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Abstract. The arrangement graph is a generalization of the star network and is con-
sidered as a good alternative to the hypercube-based topologies. Under the probability fault
model, Lin et al. established an upper bound on the subgraph reliability of the arrange-
ment graph. However, a lower bound of reliability estimation plays a more informative
role in predicting the status of system availability. For this reason, this paper is aimed
at deriving an analytic lower bound on the subgraph reliability of the arrangement graph
in a combinatorial manner, and the numerical comparison validates the proposed formu-
lation.
Keywords: Availability, Reliability, Probability fault model, Arrangement graph

1. Introduction. In recent years, the Internet of Things (IoT) prevails in a wide range
of life applications. Within the IoT, everything (including physical devices, individuals,
buildings, and other items) is equipped with one or more sensors, software, and Internet
access to collect and exchange numerous kinds of data in a just-in-time way. The IoT is
an application-oriented network system that relies heavily upon the realization of high-
performance parallel and distributed computing. To achieve this goal, it is usually the
most fundamental to design a suitable underlying topology of the network system, which
dominates the layout of all objects and communication links.

The star is one of the fundamental structures for interconnecting a large number of
components in a network system. Based on the popularity of the star, Akers and Krish-
namurthy [1] proposed the star network as a viable alternative to the hypercube-based
topologies. One straightforward advantage of the star network is that it is able to connect
more nodes with less connection links and less communication delay than the hypercube
[2]. The promising features of the star network include low degree of nodes, small di-
ameter, node transitivity, link symmetry, and high degree of fault tolerance, and so on
[3]. The arrangement graph was proposed by Day and Tripathi [4] as a generalization of
the star network, which is much more flexible in both the order and size than the star
network. Many studies on the topological properties of the arrangement graph have been
published [5, 6, 7, 8, 9, 10, 11].

In general, as the scale of a network system grows, the likelihood of failure occur-
rences increases. Reliability evaluation is extensively applied to quantifying the impact
of systematic failures [12, 13, 14, 15]. The reliability of a network system is defined as
the probability that the system is fully functional within a given time session [16]. A
wide range of reliability models have been proposed to measure the network reliability
and availability. An explicit formula of the subcube reliability of the hypercube-based
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network was formulated by Das and Kim [12] under the random fault model, which as-
sumes that there are f faults distributed randomly in the hypercube. Later, Chang and
Bhuyan [17] proposed the probability fault model for assessing the subcube reliability of
the hypercube. The probability fault model is simple and assumes that every node has a
homogeneous and independent behavior of reliability in a network. Under this model, Wu
and Latifi [15] analyzed the substar reliability in star networks. They derived an upper
bound on the (n − 1)-star reliability of n-star network using the probability fault model
and developed an approximate (n−1)-star reliability via ignoring any intersection among
subgraphs. Recently, Lin et al. [18] used the same approach to calculate the reliability
of (n − 1, k − 1)-subgraph in the (n, k)-arrangement graph under the probability fault
model. However, only approximate and upper-bound reliability formulation is addressed
in [15, 18]. It is reasonable that a lower-bound reliability may play a more informative
role in the task of achieving high availability. Therefore, this paper is aimed at deriving
an analytic lower bound on the subgraph reliability of the arrangement graph, as a suit-
able reliability degradation formula for predicting the status of system availability. Some
numerical results are presented to compare the lower and upper bounds of the reliability
degradation formula.

The rest of this paper is structured as follows. Section 2 introduces the topological
properties of arrangement graphs and the fundamentals of the probability fault model. In
Section 3, an analytic lower bound on the subgraph reliability of the arrangement graph
is derived. Section 4 presents numerical comparisons between lower- and upper-bounded
subgraph reliability. Finally, Section 5 concludes this paper.

