
International Journal of Innovative
Computing, Information and Control ICIC International c⃝2018 ISSN 1349-4198
Volume 14, Number 3, June 2018 pp. 781–796

EXPONENTIAL STABILITY ANALYSIS OF FUNCTIONAL
OBSERVER FOR NONLINEAR SYSTEM WITH INTERVAL

TIME-VARYING MIXED DELAYS

Yali Dong∗, Liangliang Guo, Wenqin Wang and Jing Hao

School of Science
Tianjin Polytechnic University

No. 399, Binshui West Avenue, Xiqing District, Tianjin 300387, P. R. China
∗Corresponding author: dongyl@vip.sina.com

Received September 2017; revised January 2018

Abstract. This paper investigates exponential stability of functional observer for a class
of nonlinear systems with interval time-varying mixed delays. We first address the prob-
lem of functional observer design for nonlinear systems with interval time-varying mixed
delays and establish the sufficient conditions of exponential stability of functional ob-
server for this class of systems. Second, by utilizing Lyapunov-Krasovskii approach and
some well-known inequalities, we convert the stability analysis problem into the feasible
problem of several linear matrix inequalities (LMIs). We proposed sufficient conditions
of the exponential stability of functional observer for nonlinear systems with interval
time-varying mixed delays. Furthermore, the parameters of the delay-dependent observer
are also designed using the Lyapunov-Krasovskii approach. Finally, we give two numer-
ical examples and some simulation results to illustrate the effectiveness of the obtained
method.
Keywords: Functional observer, Exponential stability, Nonlinear system, Time-varying
delays, Linear matrix inequalities

1. Introduction. In the past few decades, researchers have focused on the problem of
stability analysis of time-delay systems due to its theoretical and practical importance
[1-6]. As we all know, time-delay happens frequently in various practical and engineering
systems such as physics, mechanics, economy, population dynamics models, automatic
control systems, and neural networks [1,2]. Usually, the presence of delay would deteri-
orate the performance of a system, sometimes causing instability [3]. Therefore, much
attention has been paid to the stability analysis of time-delay systems. What is more, in
many practical systems, time-delay is not constant but time-varying [4]. In other words,
time-varying delay is unavoidable. The existing stability analysis criteria for time-delay
systems can be classified into two types: (1) delay-dependent stability analysis; (2) delay-
independent stability analysis [5]. It has been proved that delay-dependent criteria are
generally less conservative than delay-independent ones [6].

A functional observer is a general form of Luenberger observer that deals with the
estimation of one or more functions of the states of a system [7-9]. Observers of this type
have been widely applied in systems where the observation of the whole set of system
states is not necessary, including fault detection, electromechanical system and observer
based control of the dynamic systems. Besides, decreasing the order of the observer can
significantly cut the computational costs. Recently, the problem of observer design for
time-delay systems has received a significant amount of attention (see, e.g., [3,10,11]). In
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[3], the problem of nonlinear observer design for one-sided Lipschitz systems with time-
varying delay and uncertainties was investigated. In [11], the problem of observer design
for a class of nonlinear discrete-time systems with time-varying delay was considered.

Another popular field of research in the recent years is the functional observer of linear
time-invariant systems [7-9,12-16]. In [12], a new algorithm to design minimal multi-
functional observers for linear systems was presented. In [13], minimal unknown-input
functional observers for multi-input multi-output linear time-invariant systems were stud-
ied. In [15], the design of linear functional state observers for systems with delays in state
variables was considered. However, the above mentioned functional observers are all aimed
at linear systems. Scarcely has any research focusing on the same observers of nonlinear
systems.

To the best of our knowledge, none of the contributions concerning functional observer
design for time-delay nonlinear systems considers multiple time-varying mixed delays in
the states of the system, which will be addressed by this paper. We consider the problem
of exponentially stability of functional observer for a class of nonlinear systems with in-
terval time-varying mixed delays. We propose the design method of functional observer
for this class of systems and give the novel sufficient conditions of exponential stability of
functional observer. Then, we utilize Lyapunov-Krasovskii approach and some well-known
inequalities to establish the criteria of delay-dependent exponential stability of the func-
tional observer for a class of nonlinear systems with interval time-varying mixed delays.
These criteria guarantee that the functional observer is exponentially stable. Further-
more, the parameters of the delay-dependent observer are designed. At last, numerical
examples are given to show the effectiveness of the proposed approach.

The rest of this paper is organized as follows. Section 2 starts with problem formula-
tion and gives preliminaries. Section 3 gives the observer structure and stability analysis.
Section 4 presents the design of exponentially stable functional observer scheme and suf-
ficient conditions of the exponential stability of functional observer for nonlinear systems
with interval time-varying mixed delays. In Section 5, we give two numerical examples
to illustrate the effectiveness of the proposed method which is finally followed by some
conclusions in Section 6.

Notations: throughout this paper, Rn denotes the n-dimensional Euclidean space. ‘∗’
represents the elements below the main diagonal of a symmetric matrix. MT means the
transpose of M . C† is the pseudo-inverse or the generalized inverse of the matrix C; and
C⊥ is the right orthogonal of C in a way that CC⊥ = 0. λmin(P ), λmax(P ) denote the
maximal and minimal eigenvalue of a matrix P respectively.

