + k) =
B
(
z−1
)

A
(
z−1
)u(t) +

D
(
z−1
)

A
(
z−1
) d(t + k) (2)

The following Diophantine equation can be defined to effectively split D
(
z−1
)

into two
parts, one related to the past time and the other related to the future time.

D
(
z−1
)

= A
(
z−1
)
F
(
z−1
)

+ z−kG
(
z−1
)

(3)

Substituting Equation (3) into Equation (2), after some manipulations, it yields:

y(t + k) =
B
(
z−1
)
F
(
z−1
)

D
(
z−1
) u(t) +

G
(
z−1
)

D
(
z−1
)y(t) + Fd(t + k) (4)

Note that the first two terms on the right-hand side of Equation (4) are dependent on the
process control law, and the third term is independent of the control action. Therefore,
the variance of the output can be derived as

J(t) = E
[
y(t + k)2

]
= E

(B
(
z−1
)
F
(
z−1
)

D
(
z−1
) u(t) +

G
(
z−1
)

D
(
z−1
)y(t)

)2
+ E

[
(Fd(t + k))2

] (5)
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To achieve MVC, the following control law can be generated:

B
(
z−1
)
F
(
z−1
)

D
(
z−1
) u(t) +

G
(
z−1
)

D
(
z−1
)y(t) = 0 (6)

u(t) = −
G
(
z−1
)

B
(
z−1
)
F
(
z−1
)y(t) (7)

The output variance under MVC is calculated by

JMVC (t) = E
[
(Fd(t + k))2

]
(8)

However, most control systems do not satisfy MVC control law. Therefore, in the
expression defining the future output, there is an extra term whose variance is nonzero.
This term is a result of the controller not being a minimum variance controller

y(t + k) = ŷ(t) + Fd(t + k) (9)

The variance of the output may be obtained as:

J(t) = E
[
y(t + k)2

]
= E

[
ŷ(t)2

]
+ E

[
(Fd(t + k))2

]
= J0(t) + JMVC (t) (10)

In order to obtain a universal tool for comparing different systems, the following MVC
based controller performance index is defined

η =
JMVC (t)

J0(t) + JMVC (t)
∈ [0, 1] (11)

The above performance index provides a performance indicator that is normalized and
bounded. From the index, the engineers can see how close to minimum variance the
system is controlled. When η = 1, the control system is controlled under ideal minimum
variance. η = 0 indicates the case of the worst control.

2.2. MVC based CPA in ideal stochastic multivariate system. The ideal sto-
chastic feedback control system with multiple-input multiple-output (MIMO) is shown in
Figure 2. The MIMO linear time-invariant stationary stochastic process model can be
described by

y(t) = A
(
z−1
)
u(t) + B

(
z−1
)
d(t) (12)

where A
(
z−1
)

and B
(
z−1
)

are proper, rational transfer function matrices for the process
plant and disturbances respectively; y(t) and u(t) are the output vector and input vector

Figure 2. The ideal stochastic multivariate feedback control system
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separately, and d(t) represents a white noise vector of disturbances with zero mean and
covariance matrix Σd.

Assumed A
(
z−1
)

is a full rank transfer function matrix and D
(
z−1
)

is the corresponding
unitary interactor matrix. They can be evaluated that

lim
z−1→0

D
(
z−1
)
A
(
z−1
)

= lim
z−1→0

A′(z−1
)

= K (13)

where A′(z−1
)

is the delay-free transfer function matrix of A
(
z−1
)
, and K is a full rank

constant matrix. Therefore, the process model can be rewritten as

y(t) = D
(
z−1
)−1

A′(z−1
)
u(t) + B

(
z−1
)
d(t) (14)

Pre-multiplying both sides of Equation (14) by z−dD
(
z−1
)
, where d is the maximum delay

order of interactor matrix D
(
z−1
)
, yields

z−dD
(
z−1
)
y(t) = z−dA′(z−1

)
u(t) + z−dD

(
z−1
)
B
(
z−1
)
d(t) (15)

Letting y′(t) = z−dD
(
z−1
)
y(t) and N

(
z−1
)

= z−dD
(
z−1
)
B
(
z−1
)
, Equation (15) becomes

y′(t) = z−dA′(z−1
)
u(t) + N

(
z−1
)
d(t) (16)

The following Diophantine equation can be defined to effectively split N
(
z−1
)

into two
parts, one related to the past time and the other related to the future time.