2. Background. A permutation over a nonempty set S of identifying codes is an order
sequence containing each element of S once, and only once. For any positive integer n,
let ⟨n⟩ denote the set of all positive integers from 1 to n; i.e., ⟨n⟩ = {1, 2, . . . , n}. Both
the star network [1] and the arrangement graph [4] are based on permutations over ⟨n⟩.

Definition 2.1. [4] The (n, k)-arrangement graph, denoted by An,k, is specified by two
positive integers n and k, where 1 ≤ k < n. The vertex set of An,k consists of all
permutations over every k-element subset of ⟨n⟩. Any two vertices are adjacent in An,k if
and only if their digits differ in exactly one position.

According to Definition 2.1, An,k is vertex-symmetric and k(n − k)-regular [4]. For

two integers r ∈ ⟨k⟩ and x ∈ ⟨n⟩, let V
(r:x)
n,k be the set of all vertices in An,k whose rth

digit is identical to x. Then,
{

V
(r:x)
n,k | 1 ≤ x ≤ n

}
forms a partition of V (An,k). Let A

(r:x)
n,k

denote the subgraph of An,k induced by V
(r:x)
n,k . Then, A

(r:x)
n,k is isomorphic to An−1,k−1. For

instance, A4,2 is partitioned into a collection of four A3,1-subgraphs. Figure 1 illustrates
A4,2 and its partitions.

For any vertex v of An,k, its rth digit is denoted by (v)r, and for 1 ≤ m ≤ k − 1, let

A
(r1:x1,...,rm:xm)
n,k be the subgraph of An,k induced by

{
v ∈ V (An,k) | (v)r1 = x1, (v)r2 =

x2, . . . , (v)rm = xm

}
, where {r1, r2, . . . , rm} and {x1, x2, . . . , xm} are m-element subsets of

⟨k⟩ and ⟨n⟩, respectively. In this way, An,k can be partitioned into a collection of n!
(n−m)!

disjoint An−m,k−m-subgraphs, so the total number of distinct An−m,k−m-subgraphs in An,k

is
(

k
m

)
× n!

(n−m)!
.

Under the probability fault model, every node of An,k is either normal or faulty with
a homogeneous node reliability p. Then, the first-order subgraph reliability of An,k, de-

noted by Rn−1,k−1
n,k (p), is the probability that there exists a fault-free An−1,k−1-subgraph

in An,k. Because there are nk distinct An−1,k−1-subgraphs in An,k, we denote them by
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Figure 1. (a) A4,2, (b) A
(2:x)
4,2 for x ∈ ⟨4⟩, and (c) A

(1:x)
4,2 for x ∈ ⟨4⟩

A1
n−1,k−1, A2

n−1,k−1, . . ., Ank
n−1,k−1 for the sake of convenience. Moreover, let ξi

n−1,k−1 de-

note the probabilistic event that Ai
n−1,k−1 is fault-free in An,k for 1 ≤ i ≤ nk. Then,

Pr
(
ξi
n−1,k−1

)
= p

(n−1)!
(n−k)! and Rn−1,k−1

n,k (p) = Pr
(∪nk

i=1 ξi
n−1,k−1

)
, where Pr(·) is the event

probability. According to the inclusion-exclusion principle, Rn−1,k−1
n,k (p) is further decom-

posed:

Rn−1,k−1
n,k (p) =

nk∑
i=1

Pr
(
ξi
n−1,k−1

)
−
∑
i<j

Pr
(
ξi
n−1,k−1 ∩ ξj

n−1,k−1

)
+
∑
i<j<l

Pr
(
ξi
n−1,k−1 ∩ ξj

n−1,k−1 ∩ ξl
n−1,k−1

)
−

∑
i<j<l<h

Pr
(
ξi
n−1,k−1 ∩ ξj

n−1,k−1 ∩ ξl
n−1,k−1 ∩ ξh

n−1

)
+ · · · + (−1)nk−1Pr

(
nk∩
i=1

ξi
n−1,k−1

)
. (1)

Lin et al. [18] proposed two computational schemes for calculating Rn−1,k−1
n,k (p). One is

a binomial approximation:

Rn−1,k−1
n,k (p) ≈ 1 −

(
1 − p

(n−1)!
(n−k)!