2. Problem Statement and Preliminaries. Consider a class of nonlinear systems
with time-varying delays as follows:

ẋ(t) = A1x(t) + A2x(t − h(t)) + A3x(t − τ(t)) + Af(Cx(t)) + Bu(t),

y(t) = Cx(t),

z(t) = Lx(t),

x(t) = ϕ(t), ∀ t ∈
[
M̄, 0

]
,

(1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control input, y(t) ∈ Rp is the
measured output, and z(t) ∈ Rl is the functional to be estimated. A1, A2 and A3 are
system matrices with appropriate dimensions; A, B, C and L are known and constant
matrices, and the matrices C and L are of full row rank. ϕ(t) is the initial function of
the states of the system. f(·) is a nonlinear function with f(0) = 0. h(t) and τ(t) are the
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interval time-varying delays which satisfy

0 ≤ hm ≤ h(t) ≤ hM < ∞, ḣ(t) ≤ h < 1, (2)

0 ≤ τm ≤ τ(t) ≤ τM < ∞, τ̇(t) ≤ τ < 1, M̄ = max{hM , τM}, (3)

where hm, hM , τm, τM , h and τ are the known constants.

Remark 2.1. For the sake of simplicity, in this paper, we only considered two time-
varying delays. Furthermore, for the systems with more than two time-varying delays, the
proposed theories can be directly extended.

Remark 2.2. As we all know, in many practical cases, time delay is not constant but time-
varying. In this paper, we mainly focus on the problem of exponential stability analysis of
the observer for a class of systems with interval time-varying mixed delays.

Definition 2.1. [9] A minimum-order functional observer for the system (1) is α-exponen-
tially stable, if there exist constants α > 0 and γ > 0 such that the estimation error
e(t) = ẑ(t) − z(t) satisfies

∥e(t)∥ ≤ γe−αt∥ϕ∥c, ∀t ≥ 0,

where ∥ϕ∥c = supθ∈[−M̄,0]{∥e(θ)∥, ∥ė(θ)∥}.

Lemma 2.1. [1] Suppose 0 < hm < hM , and x(t) ∈ Rn, for any given positive matrix
Q ∈ Rn×n, then:

−(hM − hm)
∫ t−hm

t−hM
ẋT (s)Qẋ(s)ds ≤

[
x(t − hm)
x(t − hM)

]T [
−Q Q

Q −Q

] [
x(t − hm)
x(t − hM)

]
,

−hM

∫ t

t−hM
ẋT (s)Qẋ(s)ds ≤

[
x(t)

x(t − hM)

]T [
−Q Q

Q −Q

] [
x(t)

x(t − hM)

]
.

3. Functional Observer and Stability Analysis. In this section, we address the prob-
lems on exponentially stability analysis of observer for a class of nonlinear systems with
interval time-varying mixed delays by means of Lyapunov-Krasovskii functional method.

A minimum-order functional observer with under structure is employed:

ω̇(t) = F1ω(t) + F2ω(t − h(t)) + F3ω(t − τ(t)) + F4f(y(t))

+ Gu(t) + H1y(t) + H2y(t − h(t)) + H3y(t − τ(t)),

ẑ(t) = ω(t) + V y(t),

ω(t) = 0, ∀ t ∈ [−M̄, 0],

(4)

where ω(·) ∈ Rl is the state of functional observer, F1, F2, F3, F4, G, H1, H2, H3 and
V are the constant matrices of appropriate dimensions. Define the auxiliary error signal
ϵ(·) = ω(·) − Tx(·). Then, we give the following sufficient conditions for the exponential
stability of the functional observer.

Theorem 3.1. The functional observer (4) is globally α-exponentially stable if
(i) The error dynamics

ϵ̇(t) = F1ϵ(t) + F2ϵ(t − h(t)) + F3ϵ(t − τ(t)),

ϵ(θ) = −Tϕ(θ), ∀θ ∈ [−M̄, 0],
(5)

is α-exponentially stable.
(ii) There exists a matrix T, such that the following matrix equations hold:

T + V C − L = 0, (6)
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F1T − TA1 + H1C = 0, (7)

F2T − TA2 + H2C = 0, (8)

F3T − TA3 + H3C = 0, (9)

G = TB, F4 − TA = 0. (10)

Proof: Differentiating ϵ(t) along the solutions of Equations (1) and (4) gives,

ϵ̇(t) = ω̇(t) − T ẋ(t)

= F1ϵ(t) + F2ϵ(t − h(t)) + F3ϵ(t − τ(t)) + (F1T − TA1 + H1C)x(t)

+ (F2T − TA2 + H2C)x(t − h(t)) + (F3T − TA3 + H3C)x(t − τ(t))

+ (F4 − TA)f(Cx(t)) + (G − TB)u(t).

(11)

Then, if there exists a matrix T , such that conditions (7)-(9) and (10), as well as condition
(i) are satisfied, then ϵ(t) is globally α-exponentially stable.