N
(
z−1
)

= F
(
z−1
)

+ z−dG
(
z−1
)

(17)

Substituting Equation (17) into Equation (16) yields:

y′(t) = z−d
(
A′(z−1

)
u(t) + G

(
z−1
)
d(t)

)
+ F

(
z−1
)
d(t) (18)

Since the last term in Equation (18) cannot be influenced by the control action, the
multivariate MVC can be achieved by setting the first term on the right-hand side of
Equation (18) to zero,

z−d
(
A′(z−1

)
u(t) + G

(
z−1
)
d(t)

)
= 0 (19)

For an arbitrary linear multivariate controller, the following inequality yields

tr[Cov(y(t))] = tr
[
Cov

(
y′(t)

)]
= tr

[
Cov

(
z−d

(
−A′(z−1

)
C
(
z−1
)
y(t) + G

(
z−1
)
d(t)

))]
+ tr

[
Cov

(
F
(
z−1
)
d(t)

)]
≥ tr

[
Cov

(
F
(
z−1
)
d(t)

)] (20)

Therefore, the multivariate MVC benchmark can be defined as

JMMVC = tr
[
Cov

(
F
(
z−1
)
d(t)

) ]
(21)

Defining JM0(t) = tr
[
Cov

(
z−d
(
−A′(z−1

)
C
(
z−1
)
y(t)+G(z−1)d(t)

))]
, the trace of the

covariance of the outputs tr[Cov(y(t))] may be obtained as:

JM(t) = tr[Cov(y(t))] = JM0(t) + JMMVC (t) (22)

In order to obtain a universal tool for comparing different systems, the following multi-
variate MVC based controller performance index for multivariate feedback control system
is defined

η =
JMMVC (t)

JM0(t) + JMMVC (t)
∈ [0, 1] (23)

When η = 1, the multivariate control system is controlled under ideal minimum variance.
η = 0 indicates the case of the worst control.

The theory for MVC of stochastic control systems does not explicitly consider the in-
fluence of measurement noise. The practical application of MVC based CPA introduces
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a new and interesting problem that most industrial process measurements are generally
corrupted by measurement noise. With the influence of measurement noise, the results
of CPA will be gradually deteriorated. Therefore, the next section will analyze the influ-
ence of the measurement noise on the results of MVC based CPA through mathematical
derivation.

3. Influence of Measurement Noise on MVC Based CPA. The measurement noise
is not explicitly considered in the above ideal SISO control system. However, the evaluated
control system cannot work under the ideal condition in the actual process. Measured
process data inevitably contain some inaccurate information because measurements are
obtained by imperfect instruments. Therefore, the feedback signal of the output will be
influenced by the measurement noise. The measurement noise would affect the results of
CPA. Figure 3 shows the SISO control system structure under the consideration of the
measurement noise. The raw process measurement (ym(t)) can be expressed as

ym(t) = y(t) + ε(t) (24)

where ε(t) is the measurement noise assumed to be normally distributed ε(t) ∼ N
(
0, ρ2

)
.

ρ2 is the variance of measurement noise.

