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Abstract. We propose an approach for estimating human motion using spatio-temporal
context. Unlike the widely used short-term prediction which employs a simple motion
model, we try to establish a long-term human motion prediction by characterizing human
trajectories tendency in a specific location and place. These trajectories are modeled by
using a probabilistic temporal sequence model and parameterized by both person dynamics
and location/topological features. Each topology is subsequently interconnected using a
graph representation for acquiring a longer trajectory model. Predicted future path of the
person is then generated by employing a particle filter-based predictor and integrating it
with the trajectory models. Experimental results and evaluations on a real environment
show benefit and feasibility of the proposed method.
Keywords: Human motion prediction, Spatio-temporal context, Topological feature

1. Introduction. Understanding and perceiving human motion is really necessary for
many robotic and computer vision applications. In robotics area, figuring out the human
motion may assist the robot navigation in performing a better obstacle avoidance task, es-
pecially the dynamic motion of human. A correct prediction of the person motion enables
the robot to produce a susceptible motion plan which handles possible future collisions. In
another application, a computer vision researcher may utilize extracted information from
the human motion to augment the surveillance camera capability involving the pattern
of human movement.

Nevertheless, understanding the human movement is a complex problem. Many re-
searchers try to simplify the problem by assuming that the human motion follows a
simple model such as the constant velocity model (e.g., [1,2]). The weakness is that this
simple model hardly maintains a correct prediction for a long time.

By realizing such weakness, several recent works recommend more sophisticated meth-
ods for exhibiting the human motion model. An effort to cluster and infer the human
motion by using a hidden Markov model and expectation-maximization clustering is per-
formed by [3]. Here they aimed to collect the pattern of the human trajectories. The
similar method is also used in [4] by employing the hidden Markov model. In another
work, [5] presented a novel probabilistic method so-called joint probability distribution for
predicting the human motion patterns. In other research, [6] took a different perspective
by engaging a class of method based on the optimal control theory to model a long-term
destination forecasting of a moving person utilizing a semantic scene.

In more recent studies, Bera et al. [7] proposed the combination of global and local
movement pattern for predicting the pedestrian paths. The drawback is that they made no
assumption on the motion, of which it would affect the long term prediction. In contrast,
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the work in [8] modeled the pedestrian intention using Markov decision process, but it
takes a long time. This is also the problem which appears in [9,10]. Additionally, those
works above do not take account of the influence of surrounding environment towards the
human or pedestrian movement.

We are convinced that surrounding environment has a great influence on determining
how a person will move. In particular, spatial and time context of the environment will
drive and shape the human motion trajectories. As an easy instance, a person trajectory
tends to follow the shape of a sidewalk pavement and walk on the side (rather than on
the center) in a morning-rush time. Utilization of such information will benefit the future
prediction of the human motion.

Unfortunately, most of the mentioned works do not take account of how the environment
has an influence on the person movement (e.g., [1-3,11,12]). In case of [6], they take
advantage of the physical attribute information of the environment (such as building, car,
and pavement) for only separating the walkable and non-walkable areas.

We aim to close the above gaps by coalescing the spatio-temporal information of the
environment for predicting the human motion. Here, the spatio-temporal context is de-
scribed as the impact of features and attributes of the environment, including the structure
and shape, towards the human trajectories which varies over the time. We subsequently
propose a novel framework for tackling such problem. Human trajectory trends are ini-
tially extracted and a probabilistic sequence model is constructed, considering the person
motion and spatio-temporal features of the environment. It is then integrated with a
graph representation of the environment. The future path for the person is subsequently
estimated using a particle filter. This paper also extends our previous work [13] which con-
siders only the spatial relationship of the environment to the human motion. By exploiting
the time into the estimation system, the spatio-temporal features can be constructed for
obtaining more thorough motion prediction.

We organize the rest of this paper as follows. We first describe the human motion model
as a sequence classification in Section 2. Environment representation as a graph and the
usage of particle filter to help the human motion prediction are also discussed in the same
section. The proposed approach is then verified on various experiments in Section 3. In
the end, the conclusion and future directions of this work are provided.