Next, the calculation of the error signal ϵ(t) gives,

e(t) = ẑ(t) − z(t) = ω(t) + V y(t) − Lx(t) = ϵ(t) + (T + V C − L)x(t). (12)

For this reason, if condition (6) is achieved, then the estimated functional ẑ(t), globally
exponentially tracks its actual value with the convergence rate equal to α. This is due to
the α-exponential stability of the error signal ϵ(t). This completes the proof of Theorem
3.1.

Now, a delay-dependent criterion is established for the exponential stability of the error
dynamics (5) in the following theorem.

Theorem 3.2. For given constants α > 0, 0 ≤ hm ≤ hM , 0 ≤ τm ≤ τM , h < 1 and
τ < 1, the system (5) subject to (2) and (3) is globally α̃-exponentially stable if there exist
matrices P > 0, Qi > 0 (i = 1, 2, . . . , 8), R1 > 0, R2 > 0, and N > 0 of appropriate
dimensions, such that the following matrix inequality holds:

Π̂ =



Π̂11 Π̂12 Π̂13 Π̂14 e−ατmR2 e−αhM R1 0 0 0 0

∗ Π̂22 0 Π̂24 0 0 0 0 0 0

∗ ∗ Π̂33 Π̂34 0 0 0 0 0 0

∗ ∗ ∗ Π̂44 0 0 0 0 0 0

∗ ∗ ∗ ∗ Π̂55 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ Π̂66 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ Π̂77 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Π̂88 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Π̂99 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Π̂10,10



< 0, (13)

where

Π̂11 = PF1 + F T
1 P + Q1 + Q2 + Q3 + Q4 + Q6 + Q8 + αP − e−αhM R1 − e−ατmR2,

Π̂12 = PF2, Π̂13 = PF3, Π̂14 = 1
2
F T

1 NT , Π̂22 = −(1 − h)e−αhM Q3,

Π̂24 = 1
2
F T

2 NT , Π̂33 = −(1 − τ)e−ατM Q4, Π̂34 = 1
2
F T

3 NT ,

Π̂44 = Q5 + Q7 + h2
MR1 + τ 2

mR2 − N, Π̂55 = −e−ατmQ1 − e−ατmR2,

Π̂66 = −e−αhM Q6 − e−αhM R1, Π̂77 = −e−ατM Q2, Π̂88 = −e−αhmQ8,

Π̂99 = −(1 − h)e−αhM Q5, Π̂10,10 = −(1 − τ)e−ατM Q7, α̃ = α
2
.
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Proof: Choose a Lyapunov-Krasovskii functional candidate as:

V (t) = V1(t) + V2(t) + V3(t), (14)

where

V1(t) = ϵT (t)Pϵ(t),

V2(t) =
∫ t

t−τm
eα(s−t)ϵT (s)Q1ϵ(s)ds +

∫ t

t−τM
eα(s−t)ϵT (s)Q2ϵ(s)ds

+
∫ t

t−h(t)
eα(s−t)ϵT (s)Q3ϵ(s)ds +

∫ t

t−τ(t)
eα(s−t)ϵT (s)Q4ϵ(s)ds

+
∫ t

t−h(t)
eα(s−t)ϵ̇T (s)Q5ϵ̇(s)ds +

∫ t

t−hM
eα(s−t)ϵT (s)Q6ϵ(s)ds

+
∫ t

t−τ(t)
eα(s−t)ϵ̇T (s)Q7ϵ̇(s)ds +

∫ t

t−hm
eα(s−t)ϵT (s)Q8ϵ(s)ds,

V3(t) = hM

∫ 0

−hM

∫ t

t+s
eα(θ−t)ϵ̇T (θ)R1ϵ̇(θ)dθds + τm

∫ 0

−τm

∫ t

t+s
eα(θ−t)ϵ̇T (θ)R2ϵ̇(θ)dθds.

Calculating the time derivatives of Vi, i = 1, 2, 3, along the trajectory of system (5) yields

V̇ (t) + αV (t) ≤ 2ϵT (t)P [F1ϵ(t) + F2ϵ(t − h(t)) + F3ϵ(t − τ(t))] + αϵT (t)Pϵ(t)

+ ϵT (t)Q1ϵ(t) − e−ατmϵT (t − τm)Q1ϵ(t − τm)

+ ϵT (t)Q2ϵ(t) − e−ατM ϵT (t − τM)Q2ϵ(t − τM)

+ ϵT (t)Q3ϵ(t) − e−αhM ϵT (t − h(t))Q3ϵ(t − h(t))(1 − h)

+ ϵT (t)Q4ϵ(t) − e−ατM ϵT (t − τ(t))Q4ϵ(t − τ(t))(1 − τ)

+ ϵ̇T (t)Q5ϵ̇(t) − e−αhM ϵ̇T (t − h(t))Q5ϵ̇(t − h(t))(1 − h)

+ ϵT (t)Q6ϵ(t) − e−αhM ϵT (t − hM)Q6ϵ(t − hM)

+ ϵ̇T (t)Q7ϵ̇(t) − e−ατM ϵ̇T (t − τ(t))Q7ϵ̇(t − τ(t))(1 − τ)

+ ϵT (t)Q8ϵ(t) − e−αhmϵT (t − hm)Q8ϵ(t − hm)

+ h2
M ϵ̇T (t)R1ϵ̇(t) − hM

∫ t

t−hM
eα(s−t)ϵ̇T (s)R1ϵ̇(s)ds

+ τ 2
mϵ̇T (t)R2ϵ̇(t) − τm

∫ t

t−τm
eα(s−t)ϵ̇T (s)R2ϵ̇(s)ds.