Figure 3. The SISO control system structure with measurement noise

Under the consideration of the measurement noise, the feedback signal of the output
can be rewritten as

ym(t + k) =
BF

D
u(t) +

G

D
(ym(t)) + Fd(t + k)

=
BF

D
u(t) +

G

D
(y(t) + ε(t)) + Fd(t + k)

=

[
BF

D
u(t) +

G

D
y(t)

]
+ Fd(t + k) +

G

D
ε(t)

(25)

The variance of feedback signal can be obtained as

σ2
ym

= E

[(
BF

D
u(t) +

G

D
y(t)

)2
]

+ E
[
(Fd(t + k))2]+ E

[(
G

D
ε(t)

)2
]

(26)
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The feedback signal of the controller not being a minimum variance controller can be
shown as this term

ym(t + k) = ŷ(t) + Fd(t + k) +
G

D
ε(t) (27)

The variance of feedback signal can be rewritten as

σ2
ym

= E
[
(ŷ(t))2]+ E

[
(Fd(t + k))2]+ E

[(
G

D
ε(t)

)2
]

= σ2
soc + JMV C(t) (28)

where σ2
soc = E

[
(ŷ(t))2]+ E

[(
G
D

ε(t)
)2]

.

The controller performance index can be calculated as

ηm =
JMV C(t)

σ2
soc + JMV C(t)

(29)

Note that the first term of σ2
soc is generated by the controller not being a minimum variance

controller, and the second term is generated by the measurement noise. Compared with
Equation (11), Equation (29) indicates that the measurement noise would decrease the
value of controller performance index (ηm < η).

Figure 4. The stochastic multivariate system under the consideration of
measurement noise

Likewise, the stochastic multivariate system with measurement noise can be described
by Figure 4. The MIMO stochastic process model can be described by

y(t) = A
(
z−1
)
u(t) + B

(
z−1
)
d(t) (30)

where A
(
z−1
)

and B
(
z−1
)

are proper, rational transfer function matrices for the process

plant and disturbances respectively; C
(
z−1
)

is transfer function matrices for the con-
trollers in Figure 4; y(t) and u(t) are the output vector and the input vector separately;
d(t) represents a white noise vector of disturbances with zero mean and covariance matrix
Σd.

The vector of measured signals ym(t) can also be assumed to be adequately described
by the additive noise model

ym(t) = y(t) + ε(t) (31)
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where ε(t) is vector of the measurement noise, which is assumed to be normally distributed
(ε(t) ∼ N(0,Σε)), where Σε is the covariance matrix of ε(t).

The controller uses the vector of measured signals ym(t) to tune the control law as
follows

u(t) = −C
(
z−1
)
ym(t) = −C

(
z−1
)
(y(t) + ε(t)) (32)

The generalized outputs can be derived as

y′(t) = z−d
(
A′(z−1

)
u(t) + G

(
z−1
)
d(t)

)
+ F

(
z−1
)
d(t)

= z−d
(
−A′(z−1

)
C
(
z−1
)
(y(t) + ε(t)) + G

(
z−1
)
d(t)

)
+ F

(
z−1
)
d(t)

(33)

For an arbitrary linear multivariate controller, the following inequality yields

tr[Cov(y(t))] = tr
[
Cov

(
y′(t)

)]
= tr

[
Cov

(
z−d

(
−A′(z−1

)
C
(
z−1
)
(y(t) + ε(t)) + G

(
z−1
)
d(t)

))]
+ tr

[
Cov

(
F
(
z−1
)
d(t)

)]
= tr

[
Cov

(
z−d

(
−A′(z−1

)
C
(
z−1
)
y(t) + G

(
z−1
)
d(t)

))]
+ tr

[
Cov

(
F
(
z−1
)
d(t)

)]
+ tr

[
Cov

(
z−d

(
−A′(z−1

)
C
(
z−1
)
ε(t)

))]
(34)

Therefore, the trace of the covariance of the outputs tr[Cov(y(t))] considering mea-
surement noise may be obtained as:

JMm(t) = tr[Cov(y(t))] = Jm(t) + JM(t) (35)

where Jm(t) = tr
[
Cov

(
z−d

(
−A′(z−1

)
C
(
z−1
)
ε(t)

))]
.