2. Modeling Human Motion Trajectory. Human trajectory model is established by
first perceiving the human motion as a goal-oriented trajectory. In a real world, it can
be explained by an easy instance as follows. An indoor environment can be semantically
categorized into hallways or corridors and junctions. From a stationary perspective (e.g.,
the person is observed from a static observer), the human movement on the hallway can
be easily predicted either it is getting close or going away. In another case, when we
observe a T-junction, the other person movement will be going to left, going to right, or
approaching to us. Here we intend to emulate such reasoning which infers the human
movement as a goal-oriented motion.

2.1. Notation. Trajectory of human motion is formally defined as X = {x1, x2, . . . , xt}
which is a sequence of the human position or state until the time t. Let Y = {Y1, Y2, . . .,
Yn} be n possible trajectories which leads a moving person towards each observable goal
in G. Let ϕX and ϕY respectively represent observation of the human position and the
goals from the current observer pose. We will explain observable goal term, later.

Let also Q ⊂ R2 be two dimensional grid map obtained by a SLAM algorithm [14], the
map Q is then simplified, such that fsimp : Q 7→ {P ,K}. We borrow mapping function
fsimp using procedure mentioned in [15] and extract a polygonal model P , as well as the
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skeleton K of the map. All junctions can be determined from K by employing a template
matching over the map using junction models [15].

2.2. Concept of observable goal for predicting human motion. When a per-
son/observer (or robot) observes motion of the other person, his “outlook” is basically
limited by field-of-view. Suppose the observer is at a location near junction, his view will
be restricted by walls and line-of-sight. Here, line-of-sight is defined as a non-obstacle
area at which a person can pass through. Since the person cannot move through the walls,
it is safe to assume that a person will make a motion following the shape of environment
(i.e., corridors and junctions). Accordingly, human motion is basically coming from and
to those line-of-sight. We then assume that line-of-sight becomes the possible observable
goal for a person to move.

Field-of-view of the observer is not only spatially-limited, but also distance-limited. It
then creates an observable space called visibility polygon which contains all of line-of-sight.
Therefore, the observable goal can be determined by intersecting the visibility V and the
skeleton K. We subsequently define G = {g1, g2, . . . , gn} as the observable goal the person
may lead to, as follows

G = {∀q ∈ Q|q = V ∩ K}, (1)

where Q is the grid map obtained by SLAM algorithm, as mentioned in the notation
section.

What if the environment is not in a form of narrow corridors and junctions? In this case,
field-of-view of the observer becomes very broad and it is difficult to determine line-of-
sight. Nevertheless, human trajectory is finite and spatially-biased. For instance, in a wide
gallery, a person tends to move from an entrance, to a painting, to the other paintings,
and then go to the exit. Each place subsequently becomes the possible observable goal
for a person to move.

Utilizing the above concept of observable goal, our objective now becomes modeling the
relationship between person trajectory, observable goals, the predicted motion towards the
goals, and the observations as p(X ,G,Y|ϕX , ϕG) respectively. The model can be written
under the independence assumption, as

p (X ,G,Y|ϕX , ϕG) = p (Y|Y ,G) p (X ,G|ϕX , ϕG) . (2)

In principal, the first term of the right-hand side of Equation (2) is the trajectory pre-
diction towards observable goal involving a sequence structure. It is naturally solved by
a sequence classifier. The second term models the target person and observable goals.
Here, we use a Gaussian distribution.

2.3. Human motion as spatio-temporal sequence classification. Human trajec-
tory model consists of sequence of the human state or pose. Hence, it can be treated as a
sequence prediction. We exploit these structures by employing dynamic conditional ran-
dom field (DCRF) [16] to capture the spatial and temporal relationship between adjacent
human pose constructing the trajectory. Adopting the work of [17], we model our DCRF
as follows

p (Y|X ,G, φ) ∝ 1

Z(X ,G; φ)

∏
t

exp

{∑
k

φkfk (Yt,X ,G, t)

}
, (3)

where fk(·) denotes a set of feature functions, φk is the parameter in the form of a set of
weights to be estimated, and Z(·) represents the normalization factor.
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Parameter φk is subsequently optimized using pseudo-likelihood (as also used by [17]),
as follows

L(φ) =
N∑

i=1

log p (yi ∈ Y|xi ∈ X ) , (4)

where N is the number of training data.
For the trajectory classification, the maximum score of predicted Y is taken, such that

y∗ = arg max
Y

p(Y|X ,G; φ∗), (5)

where φ∗ represents the learned parameter.