(15)

By using Lemma 2.1, it can be seen that:

−hM

∫ t

t−hM
eα(s−t)ϵ̇T (s)R1ϵ̇(s)ds

≤ e−αhM

[
ϵ(t)

ϵ(t − hM)

]T [
−R1 R1

R1 −R1

] [
ϵ(t)

ϵ(t − hM)

]
,

(16)

− τm

∫ t

t−τm
eα(s−t)ϵ̇T (s)R2ϵ̇(s)ds

≤ e−ατm

[
ϵ(t)

ϵ(t − τm)

]T [
−R2 R2

R2 −R2

] [
ϵ(t)

ϵ(t − τm)

]
.

(17)

The following equation holds for any matrix N with appropriate dimension:

ϵ̇T (t)N [F1ϵ(t) + F2ϵ(t − h(t)) + F3ϵ(t − τ(t)) − ϵ̇(t)] = 0. (18)

Combining (15)-(18), we get that

V̇ (t) + αV (t) ≤ ζT (t)Π̂ζ(t), (19)

where

ζT (t) =
[

ξT (t) ϵT (t − hM) ϵT (t − τM) ϵT (t − hm) ϵ̇T (t − h(t)) ϵ̇T (t − τ(t))
]
,

ξT (t) =
[

ϵT (t) ϵT (t − h(t)) ϵT (t − τ(t)) ϵ̇T (t) ϵT (t − τm)
]
,

and Π̂ is given by (13).
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As a result, since Equation (13) holds, it is deduced from Equation (19) that

V̇ (t) + αV (t) ≤ 0. (20)

Now, let us define v(t) := eαtV (t), and differentiate it along the solution of Equation (5).
It is obtained that v̇(t) < 0. Integrating the latter inequality from 0 to t and substituting
from the definition of v(t) result in

V (t) ≤ e−αtV (0). (21)

From (14), we have
V (0) ≤ (λ1 + λ2)∥ϕ∥2

c ,

where

λ1 = λmax(P ) + τmλmax(Q1) + τMλM(Q2) + hMλmax(Q3) + τMλM(Q4)

+ hMλmax(Q5) + hMλmax(Q6) + τMλmax(Q7) + hmλmax(Q8)

λ2 =
h3

M

2
λmax(R1) + τ3

m

2
λmax(R2).

On the other hand
λmin(P )∥e(t)∥2

c ≤ V1(t) ≤ V (t).

Hence, the Lyapunov-Krasovskii theorem helps us to conclude that ϵ(t) and ϵ̇(t) exponen-
tially converge to zero with the rate of α

2
. More specifically,

∥ϵ(t)∥ ≤

√
λ1 + λ2

λmin(P )
e−

α
2

t∥ϕ∥c. (22)

It completes the proof of the theorem.

4. Functional Observer Design. Let C̄ := [C†, C⊥]. Firstly, we introduce the following
parameters: [

T1 T2

]
= TC̄, (23)[

L1 L2

]
= LC̄, (24)

C̄

[
A1

11 A1
12

A1
21 A1

22

]
= A1C̄, (25)

C̄

[
A2

11 A2
12

A2
21 A2

22

]
= A2C̄, (26)

C̄

[
A3

11 A3
12

A3
21 A3

22

]
= A3C̄, (27)

where T1 ∈ Rl×p, T2 ∈ Rl×(n−p), L1 ∈ Rl×p, L2 ∈ Rl×(n−p), Ai
11 ∈ Rp×p, Ai

12 ∈ Rp×(n−p),
and Ai

22 ∈ R(n−p)×(n−p), i = {1, 2, 3}. Next, post-multiplying Equations (6)-(9) by C̄
results in the following set of equations:

T2 = L2, (28)

V = L1 − T1, (29)

H1 = −F1T1 + T1A
1
11 + T2A

1
21, (30)

H2 = −F2T1 + T1A
2
11 + T2A

2
21, (31)

H3 = −F3T1 + T1A
3
11 + T2A

3
21, (32)

F1T2 − T1A
1
12 − T2A

1
22 = 0, (33)

F2T2 − T1A
2
12 − T2A

2
22 = 0, (34)

F3T2 − T1A
3
12 − T2A

3
22 = 0. (35)
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Now, considering Equations (28) and (33)-(35), we have,[
F1 F2 F3 −T1

]
Ω = Φ, (36)

where

Ω :=


L2 0 0
0 L2 0
0 0 L2

A1
12 A2

12 A3
12

 ,

and Φ =
[

L2A
1
22 L2A

2
22 L2A

3
22

]
. It can be shown that Equation (36) has a solution if

and only if the below condition is fulfilled:
Condition I:

rank




L2A
1
22 L2A

2
22 L2A

3
22

A1
12 A2

12 A3
12

L2 0 0
0 L2 0
0 0 L2


 = rank




A1
12 A2

12 A3
12

L2 0 0
0 L2 0
0 0 L2


 . (37)

Remark 4.1. In fact, (36) is equivalent to the following equation:

ΩT
[

F1 F2 F3 −T1

]T
= ΦT , (37a)

and (37a) has a solution if and only if the following rank condition is satisfied:

rank
(
ΩT

)
= rank

([
ΩT , ΦT

])
. (37b)

(37b) holds if and only if

rank(Ω) = rank

(
Ω
Φ

)
holds, which is equivalent to (37) holds.