The controller performance index can be calculated as

ηm =
JMMVC (t)

Jm(t) + JM(t)
=

JMMVC (t)

Jm(t) + JM0(t) + JMMVC (t)
(36)

Note that the first term on the right-hand side of Equation (35) is generated by the mea-
surement noise, and the second term is generated by the process disturbances. Compared
with Equation (23), Equation (36) indicates that the measurement noise would decrease
the value of controller performance index (ηm < η).

Considering measurement noise in the sensor device, the results of MVC based CPA
will be gradually deteriorated from the above analysis. In order to reduce the influence of
measurement noise and improve the results of MVC based CPA, the digital filter combined
with MVC based CPA is proposed in the next section.

4. Digital Filter Combined with MVC Based CPA. In order to reduce the mea-
surement noise, various classical digital filters have been designed. They have their own
advantages as well as shortcomings. The digital filter provides a running average and ab-
sorbs some of the short term variations caused by noise. A trade-off between the amount
of noise attenuation and the time delay after filtering is required to improve the perfor-
mance of the digital filters. This can be accomplished by tuning the filter parameters [29].
Considering the complexity of implementation and the effectiveness of the filter, exponen-
tial filter is a relatively good filter, which can effectively decrease the measurement noise
and make the output signal more stable. Besides, its implementation is simple. There-
fore, exponential filter is used as the digital filter in this paper to reduce the influence of
measurement noise.

The univariate system uses the digital filter in the control system to decrease the mea-
surement noise, so the block diagram of the system can be shown by Figure 5. In Figure
5, the exponential filter for univariate system is added within the feedback loop. The
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Figure 5. The SISO control system structure with digital filter

feedback signal is no longer the measured signal, but the filtered signal. The exponential
filter can be described by the following equation:

yf (t) = θym(t) + (1 − θ)yf (t − 1) (37)

where yf (t) is the filtered signal with initialization yf (0) = ym(0). yf (t−1) is the previous
value of the filtered signal. θ is the filter parameter, which is limited to 0 < θ < 1.

By using digital filter, the variance of feedback signal can be obtained as

σ2
yf

= θ2σ2
ym

+ (1 − θ)2 σ2
yf

(38)

Therefore,

σ2
yf

=
θ2

1 − (1 − θ)2σ2
ym

=
θ

2 − θ
σ2

ym
(39)

The filter parameter θ is limited to 0 < θ < 1; therefore, σ2
yf

< σ2
ym

.

The filtered signal yf (t) is assumed to be adequately described by the additive noise
model,

yf (t) = y(t) + γ(t) (40)

where γ(t) is normally distributed
(
γ(t) ∼ N

(
0, σ2

yf

))
.

Under the consideration of digital filter, the feedback signal of the output can be rewrit-
ten as

yf (t + k) =
BF

D
u(t) +

G

D
(y(t) + γ(t)) + Fd (t + k)

=

[
BF

D
u(t) +

G

D
y(t)

]
+ Fd (t + k) +

G

D
γ(t)

(41)

The variance of feedback signal can be obtained as

σ2
yf

= E

[(
BF

D
u(t) +

G

D
y(t)

)2
]

+ E
[
(Fd (t + k))2]+ E

[(
G

D
γ(t)

)2
]

(42)
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Under the consideration of digital filter, the feedback signal of the controller not being
a minimum variance controller can be shown as this term

yf (t + k) = ŷ(t) + Fd (t + k) +
G

D
γ(t) (43)

The variance of feedback signal can be rewritten as

σ2
yf

= E
[
(ŷ(t))2]+ E

[
(Fd(t + k))2]+ E

[(
G

D
γ(t)

)2
]

= σ2
soc f + JMV C(t) (44)

where σ2
soc f = E

[
(ŷ (t))2]+ E

[(
G
D

γ (t)
)2]

.