)nk

. (2)

The other is an upper bound on Rn−1,k−1
n,k (p):

Rn−1,k−1
n,k (p) ≤

nk∑
i=1

Pr
(
ξi
n−1,k−1

)
−
∑
i<j

Pr
(
ξi
n−1,k−1 ∩ ξj

n−1,k−1

)
+
∑
i<j<l

Pr
(
ξi
n−1,k−1 ∩ ξj

n−1,k−1 ∩ ξl
n−1,k−1

)
= nkp

(n−1)!
(n−k)! −

[
k

(
n

2

)
+ n

(
k

2

)]
p

2(n−1)!
(n−k)! − 2

(
n

2

)(
k

2

)
p

2(n−1)!−(n−2)!
(n−k)!

+

[
k

(
n

3

)
+ n

(
k

3

)]
p

3(n−1)!
(n−k)! + 6

(
n

3

)(
k

3

)
p

3(n−1)!−3(n−2)!+(n−3)!
(n−k)!

+ 4

(
n

2

)(
k

2

)
p

3(n−1)!−(n−2)!
(n−k)! + (2n + 2k − 8)

(
n

2

)(
k

2

)
p

3(n−1)!−2(n−2)!
(n−k)! . (3)
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3. Lower-Bounded Approximation of Rn−1,k−1
n,k (p). A lower bound on Rn−1,k−1

n,k (p)
can be formed from the first four terms of Equation (1). In the rest of this section, we
will derive the following combinatorial formula:∑

i<j<l<h

Pr
(
ξi
n−1,k−1 ∩ ξj

n−1,k−1 ∩ ξl
n−1,k−1 ∩ ξh

n−1,k−1

)
=

[
k

(
n

4

)
+ n

(
k

4

)]
p

4(n−1)!
(n−k)! +

[
6

(
k

2

)(
n

3

)
+ 6

(
k

3

)(
n

2

)
+

(
k

2

)(
n

2

)]
p

4(n−1)!−2(n−2)!
(n−k)!

+

[
2(n − 3)

(
k

2

)(
n

3

)
+ 8

(
k

4

)(
n

2

)
+ 6

(
k

2

)(
n

3

)
+ 6

(
k

3

)(
n

2

)]
p

4(n−1)!−3(n−2)!
(n−k)!

+

[(
k

2

)(
n

2

)(
n − 2

2

)
+ 9

(
k

3

)(
n

3

)
+ 6

(
k

4

)(
n

2

)]
p

4(n−1)!−4(n−2)!
(n−k)!

+

[
36

(
k

3

)(
n

4

)
+ 36

(
k

4

)(
n

3

)]
p

4(n−1)!−5(n−2)!+2(n−3)!
(n−k)!

+ 24

(
k

4

)(
n

4

)
p

4(n−1)!−6(n−2)!+4(n−3)!−(n−4)!
(n−k)! + 36

(
k

3

)(
n

3

)
p

4(n−1)!−4(n−2)!+(n−3)!
(n−k)! . (4)

Below we analyze how Ai
n−1,k−1, Aj

n−1,k−1, Al
n−1,k−1, and Ah

n−1,k−1 overlap with one

another. For the sake of clarity, we associate Ai
n−1,k−1, Aj

n−1,k−1, Al
n−1,k−1, Ah

n−1,k−1 with

A
(r1:x1)
n,k , A

(r2:x2)
n,k , A

(r3:x3)
n,k , A

(r4:x4)
n,k , respectively. For simplicity, let A = A

(r1:x1)
n,k ∪ A

(r2:x2)
n,k ∪

A
(r3:x3)
n,k ∪ A

(r4:x4)
n,k .