If Condition I is achieved, then it is concluded from Equation (36) that,[
F1 F2 F3 −T1

]
= U1 + Z̄U2, (38)

where U1 := ΦΩ†, U2 := I3l+p −ΩΩ†, and Z̄ ∈ Rl×(3l+p) is an arbitrary parameter. Hence,
the below can be written from Equation (38):

F1 = U11 + Z̄U21, (38a)

F2 = U12 + Z̄U22, (38b)

F3 = U13 + Z̄U23, (38c)

−T1 = U14 + Z̄U24, (38d)

where U11, U12, U13, U14, U21, U22, U23 and U24 are the partitions of U1 and U2 with
appropriate dimensions, respectively.

Theorem 4.1. Assume that Condition I is satisfied. For given constants α > 0, 0 ≤
hm ≤ hM , 0 ≤ τm ≤ τM , h < 1 and τ < 1, the functional observer (4) is globally
α̃-exponentially stable if

(a) there exist matrices M > 0, Q̄ > 0, R̄ > 0, K1, K2, and K3 of appropriate
dimensions, and positive scalars αi (i = 2, 3, . . . , 8) and β such that the following linear
matrix inequality holds:
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Π̃ =



Π̃11 Π̃12 Π̃13 Π̃14 e−ατmβR̄ e−αhM R̄ 0 0 0 0

∗ Π̃22 0 Π̃24 0 0 0 0 0 0

∗ ∗ Π̃33 Π̃34 0 0 0 0 0 0

∗ ∗ ∗ Π̃44 0 0 0 0 0 0

∗ ∗ ∗ ∗ Π̃55 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ Π̃66 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ Π̃77 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Π̃88 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Π̃99 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Π̃10,10



< 0, (39)

where

Π̃11 = U11M
T + MUT

11 + K1 + KT
1 + ᾱQ̄ + αMT −

(
e−αhM + e−ατmβ

)
R̄,

Π̃12 = U12M
T + K2, Π̃13 = U13M

T + K3, Π̃14 = 1
2
MUT

11 + 1
2
KT

1 ,

Π̃22 = −(1 − h)e−αhM α3Q̄, Π̃24 = 1
2
MUT

12 + 1
2
KT

2 ,

Π̃33 = −(1 − τ)e−ατM α4Q̄, Π̃34 = 1
2
MUT

13 + 1
2
KT

3 ,

Π̃44 = α5Q̄ + α7Q̄ + h2
M R̄ + τ 2

mβR̄ − MT , Π̃55 = −e−ατmQ̄ − e−ατmβR̄,

Π̃66 = −e−αhM α6Q̄ − e−αhM R̄, Π̃77 = −e−ατM α2Q̄, Π̃88 = −e−αhmα8Q̄,

Π̃99 = −(1 − h)e−αhM α5Q̄, Π̃10,10 = −(1 − τ)e−ατM α7Q̄,

ᾱ = 1 + α2 + α3 + α4 + α6 + α8, α̃ = α
2
.

(b) the following rank condition is fulfilled:

rank

([
U21M

T U22M
T U23M

T

K1 K2 K3

])
= rank

([
U21M

T U22M
T U23M

T
])

. (40)

Furthermore, the observer design parameter Z̄ can be computed from the following equa-
tion:

Z̄ = K̄Ψ†, (41)

where K̄ =
[

K1 K2 K3

]
, and Ψ =

[
U21M

T U22M
T U23M

T
]
.

Proof: Considering Π̂ is not a linear matrix inequality. It is pre- and post-multiplied by
a matrix ∆1 := diag

(
MT ,MT , MT , N−1,MT , MT ,MT ,MT ,MT ,MT

)
, where M = P−1.

Denoting Π̄ := ∆T
1 Π̂∆1, (13) is equivalent to Π̄ < 0, where

Π̄ =



Π̄11 Π̄12 Π̄13 Π̄14 e−ατmMR2M
T e−αhM MR1M

T 0 0 0 0

∗ Π̄22 0 Π̄24 0 0 0 0 0 0

∗ ∗ Π̄33 Π̄34 0 0 0 0 0 0

∗ ∗ ∗ Π̄44 0 0 0 0 0 0

∗ ∗ ∗ ∗ Π̄55 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ Π̄66 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ Π̄77 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Π̄88 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Π̄99 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Π̄10,10
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Π̄11 = F1M
T + MF T