The controller performance index can be calculated as

ηf =
JMV C(t)

σ2
soc f + JMV C(t)

(45)

Note that the first term of σ2
soc f is generated by the controller not being a minimum

variance controller, and the second term is generated by the additive noise of the filtered
signal.

Since σ2
yf

< σ2
ym

, the following equation is satisfied comparing Equation (45) with

Equation (29) and Equation (11).

ηm < ηf < η (46)

Equation (46) indicates that the controller performance index by using digital filter can
be more accurate than the controller performance index by using the measured signal.
Under the consideration of digital filter, the influence of measurement noise on the MVC
based CPA is effectively decreased.

Likewise, for the multivariate system, the block diagram of the system can be shown
in Figure 6. In Figure 6, the exponential filter for multivariate system is added within
the feedback loop. The vector of feedback signals is no longer the vector of measured

Figure 6. The MIMO control system structure with digital filter
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signals, but the vector of the filtered signals. The vector of filtered signals yf (t) can also
be described by

yf (t) = θyf (t) + (1 − θ)yf (t − 1) (47)

The vector of filtered signals yf (t) is still assumed to be adequately described by the
additive noise model

yf (t) = y(t) + εf (t) (48)

where εf (t) is normally distributed (εf (t) ∼ N(0,Σf )) and Σf is the corresponding
covariance matrix derived from Equation (48),

Σf =
θ2

1 − (1 − θ)2
Σf =

θ

2 − θ
Σε (49)

As the parameter θ has a range of 0 < θ ≤ 1, the trace of the covariance matrix Σf is
smaller than the trace of the covariance matrix Σε of the measured signals. With the
consideration of the exponential filter, the controller uses the vector of feedback signals
yf (t) to tune the control law as follows.

u(t) = −C
(
z−1
)
yf (t) = −C

(
z−1
)
(y(t) + εf (t)) (50)

The vector of generalized outputs can be derived as

y′(t) = z−d
(
A′(z−1

)
u(t) + G

(
z−1
)
d(t)

)
+ F

(
z−1
)
d(t)

= z−d
(
−A′(z−1

)
C
(
z−1
)
(y(t) + εf (t)) + G

(
z−1
)
d(t)

)
+ F

(
z−1
)
d(t)

(51)

For an arbitrary linear multivariate controller, the following inequality yields

tr[Cov(y(t))] = tr
[
Cov

(
y′(t)

)]
= tr

[
Cov

(
z−d

(
−A′(z−1

)
C
(
z−1
)
(y(t) + εf (t)) + G

(
z−1
)
d(t)

))]
+ tr

[
Cov

(
F
(
z−1
)
d(t)

)]
= tr

[
Cov

(
z−d

(
−A′(z−1

)
C
(
z−1
)
y(t) + G

(
z−1
)
d(t)

))]
+ tr

[
Cov

(
F
(
z−1
)
d(t)

)]
+ tr

[
Cov

(
z−d

(
−A′(z−1

)
C
(
z−1
)
εf (t)

))]
(52)

Therefore, the trace of the covariance of the outputs tr[Cov(y(t))] with digital filter may
be obtained as:

JMm(t) = tr[Cov(y(t))] = Jf (t) + JM(t) (53)

where Jm(t) = tr
[
Cov

(
z−d

(
−A′(z−1

)
C
(
z−1
)
εf (t)

))]
.

The controller performance index can be calculated as

ηf =
JMMVC (t)

Jf (t) + JM(t)
=

JMMVC (t)

Jf (t) + JM0(t) + JMMVC (t)
(54)

The following equation is satisfied comparing Equation (54) with Equation (36) and Equa-
tion (23).

ηm < ηf < η (55)

Equation (55) also indicates that the controller performance index by using digital filter
can be more accurate than the controller performance index by using the measured signal.