Case 1: All of r1, r2, r3, and r4 are the same. Obviously, A
(r2:x2)
n,k , A

(r3:x3)
n,k , and A

(r4:x4)
n,k

are mutually disjoint. There are 4(n−1)!
(n−k)!

nodes in A, and there are
(

k
1

)(
n
4

)
distinct groups

of four An−1,k−1-subgraphs corresponding to this scenario of union.
Case 2: At least two of r1, r2, r3, and r4 are different. Without loss of generality, we

assume r1 = s is different from r4 = t.
Subcase 2.1: Both r2 and r3 are in {s, t}; that is, r2, r3 ∈ {s, t}.
• |{x1, x2, x3, x4}| = 4.

– One of s and t corresponds to three identifying codes; that is, either r1 = r2 =
r3 = s or r2 = r3 = r4 = t. For instance, if r2 = r3 = r4, Figure 2(a) illustrates

A. There are 4(n−1)!−3(n−2)!
(n−k)!

nodes in A, and there are
(

k
2

)(
2
1

)(
n
3

)(
n−3

1

)
distinct

groups of four An−1,k−1-subgraphs categorized into this scenario of union.
– Both s and t correspond to two identifying codes. Without loss of general-

ity, we assume that r1 = r2 and r3 = r4. Figure 2(b) illustrates A. There

are 4(n−1)!−4(n−2)!
(n−k)!

nodes in A, and there are
(

k
2

)(
n
2

)(
n−2

2

)
distinct groups of four

An−1,k−1-subgraphs categorized into this scenario of union.
• |{x1, x2, x3, x4}| = 3.

– One of s and t corresponds to three identifying codes; that is, either r1 = r2 =
r3 = s or r2 = r3 = r4 = t. Suppose that r2 = r3 = r4, as illustrated in

Figure 2(c). There are 4(n−1)!−2(n−2)!
(n−k)!

nodes in A, and there are
(

k
2

)(
2
1

)(
n
3

)(
3
1

)
=

6
(

k
2

)(
n
3

)
distinct groups of four An−1,k−1-subgraphs categorized into this scenario

of union.
– Both s and t correspond to two identifying codes. Without loss of general-

ity, we assume r1 = r2, r3 = r4, and x2 = x4. See Figure 2(d). There are
4(n−1)!−3(n−2)!

(n−k)!
nodes in A, and there are

(
k
2

)(
n
3

)(
3
1

)
× 2! = 6

(
k
2

)(
n
3

)
distinct groups

of four An−1,k−1-subgraphs categorized into this scenario of union.
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• |{x1, x2, x3, x4}| = 2. Let {a, b} = {x1, x2, x3, x4}. Without loss of generality, we
assume r1 = r2 and r3 = r4, so we obtain {x1, x2} = {x3, x4} = {a, b}. We further

assume that x1 = x3 = a and x2 = x4 = b. See Figure 2(e). There are 4(n−1)!−2(n−2)!
(n−k)!

nodes in A, and there are
(

k
2

)(
n
2

)
distinct groups of four An−1,k−1-subgraphs catego-

rized into this scenario of union.

Figure 2. Union types of four out of nk An−1,k−1-subgraphs described in Subcase 2.1

Figure 3. Union types of four out of nk An−1,k−1-subgraphs described in Subcase 2.2

Subcase 2.2: Only one of r2 and r3 is in {s, t} = {r1, r4}. Without loss of generality,

we assume that r2 ̸∈ {s, t} and r3 = r4 = t. Thus, x3 is different from x4, so A
(r3:x3)
n,k and

A
(r4:x4)
n,k are disjoint.