1 + MQ1M
T + MQ2M

T + MQ3M
T + MQ4M

T

+ MQ6M
T + MQ8M

T + αMT − e−αhM MR1M
T − e−ατmMR2M

T ,

Π̄12 = F2M
T , Π̄13 = F3M

T , Π̄14 = 1
2
MF T

1 , Π̄22 = −(1 − h)e−αhM MQ3M
T ,

Π̄24 = 1
2
MF T

2 , Π̄33 = −(1 − τ)e−ατM MQ4M
T , Π̄34 = 1

2
MF T

3 ,

Π̄44 = N−1Q5N
−T + N−1Q7N

−T + h2
MN−1R1N

−T + τ 2
mN−1R2N

−T − N−T ,

Π̄55 = −e−ατmMQ1M
T − e−ατmMR2M

T , Π̄66 = −e−αhM MQ6M
T − e−αhM MR1M

T ,

Π̄77 = −e−ατM MQ2M
T , Π̄88 = −e−αhmMQ8M

T ,

Π̄99 = −(1 − h)e−αhM MQ5M
T , Π̄10,10 = −(1 − τ)e−ατM MQ7M

T .

In this line, it is assumed that

Q1 = Q, Qi = αiQ (i = 2, 3, . . . , 8), R1 = R, R2 = βR,

ᾱ = 1 + α2 + α3 + α4 + α6 + α8.

Let Q̄ = MQMT , R̄ = MRMT , K1 = Z̄U21M
T , K2 = Z̄U22M

T , K3 = Z̄U23M
T .

Furthermore, from (38a)-(38c), we know that Π̄ < 0 is equivalent to

Π =



Π11 Π12 Π13 Π14 e−ατmβR̄ e−αhM R̄ 0 0 0 0

∗ Π22 0 Π24 0 0 0 0 0 0

∗ ∗ Π33 Π34 0 0 0 0 0 0

∗ ∗ ∗ Π44 0 0 0 0 0 0

∗ ∗ ∗ ∗ Π55 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ Π66 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ Π77 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Π88 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Π99 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Π10,10



< 0,

where

Π11 = U11M
T + MUT

11 + K1 + KT
1 + ᾱQ̄ + αMT −

(
e−αhM + e−ατmβ

)
R̄,

Π12 = U12M
T + K2, Π13 = U13M

T + K3, Π14 = 1
2
MUT

11 + 1
2
KT

1 ,

Π22 = −(1 − h)e−αhM α3Q̄, Π24 = 1
2
MUT

12 + 1
2
KT

2 , Π33 = −(1 − τ)e−ατM α4Q̄,

Π34 = 1
2
MUT

13 + 1
2
KT

3 , Π55 = −e−ατmQ̄ − e−ατmβR̄, Π66 = −e−αhM α6Q̄ − e−αhM R̄,

Π44 = α5N
−1QN−T + α7N

−1QN−T + h2
MN−1RN−T + τ 2

mβN−1RN−T − N−T ,

Π77 = −e−ατM α2Q̄, Π88 = −e−αhmα8Q̄, Π99 = −(1 − h)e−αhM α5Q̄,

Π10,10 = −(1 − τ)e−ατM α7Q̄, ᾱ = 1 + α2 + α3 + α4 + α6 + α8.

In order to linearize the quadratic terms in Π44, some simplifications are considered.
From the definitions of Q̄ and R̄, we can obtain that Q = M−1Q̄(MT )−1, R = M−1R̄
(MT )−1, then

Π44 = α5N
−1QN−T + α7N

−1QN−T + h2
MN−1RN−T + τ 2

mβN−1RN−T − N−T

= α5N
−1M−1Q̄(MT )−1N−T + α7N

−1M−1Q̄(MT )−1N−T

+ h2
MN−1M−1R̄(MT )−1N−T + τ 2

mβN−1M−1R̄(MT )−1N−T − N−T .
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Let N−1 = M , then Π44 = α5Q̄ + α7Q̄ + h2
M R̄ + τ 2

mβR̄−MT . Moreover, employing the

above similarity transformation, it can be seen that Π̂ < 0 is equivalent to

Π̃ =



Π̃11 Π̃12 Π̃13 Π̃14 e−ατmβR̄ e−αhM R̄ 0 0 0 0

∗ Π̃22 0 Π̃24 0 0 0 0 0 0

∗ ∗ Π̃33 Π̃34 0 0 0 0 0 0

∗ ∗ ∗ Π̃44 0 0 0 0 0 0

∗ ∗ ∗ ∗ Π̃55 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ Π̃66 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ Π̃77 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Π̃88 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Π̃99 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Π̃10,10



< 0,

where

Π̃11 = U11M
T + MUT

11 + K1 + KT
1 + ᾱQ̄ + αMT −

(
e−αhM + e−ατmβ

)
R̄,

Π̃12 = U12M
T + K2, Π̃13 = U13M

T + K3, Π̃14 = 1
2
MUT

11 + 1
2
KT

1 ,

Π̃22 = −(1 − h)e−αhM α3Q̄, Π̃24 = 1
2
MUT

12 + 1
2
KT

2 ,

Π̃33 = −(1 − τ)e−ατM α4Q̄, Π̃34 = 1
2
MUT

13 + 1
2
KT

3 ,

Π̃44 = α5Q̄ + α7Q̄ + h2
M R̄ + τ 2

mβR̄ − MT , Π̃55 = −e−ατmQ̄ − e−ατmβR̄,

Π̃66 = −e−αhM α6Q̄ − e−αhM R̄, Π̃77 = −e−ατM α2Q̄, Π̃88 = −e−αhmα8Q̄,

Π̃99 = −(1 − h)e−αhM α5Q̄, Π̃10,10 = −(1 − τ)e−ατM α7Q̄,

ᾱ = 1 + α2 + α3 + α4 + α6 + α8.