In the next section, the effectiveness of the proposed method is illustrated by the
simulations of both univariate and multivariate control systems and the experiments of a
constant-current constant-frequency DC/AC converter.
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5. Case Studies. In order to illustrate the effectiveness of the digital filter combined with
MVC based CPA, three case studies are presented in this section. The classical univariate
and multivariate control systems in Case Study 1 and Case Study 2 are widely used
in the literature for CPA. Therefore, they are simulated to investigate the performance
of the digital filter combined with MVC based CPA. In Case Study 3, the constant-
current constant-frequency DC/AC converter is widely used in power electronics. The
CPA for the DC-AC converter is very important because a high precise feedback control
scheme is required. Therefore, the digital filter combined with MVC based CPA is applied
in a constant-current constant-frequency DC/AC converter. Experimental results can
illustrate the effectiveness of the digital filter combined with MVC based CPA.

The extant techniques in [8,30] do not explicitly consider the influence of measurement
noise and use the measurement data for CPA. In the case studies, the CPA with MVC
based on the measured signal (the traditional method) is also conducted for comparison.
The comparison of the results can illustrate the effectiveness of the proposed method.

5.1. Case Study 1: SISO control system. The example is taken from [30,31] and
selected for evaluation and comparison of the proposed strategies. The SISO control
system of this illustrative example is shown in Figure 7. The plant considered in this
example has been discretized and it includes a time delay of two sampling intervals. The
process ARMAX model can be described as follows.

y(t) = z−3 0.08

1 − 0.92z−1
u(t) +

1

1 − z−1
d(t) (56)

where d(t) is the zero mean Gaussian random variable, which has a standard deviation of
σ = 0.1. The actual MVC controller can be calculated analytically and it is selected to be
a PI controller [30,31], C0(z

−1) = k1+k2z−1

1−z−1 , where k1 = 1
3∗0.08

, k2 = −0.92
3∗0.08

. The magnitude
of measurement noise is generally smaller than that of process disturbance. Therefore,
the standard deviation ρ of the measurement noise is firstly assumed to be 0.03. And
then, the standard deviation ρ is increased to be 0.1 slowly in order to investigate the
influence of the different magnitudes of measurement noise on the results of CPA. Table

Figure 7. The SISO control system structure in Case Study 1
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Table 1. Comparison results of CPA in Case Study 1

Standard deviation
of measurement

noise

CPA based on
ideal signal: η

CPA based on
measured signal: ηm

CPA based on
filtered signal: ηf

0.03 1 0.7395 0.9642
0.04 1 0.6998 0.9365
0.05 1 0.666 0.9118
0.06 1 0.6365 0.8893
0.07 1 0.6103 0.8685
0.08 1 0.5869 0.8493
0.09 1 0.5656 0.8312
0.1 1 0.5416 0.8142

1 summarizes the comparison of the results of CPA with MVC based on the measured
signal and the filtered signal in this case study.

Since the parameters of the PI controller are selected to be the optimal parameters of
the MVC controller and do not change in the simulations, the value of controller perfor-
mance index of CPA based on ideal signal (feedback signal without measurement noise)
is 1.0. Table 1 shows that the results of CPA based on the measured signal are severely
affected by the measurement noise. When the standard deviation of the measurement
noise increases larger, the value of controller performance index of CPA becomes worse.
The results of CPA based on the measured signal cannot actually indicate the real per-
formance of the controller. However, the results of CPA based on filtered signal are more
accurate compared with that based on measured signal. As the standard deviation of
the measurement noise increases larger, the value of controller performance index of CPA
based on filtered signal changes a little. Obviously, the use of digital filter can improve
the results of CPA.