• |{x1, x2, x3, x4}| = 4. As illustrated in Figure 3(a), there are 4(n−1)!−5(n−2)!+2(n−3)!
(n−k)!

nodes in A, and there are
(

k
3

)(
3
1

)(
n
4

)(
4
2

)
× 2! = 36

(
k
3

)(
n
4

)
distinct groups of four

An−1,k−1-subgraphs with this scenario of union.
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• |{x1, x2, x3, x4}| = 3.
– {x1, x2} ∩ {x3, x4} = ∅. Then, we have x1 = x2. See Figure 3(b). Obviously,

there are 4(n−1)!−4(n−2)!
(n−k)!

nodes in A, and there are
(

k
3

)(
3
1

)(
n
3

)(
3
2

)
= 9
(

k
3

)(
n
3

)
distinct

groups of four An−1-subgraphs with this scenario of union.
– {x1, x2} ∩ {x3, x4} ̸= ∅. Without loss of generality, we assume that x2 =

x3. See Figure 3(c). There are 4(n−1)!−4(n−2)!+(n−3)!
(n−k)!

nodes in A, and there are(
k
3

)(
3
1

)(
n
3

)(
3
2

)(
2
1

)
× 2! = 36

(
k
3

)(
n
3

)
distinct groups of four An−1,k−1-subgraphs with

this scenario of union.
• |{x1, x2, x3, x4}| = 2.

– x1 = x2. Since x3 ̸= x4, we assume that x1 = x2 = x3. See Figure 3(d). There are
4(n−1)!−2(n−2)!

(n−k)!
nodes in A, and there are

(
k
3

)(
3
1

)(
n
2

)(
2
1

)
= 6

(
k
3

)(
n
2

)
distinct groups

of four An−1,k−1-subgraphs categorized into this scenario of union.
– x1 ̸= x2. Without loss of generality, we assume that x1 = x3 and x2 = x4.

Figure 3(e) illustrates A. There are 4(n−1)!−3(n−2)!
(n−k)!

nodes in A, and there are(
k
3

)(
3
1

)(
n
2

)
× 2! = 6

(
k
3

)(
n
2

)
distinct groups of four An−1,k−1-subgraphs with this

scenario of union.

Subcase 2.3: None of r2 and r3 is in {s, t} = {r1, r4}; that is, every two of r1, r2, r3,
and r4 are different.

• |{x1, x2, x3, x4}| = 4. As illustrated in Figure 4(a), there are 4(n−1)!−6(n−2)!+4(n−3)!−(n−4)!
(n−k)!

nodes in A, and there are
(

k
4

)(
n
4

)
× 4! = 24

(
k
4

)(
n
4

)
distinct groups of four An−1,k−1-

subgraphs with this scenario of union.
• |{x1, x2, x3, x4}| = 3. Without loss of generality, we assume that x3 = x4. See

Figure 4(b). Clearly, there are 4(n−1)!−5(n−2)!+2(n−3)!
(n−k)!

nodes in A, and there are(
k
4

)(
n
3

)(
3
1

)(
4
2

)
× 2! = 36

(
k
4

)(
n
3

)
distinct groups of four An−1,k−1-subgraphs with this

scenario of union.
• |{x1, x2, x3, x4}| = 2. For convenience, let {x1, x2, x3, x4} = {a, b}.

– One identifying code, a or b, is associated with three positions. Without loss of
generality, we assume that x1 = a and x2 = x3 = x4 = b. See Figure 4(c). There

are 4(n−1)!−3(n−2)!
(n−k)!

nodes in A, and there are
(

k
4

)(
n
2

) [(
4
1

)
+
(
4
3

)]
= 8
(

k
4

)(
n
2

)
distinct

groups of four An−1,k−1-subgraphs with this scenario of union.
– Both identifying codes a and b are associated with two positions. Without loss

of generality, we assume that x1 = x2 = a and x3 = x4 = b. See Figure 4(d).

There are 4(n−1)!−4(n−2)!
(n−k)!

nodes in A, and there are
(

k
4

)(
n
2

)
4!

2!2!
= 6
(

k
4

)(
n
2

)
distinct

groups of four An−1,k−1-subgraphs with this scenario of union.