Finally, according to the definitions of K1, K2 and K3, it can be seen that Z̄Ψ = K̄.
The parameter Z̄ has a unique solution as Equation (41), if and only if Condition (b)

is satisfied. As a result, the observer parameters Fi, T1, Hi, and V , (i = 1, 2, 3) can be
respectively computed from Equations (38a)-(38c), (38d), and (30)-(32), which implies
that Condition (b) of Theorem 4.1 is also satisfied. This completes the proof.

Remark 4.2. In the case that h(t) and τ(t) are the time-varying delays, and they are
assumed to satisfy

0 ≤ h(t) ≤ hM < ∞, ḣ(t) ≤ h < 1, (42)

0 ≤ τ(t) ≤ τM < ∞, τ̇(t) ≤ τ < 1, (43)

then we have the following corollary.

Corollary 4.1. Assume that Condition I is satisfied. For given constants α > 0, hM ≥ 0,
τM ≥ 0, h < 1 and τ < 1, the functional observer (4) is globally α̃-exponentially stable if

(a) there exist matrices M > 0, Q̄ > 0, R̄ > 0, K1, K2 and K3 of appropriate dimen-
sions and positive scalars αi > 0 (i = 2, 3, . . . , 7) such that the following linear matrix
inequality holds:
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Π̌ =



Π̌11 Π̌12 Π̌13 Π̌14 e−αhM R̄ 0 0 0

∗ Π̌22 0 Π̌24 0 0 0 0

∗ ∗ Π̌33 Π̌34 0 0 0 0

∗ ∗ ∗ Π̌44 0 0 0 0

∗ ∗ ∗ ∗ Π̌55 0 0 0

∗ ∗ ∗ ∗ ∗ Π̌66 0 0

∗ ∗ ∗ ∗ ∗ ∗ Π̌77 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Π̌88


< 0, (44)

where

Π̌11 = U11M
T + MUT

11 + K1 + KT
1 + α̌Q̄ + αMT − e−αhM R̄,

Π̌12 = U12M
T + K2, Π̌13 = U13M

T + K3, Π̌14 = 1
2
MUT

11 + 1
2
KT

1 ,

Π̌22 = −(1 − h)e−αhM α3Q̄, Π̌24 = 1
2
MUT

12 + 1
2
KT

2 , Π̌33 = −(1 − τ)e−ατM α4Q̄,

Π̌34 = 1
2
MUT

13 + 1
2
KT

3 , Π̌44 = α5Q̄ + α7Q̄ + h2
M R̄ − MT ,

Π̌55 = −e−αhM α6Q̄ − e−αhM R̄, Π̌66 = −e−ατM α2Q̄, Π̌77 = −(1 − h)e−αhM α5Q̄,

Π̌88 = −(1 − τ)e−ατM α7Q̄, α̌ = α2 + α3 + α4 + α6, α̃ = α
2
.

(b) the following rank condition is fulfilled:

rank

([
U21M

T U22M
T U23M

T

K1 K2 K3

])
= rank

([
U21M

T U22M
T U23M

T
])

. (45)

Furthermore, the observer design parameter Z̄ can be computed from the following equa-
tion:

Z̄ = K̄Ψ†, (46)

where K̄ =
[

K1 K2 K3

]
, and Ψ =

[
U21M

T U22M
T U23M

T
]
.

Remark 4.3. If F1 = 0, F2 = 0, then we have the following observer structure:

ω̇(t) = F1ω(t) + Gu(t) + F4f(y(t)) + H1y(t) + H2y(t − h(t)) + H3y(t − τ(t)),

ẑ(t) = ω(t) + V y(t),

ω(t) = 0, ∀t ∈ [−M̄, 0],

(47)

where F1, F4, H1, H2, H3, G and V are as defined for the observer structure (4).
Furthermore, Condition I can be changed into the following condition:
Condition II:

rank

 L2A
1
22 L2A

2
22 L2A

3
22

A1
12 A2

12 A3
12

L2 0 0

 = rank

([
A1

12 A2
12 A3

12

L2 0 0

])
. (48)

Corollary 4.2. Assume that Condition II is satisfied. For given constants α > 0, 0 ≤
hm ≤ hM , 0 ≤ τm ≤ τM , the functional observer (47) is globally α̃-exponentially stable if

(a) there exist matrices M > 0, Q̄ > 0, R̄ > 0, K1 of appropriate dimensions, and
positive scalars αi > 0 (i = 2, 6, 8) and β such that the following linear matrix inequality
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holds:

Π́ =



Π́11 Π́12 e−ατmβR̄ e−αhM R̄ 0 0

∗ Π́22 0 0 0 0

∗ ∗ −e−ατmQ̄ − e−ατmβR̄ 0 0 0

∗ ∗ ∗ −e−αhM α6Q̄ − e−αhM R̄ 0 0

∗ ∗ ∗ ∗ Π́55 0

∗ ∗ ∗ ∗ ∗ Π́66


< 0, (49)

where

Π́11 = U11M
T + MUT

11 + K1 + KT
1 + άQ̄ + αMT − (e−αhM + e−ατmβ)R̄,

Π́12 = 1
2
MUT

11 + 1
2
KT

1 , Π́22 = h2
M R̄ + τ 2

mβR̄ − MT , α̃ = α
2
,

Π́55 = −e−ατM α2Q̄, Π́66 = −e−αhmα8Q̄, ά = 1 + α2 + α6 + α8.