5.2. Case Study 2: MIMO control system. The MIMO control system of this illus-
trative example is taken from [31] and is shown in Figure 8. The process ARMAX model
can be described as follows.{

y1(t) = P1u1(t) + N1d1(t) + P2u2(t) + N2d2(t)

y2(t) = P3u1(t) + N3d1(t) + P4u2(t) + N4d2(t)
(57)

where d1(t) and d2(t) are the zero mean Gaussian random variables, which have a standard
deviation of σ = 0.1. There are two outputs y1(t), y2(t) and control signals u1(t), u2(t).
Other information of the control system is shown as:

P
(
z−1
)

=

[
P1 P2

P3 P4

]
=


z−1

1 − 0.4z−1

4z−2

1 − 0.1z−1

0.3z−1

1 − 0.1z−1

z−2

1 − 0.8z−1

 (58)

N
(
z−1
)

=

[
N1 N2

N3 N4

]
=


1

1 − 0.5z−1

−0.6z−2

1 − 0.5z−1

0.5z−1

1 − 0.5z−1

1

1 − 0.5z−1

 (59)
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C
(
z−1
)

=

[
C1 C2

C3 C4

]
=


0.5 − 0.2z−1

1 − 0.5z−1
0

0
0.5 − 0.2z−1

(1 − 0.5z−1)(1 + 0.5z−1)

 (60)

F
(
z−1
)

=

[
F1 F2

F3 F4

]
=


0.85

1 − 0.15z−1
0

0
0.85

1 − 0.15z−1

 (61)

The standard deviations of the measurement noise are assumed to be 0.03. And then,
both of the standard deviations are increased to be 0.1 slowly. Table 2 summarizes the
comparison of the results of CPA with MVC based on the measured signals and the filtered
signals in this case study.

Figure 8. The MIMO control system structure in Case Study 2

As can be seen from Table 2 that the results of CPA based on the measured signals are
also severely affected by the measurement noise. When the standard deviations of the
measurement noise increase larger, the values of controller performance index of CPA will
become worse. The results of CPA based on filtered signals are more accurate compared
with that based on measured signals. Compared with the results of CPA in SISO control
system in Case Study 1, it is illustrated that the measurement noise can deteriorate the
results of CPA more severely in MIMO control system. The use of digital filter can
also improve the results of CPA in MIMO control system. However, when the standard
deviations of the measurement noise increase too large, the results of CPA based on filtered
signals are also deteriorated severely. The results of CPA in MIMO control system are
more sensitive with the measurement noise.
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Table 2. Comparison results of CPA in Case Study 2

Standard deviation
of measurement

noise

CPA based on
ideal signal: η

CPA based on
measured signal: ηm

CPA based on
filtered signal: ηf

0.03 1 0.4728 0.9189
0.04 1 0.4283 0.8379
0.05 1 0.3938 0.7745
0.06 1 0.3660 0.7229
0.07 1 0.3428 0.6796
0.08 1 0.3231 0.6425
0.09 1 0.3060 0.6102
0.1 1 0.2910 0.5818

5.3. Case Study 3: Constant-current constant-frequency DC-AC converter.
Constant-current constant-frequency DC-AC converters are widely used in AC power-
conditioning systems such as uninterruptible power supplies, grid connected photovoltaic
systems and other industrial facilities [32]. In order to improve the performance of the DC-
AC converter, high precise feedback control schemes are proposed. In this section, a fast
sampling rate feedback control scheme is used to improve transient response and tracking
accuracy. Figure 9 shows the feedback control scheme for the DC-AC converter, where the
set point is rsin(t), which is an ideal constant-current constant-frequency sine signal; the
output signal of the DC-AC converter is ysin(t). C0(z

−1) is the feedback controller, which
is designed to be a PID controller in the experiments. Gp(z

−1) is the transfer function of
the plant. A general output signal is defined as

y(t) = ysin(t) − rsin(t) (62)

The general set point is transformed to be zero. The experiments of CPA based on the
measured signal and the filtered signal are implemented in the device, which is shown in
Figure 10.