(c) (d) (b)(a) 

An,k
(r3:x3)

An,k
(r4:x4)

An,k
(r1:x1) An,k

(r2:x2)

An,k
(r3:x3)

An,k
(r4:x4)

An,k
(r1:x1)

An,k
(r2:x2)

An,k
(r3:x3)

An,k
(r4:x4)

An,k
(r1:x1)

An,k
(r2:x2)

An,k
(r3:x3)

An,k
(r4:x4)

An,k
(r1:x1)

An,k
(r2:x2)

Figure 4. Union types of four out of nk An−1,k−1-subgraphs described in Subcase 2.3
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• |{x1, x2, x3, x4}| = 1. Then, A
(r1:x1)
n,k , A

(r2:x2)
n,k , A

(r3:x3)
n,k , and A

(r4:x4)
n,k are mutually dis-

joint, and there are
(

k
4

)(
n
1

)
distinct groups of four An−1,k−1-subgraphs with this sce-

nario of union.

Denote by Ω(n, k, p) and δ(n, k, p) the right-hand sides of Equation (3) and Equa-

tion (4), respectively. The lower bound on Rn−1,k−1
n,k (p) is summarized below.

Theorem 3.1. Given a homogeneous node reliability p of An,k, a lower bound of

Rn−1,k−1
n,k (p) is as follows:

Rn−1,k−1
n,k (p) ≥ Ω(n, k, p) − δ(n, k, p). (5)

4. Numerical Comparisons. In [15, 18], the expected number f(t) of faulty nodes in an
N -node network at time t is specified by an increasing function of t: f(t) = N×(1−e−λt),
and the node reliability function p(t) is expressed by p(t) = e−λt, where λ is a constant
failure rate.

In [14], a clear derivation of this exponential node reliability is given as follows. Let
T (v) be a random variable denoting the time to failure of any node v in An,k. Moreover,
let us use Xt(v) to denote the status of v at any moment t > 0: if v is normal, then
Xt(v) = 0; otherwise, Xt(v) = 1. Because the node reliability is homogeneous under the
probability fault model, we may simplify the random variables T (v) and Xt(v) as T and
Xt, respectively. Thus, the node reliability function p(t) is the probability that a node
remains normal at moment t. Suppose that T follows an exponential distribution with a
constant failure rate λ; that is, the probability density function of T is fT (x) = λe−λx.
Then node reliability function p(t) can be formulated:

p(t) = Pr(Xt = 0) = Pr(T > t) =

∫ ∞

t

fT (x)dx =

∫ ∞

t

λe−λxdx = e−λt. (6)

The subgraph reliability is useful to evaluate the availability of a smaller-size network
in a damaged system. Figure 5 plots the three estimates of Rn−1,k−1

n,k (p(t)) for a variety
of n and k. As you can see, for example, the subgraph reliability of A7,5 drops to about
0.2 when the A7,5 has been operational for a period of 1400 hours, provided that the

homogeneous node reliability function is p(t) = e
−t

100000 . Similarly, the subgraph reliability
of A8,4 drops to about 0.4 after the A8,4 has been operational for a period of 19500

hours, provided that the homogeneous node reliability function is p(t) = e
−t

1000000 . It is
noticed that the lower and upper bounds of the reliability degradation formula get close
to each other rapidly as time passes by. This implies that the proposed lower bound
of Rn−1,k−1

n,k (p(t)) is accurate and more informative than the upper bound, once at least
one subgraph is available for a user’s request to execute his/her programs in the current
network system.