2.4. Feature function. We exploit feature function similar to the one used in [13] for
capturing the human trajectory properties. The employed features are composed by pose
and topological features.

The pose features are depicted by the human coordinate at the time t, xt = {x1
t , x

2
t} ∈

X ⊂ R2 as well as its derivation ẋ, and its motion orientation θ, as follows

ẋt =
(xt − xt−1)

∆t
,

θt = tan−1

(
x2

t − x2
t−1

x1
t − x1

t−1

)
.

(6)

Both velocity and orientation are respectively quantized into three bins and 16 bins his-
togram.

For the topological features, the objective of utilizing environmental topology is to
comprehend the effect of environment structure to the human motion. Accordingly, a
skeleton map K (as mentioned in the notation section above) is utilized since it has
ability to capture shape and type of the environment (e.g., corridors, T-junctions, cross-
junctions, and L-turn). It can be achieved by deriving the distance function towards the
skeleton K for each element xi ∈ X , as follows

r(xi) =
∂

(
e∥xi−xK∥)

∂x
, (7)

where the numerator denotes the distance of xi to the nearest point xK in the skeleton. A
high magnitude of r(xi) is expected to be obtained when a person cuts across the skeleton.
This topological feature is subsequently quantized into eight bins histogram.

2.5. Graph representation for the environment. We have explained how to predict
the human motion trajectory in a single place (e.g., junctions and corridors). When
an observer moves, the place is dynamically and continuously changed. It means using
only one spatial place is unfeasible. Fortunately, an indoor environment is able to be
represented as a graph consisting of interconnected corridor and junction nodes, as shown
in Figure 1.

One unique feature of this graph representation is that it looks like the human motion
trajectory in a single place. The only difference is that it is now in a coarse and larger
scale. It also means the similar technique and algorithm which handles sequence data can
be utilized.
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Figure 1. Graph representation of the map

For accommodating those structured graph representations, we employ a hierarchical
trajectory classification by modifying Equation (3) as follows

p (Y|X ,G, φ) ∝ 1

Z(X ,G; φ)

∏
t

exp(f(·))

f(·) ∝
∑
k1

φ1f1 (Yt,X ,G, t) +
∑
k2

φ2f2 (Yt,X ,G, t) .
(8)

Here, f1(·) represents feature functions taken from dense state of the human trajectory,
while f2(·) denotes coarser feature functions brought from the environment graph as shown
in Figure 1 (of course, k2 < k1). Using such approaches, we expect to merge and take
advantage of the information from the human motion state and the graph structure of
the environment together, so that the human intention to move can be better foreseen.

2.6. Particle filter-based estimator. The distribution in Equation (2) is iteratively
predicted using a Bayesian framework as the observation ϕX and ϕG are updated through
the time. A particle filter framework is particularly utilized to do the job. We compose
the state model by S = {X ,G,Y}. The dynamical model is then described as

p (St|St−1) = p
(
Xt, Ẋt|Xt−1, Ẋt−1

)
p (Gt|Gt−1) p (Yt|Yt−1) . (9)

The first term of the right-hand side of Equation (9) is modeled using a first-order dy-
namical model, and the rest is in a form of the Gaussian distribution.

The observation is subsequently modeled as

p (ϕX , ϕG|X ,G) = p (ϕX |X ) p (ϕG|G) . (10)

Same as the above, the Gaussian distribution model is utilized for the right-hand side of
Equation (10). It is worth noting that the decision of choosing the observable goal can
be determined when the confidence is above a threshold.

3. Experiments. All implementations of the described algorithm were done on a Win-
dows PC (i5 2.4 GHz, 4 GB RAM) using C++ programming language.

3.1. Dataset preparation. We employ the same data used in [13]. A set of person
trajectories is initially collected using a laser-based person tracker [18] on five different
locations at our campus. These procedures capture 983 trajectory sequences in total and
produce three to six trajectory classes per location. We subsequently divide the data into
two different sets randomly for each location, i.e., for training and testing purposes.