When the feedback signal is based on the measured signal, the measured output signal
of the DC-AC converter is shown in Figure 11, and the measured general output signal
is shown in Figure 12. As can be seen from Figure 11 and Figure 12 that the measured
signal contains measurement noise, which severely influences the results of CPA. The

Figure 9. The feedback control scheme for the DC-AC converter
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Figure 10. The device for the experiments of CPA based on the measured
signal and the filtered signal

Figure 11. The measured output signal of the DC-AC converter

value of controller performance index of CPA based on measured general output signal
is only 0.3196, which does not actually indicate the real performance of the controller.
When the feedback signal is based on the filtered signal, the filtered output signal of
the DC-AC converter is shown in Figure 13, and the filtered general output signal is
shown in Figure 14. Based on the results of filtered general output signal, the value of
controller performance index of CPA is 0.5341. The results of experiments show that the
measurement noise would blemish the performance of controller and result in inaccurate
CPA. With the use of digital filter, the influence of measurement noise on the performance
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Figure 12. The measured general output signal of the DC-AC converter

Figure 13. The filtered output signal of the DC-AC converter
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Figure 14. The filtered general output signal of the DC-AC converter

of controller would be decreased. The accuracy of CPA based on filtered signal would be
improved.

6. Conclusions. This paper firstly introduces the method of CPA based on MVC. The
influence of the measurement noise on the results of MVC based CPA is analyzed through
derivation. The digital filter combined with MVC based CPA is proposed to be used to
reduce the influence of measurement noise on the results of CPA. In order to illustrate
the effectiveness of the digital filter combined with MVC based CPA, three case studies
are presented in Case Study 1 and Case Study 2, and both univariate and multivariate
control systems are simulated. Results of simulations show that the use of digital filter
can improve the results of CPA in Case Study 3, and the digital filter combined with MVC
based CPA is applied in a constant-current constant-frequency DC/AC converter. Exper-
imental results show the measurement noise would blemish the performance of controller
and result in inaccurate CPA. With the use of digital filter, the accuracy of CPA can be
improved. Since measurement information may also be corrupted by gross errors, usually
caused by malfunctioning instruments, measurement device biases or process deficiencies.
The gross errors introduce inaccurate information and also deteriorate the results of CPA.
Further work will be concentrated on how to improve the results of CPA considering the
influence of gross errors.
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[7] K. J. Åström, Introduction to Stochastic Control Theory, Academic Press, New York, 1970.
[8] T. J. Harris, Assessment of control loop performance, The Canadian Journal of Chemical Engineer-

ing, vol.67, no.5, pp.856-861, 1989.
[9] J. Chen and C. K. Kong, Performance assessment for iterative learning control of batch units, Journal

of Process Control, vol.19, no.6, pp.1043-1053, 2009.
[10] B. S. Ko and T. F. Edgar, Performance assessment of multivariable feedback control systems, Auto-

matica, vol.37, no.6, pp.899-905, 2001.
[11] B. Huang, Minimum variance control and performance assessment of time-variant processes, Journal

of Process Control, vol.12, no.6, pp.707-719, 2002.
[12] F. B. Olaleye, B. Huang and E. Tamayo, Feedforward and feedback controller performance assessment

of linear time-variant processes, Industrial & Engineering Chemistry Research, vol.43, no.2, pp.589-
596, 2004.

[13] W. Zhang, X. Wang and Z. L. Wang, Performance assessment of control loop with time-variant
disturbance dynamics based on multi-model mixing minimum variance control, Acta Automatica
Sinica, vol.9, pp.2037-2044, 2014.

[14] T. Sato and A. Inoue, Improvement of tracking performance in self-tuning PID controller based
on generalized predictive control, International Journal of Innovative Computing, Information and
Control, vol.2, no.3, pp.491-503, 2006.

[15] R. S. Patwardhan, S. L. Shah and K. Z. Qi, Assessing the performance of model predictive con-
trollers, The Canadian Journal of Chemical Engineering, vol.80, no.5, pp.954-966, 2002.

[16] C. A. Harrison and S. J. Qin, Minimum variance performance map for constrained model predictive
control, Journal of Process Control, vol.19, no.7, pp.1199-1204, 2009.
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