5. Conclusions. In this paper, a combinatorial lower bound on the subgraph reliability
of the arrangement graph is derived. The lower bound of Rn−1,k−1

n,k (p) plays a more infor-
mative role than the upper bound in predicting the status of system robustness, especially
when a specific subgraph is available for a user to execute his/her programs in the current
network. Our numerical comparison validates the proposed formulation. An accurate
reliability estimation should be able to approach the real value as closely as possible. Ac-
cording to our numerical results, the gap between the lower and upper bounds is big for
large values of p. Thus, in our future work, we plan to improve the accuracy for reducing
the gap between the lower and upper bounds of reliability degradation formula.
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Figure 5. Estimations of Rn−1,k−1
n,k (p(t)), where p(t) = e−λt

Acknowledgment. This work is supported in part by the Ministry of Science and Tech-
nology, Taiwan, under Grand Nos. MOST 105-2221-E-468-015 and MOST 106-2221-E-
468-003. The author also gratefully acknowledges the helpful comments and suggestions
of the reviewers, which have improved the presentation.

REFERENCES

[1] S. B. Akers and B. Krishnamurthy, A group theoretic model for symmetric interconnection networks,
IEEE Trans. Computers, vol.38, no.4, pp.555-566, 1989.

[2] K. Day and A. Tripathi, A comparative study of topologies properties of hypercubes and star net-
works, IEEE Trans. Parallel and Distributed Systems, vol.5, no.1, pp.31-38, 1994.

[3] S. Sur and P. K. Srimani, Topological properties of star graph, Computers and Mathematics with
Applications, vol.25, no.12, pp.87-98, 1993.

[4] K. Day and A. Tripathi, Arrangement graphs: A class of generalized star graphs, Information
Processing Letters, vol.42, no.5, pp.235-241, 1992.

[5] E. Cheng, J. W. Grossman, K. Qiu and Z. Shen, The number of shortest paths in the arrangement
graph, Information Sciences, vol.240, pp.191-204, 2013.

[6] S. Sun, M. Xu and K. Wang, Edge-fault-tolerant pancyclicity of arrangement graphs, Information
Sciences, vol.285, pp.50-62, 2014.

[7] Y.-H. Teng, The spanning connectivity of the arrangement graphs, Journal of Parallel and Dis-
tributed Computing, vol.98, pp.1-7, 2016.

[8] Y.-H. Teng, J. M. Tan, C.-W. Tsay and L.-H. Hsu, The paths embedding of the arrangement graphs
with prescribed vertices in given position, Journal of Combinatorial Optimization, vol.24, pp.627-646,
2012.

[9] S. Wang and K. Feng, Fault tolerance in the arrangement graphs, Theoretical Computer Science,
vol.533, pp.64-71, 2014.

[10] S. Zhou and J.-M. Xu, Conditional fault tolerance of arrangement graphs, Information Processing
Letters, vol.111, pp.1037-1043, 2011.



RELIABILITY DEGRADATION OF ARRANGEMENT GRAPHS 725

[11] S. Zhou and J.-M. Xu, Fault diagnosability of arrangement graphs, Information Sciences, vol.246,
pp.177-190, 2013.

[12] C. R. Das and J. Kim, A unified task-based dependability model for hypercube computers, IEEE
Trans. Parallel and Distributed Systems, vol.3, no.3, pp.312-324, 1992.

[13] T.-L. Kung and C.-N. Hung, Estimating the subsystem reliability of bubblesort networks, Theoretical
Computer Science, vol.670, pp.45-55, 2017.

[14] T.-L. Kung, Y.-H. Teng, C.-K. Lin and Y.-L. Hsu, Combinatorial analysis of the subsystem reliability
of the split-star network, Information Sciences, vols.415-416, pp.28-40, 2017.

[15] X. Wu and S. Latifi, Substar reliability analysis in star networks, Information Sciences, vol.178,
pp.2337-2348, 2008.

[16] P. Kales, Reliability: For Technology, Engineering, and Management, Prentice-Hall, New Jersey,
1998.

[17] Y. Chang and L. N. Bhuyan, A combinatorial analysis of subcube reliability in hypercube, IEEE
Trans. Computers, vol.44, no.7, pp.952-956, 1995.

[18] L. Lin, L. Xu, S. Zhou and D. Wang, The reliability of subgraph in the arrangement graph, IEEE
Trans. Reliability, vol.64, no.2, pp.807-818, 2015.