We also append additional data taken from the different environment, depicting an
outdoor scene at Universitas Gadjah Mada (hereby, UGM Outdoor). A set of person
inside the scene is detected and tracked using image-based person tracker [19,20]. We
manage to capture 125 trajectory sequences in total, with three classes.
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3.2. Evaluation. The proposed method exploiting the dynamic conditional random field
(DCRF) [16] is evaluated to discriminate person trajectory on each designated location.
Since the problem has nature of sequence classification, it can be compared with other
sequence classifiers as baseline, such as conditional random field (CRF) [21], hidden CRF
(HCRF) [22], and hidden Markov model (HMM) [23].

CRF, HCRF, and DCRF are accordingly trained as a multi-class classifier for each
location. There is difference between CRF-DCRF and HCRF on labeling the trajectory
which is based on the observable goal. For CRF and DCRF, each state in the trajectory
sequence needs to be labeled separately, while HCRF needs only one label for the whole
states in the trajectory sequence. The HMM is subsequently treated as a generative
model. Two different types of feature usage are engaged on each method: positional
information only, and combined positional-topological features.

Accuracy of the trajectory classification is shown by Table 1. It is clear that consid-
ering the spatial context, as used in HCRF and DCRF, will increase the trajectory class
recognition rate. Additionally, spatio-temporal features boost up the result over the other
methods. One reasonable explanation is that the HCRF has ability to model the hidden
structures of the trajectory sequence and its relationship toward one single trajectory

Table 1. Comparison of trajectory classification of dataset [13]

Method
Accuracy (%) on Location

1 2 3 4 5

CRF (pose) 52.66 73.45 46.45 43.83 42.64

HMM (pose) 58.90 77.25 54.67 50.24 51.30

HCRF (pose) 55.83 77.76 51.23 46.87 46.28

DCRF (pose) 57.45 77.34 51.02 48.68 49.52

CRF (pose + topology) 52.90 74.23 49.00 46.47 44.64

HMM (pose + topology) 60.67 75.23 58.96 52.45 48.20

HCRF (pose + topology) 63.34 80.45 61.62 57.90 53.44

DCRF (pose + topology) 65.76 79.88 63.71 59.15 53.06

Figure 2. Distribution of the predicted trajectory over the time for loca-
tion 1 of the dataset [13]
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label, which is lack in the CRF and HMM, while the DCRF even further models the
relationship over temporal states to achieve a better result.

Human motion prediction performance is qualitatively satisfying as it has been endorsed
by tendency graph on Figure 2, which shows the distribution of each predicted trajectory
over time. Please note that the trajectory is converged to the left side as the time grows.

3.3. Predicting the human motion on outdoor environment. We also conduct
experiments on outdoor scene, i.e., “UGM Outdoor” which represents a 3-crossing paving
road (see Figure 3). It means we have three classes of the trajectory. From geometrical
point of view, this 3-crossing paving road has similar spatial form as the three-junction of
the indoor setting used in the previous experiment. From Table 2, the HMM represents the
generative sequential model, while the CRF’s family denotes the discriminative models.
In HMM, CRF and HCRF, we only care about the position and spatial information of
the environment. Contrarily, DCRF considers both spatial and temporal properties of
the environment. Once again, from Table 2, the usage of spatio-temporal context gives
benefit for correctly predicting the human motion, with a higher accuracy.

Figure 3. Human motion prediction on an outdoor scheme



754 I. ARDIYANTO

Table 2. Comparison of trajectory classification of dataset UGM Outdoor

Method Accuracy (%)

CRF (pose) 55.7

HMM (pose) 55.9

HCRF (pose) 58.2

DCRF (pose) 60.5

CRF (pose + topology) 60.7

HMM (pose + topology) 62.9

HCRF (pose + topology) 66.3

DCRF (pose + topology) 66.8

4. Conclusions. We have presented a novel approach to predict the human motion by
considering spatio-temporal context of the environment. Human trajectory tendencies
are extracted by using a probabilistic sequence model which considers spatio-temporal
context on each environment structure. Afterwards, each prediction on each environment
structure is integrated with a graph representation. Lastly, a particle filter-based predictor
is incorporated with the model to predict the human motion intention. Experimental
results support the advantage of our method over other state-of-the-art approaches.

Some possible future direction of this research will be to eliminate all limitations we
have mentioned in the previous section. Basically, our approach is also applicable on any
structured environment which can be represented as graph, yet it needs further verifica-
tion. A richer feature choice to extract the environment context also seems interesting to
be evaluated later.
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