(b) the following rank condition is fulfilled:

rank

([
U21M

T

K1

])
= rank

([
U21M

T
])

. (50)

Furthermore, the observer design parameter Z̄ can be computed from the following equa-
tion:

Z̄ = K̄Ψ†, (51)

where K̄ =
[

K1

]
, and Ψ =

[
U21M

T
]
.

Proof: The proof is similar to the proof of Theorem 4.1. Thus, it is omitted.

5. Numerical Examples. In this section, we will provide two examples to illustrate the
effectiveness of the obtained results.

Example 5.1. Consider system (1) with the following parameters:

A1 =


0 0 −1 0
0 −1 0 0.1
2 3 −1 0
2 −1 0 −1

 , A2 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0.4 0.2 0

 , A3 =


0 0 0 0
0 0.8 0 0
0 0 0 0
0 0.2 0 0.4

 ,

A =


1 0.2 3 0.5

0.3 2 7 0.2
0.1 0.2 0.1 0.8
0.6 0.2 1 2

 , C =

[
1 0 0 0
0 1 0 0

]
, B =


0
1
0
0

 ,

L =
[

0 0.4 0.2 0
]
, f(Cx(t)) = [sin(x1(t)) 0 sin(x2(t)) 0]T , α = 2,

α2 = α3 = α4 = α5 = α6 = α7 = α8 = 1, ᾱ = 6, β = 1, τm = 1, τM = 3,

τ = 0.8, hm = 1, hM = 3, h = 0.8, u(t) = 0.

It can be observed that Condition I is satisfied. Applying Theorem 4.1 and using the
Matlab LMI control toolbox, we solve (39) and obtain a set of feasible solutions as follows:

M = 917290, K1 = −1756200, K2 = 0, K3 = 0, Q̄ = 65915, R̄ = 9179.5.

In addition, the observer parameters were obtained as

F1 = −1.9530, F2 = 0, F3 = 0, F4 = [0.2106 0.0781 0.5918 0.2553],

G = 0, H1 = [0.7722 0.6], H2 = [0 0], H3 = [0 0], V = [−0.1906 0.4000].
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Figure 1. Responses of state z(t) and the estimate of z(t) in Example 5.1
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Figure 2. Responses of state ẑ(t) − z(t) in Example 5.1

The simulation results are given in Figures 1 and 2. From Figure 2, it can be seen that
ẑ(t) − z(t) converges to 0 rapidly.

Example 5.2. Consider system (1) with the following parameters:

A1 =


0 0 −1 0
0 −1 0 0.1
2 1 −1 0
2 −1 0 −1

 , A2 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0.4 0.2 0

 , A3 =


1 0 0 0
0 0.7 0 0
0 1 0 0
0 0.2 0 0.4

 ,
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A =


1 0 0.5 −2

0.3 0 3 −0.2
1 0.8 1 −2

−0.3 0 −1 3

 , C =

[
1 0 0 0
0 1 0 0

]
, B =


1
1
0
1

 ,

L =
[

1 0.5 0.2 0
]
, f(Cx(t)) = [0.1 sin(x1(t)) 0 0.2 sin(x2(t)) 0]T , α = 3.9,

αi = 1, i = 2, 3, . . . , 8, ᾱ = 6, β = 1, τm = 1, τM = 3, τ = 0.8, hm = 1, hM = 3,

h = 0.8, u(t) = e−0.4t cos(2t).

It can be observed that Condition I is satisfied. Applying Theorem 4.1 and using the
Matlab LMI control toolbox, we solve (39) and obtain a set of feasible solutions as follows:

M = 2.4647 × 108, K1 = −9.4289 × 108, K2 = 0, K3 = 0, Q̄ = 1151800, R̄ = 91717.

In addition, the observer parameters were obtained as

F1 = −3.8641, F2 = 0, F3 = 0, F4 = [0.7728 0.1600 0.4864 − 0.5456], G = 0.5728,

H1 =
[

2.6134 0.6
]
, H2 =

[
0 0

]
, H3 =

[
0.5728 0.2

]
, V =

[
0.4272 0.5

]
.

The simulation results are given in Figures 3 and 4.
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ẑ
(t
)

z(t)
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Figure 3. Responses of state z(t) and the estimate of z(t) in Example 5.2

From Figure 4, it can be seen that ẑ(t) − z(t) converges to 0 rapidly.

Remark 5.1. In Example 5.1 and Example 5.2, we deal with the functional observer for
the system with x(·) ∈ R4, f(·) ∈ R4, Ai ∈ R4×4, i = 1, 2, 3, A ∈ R4×4, C ∈ R2×4,
L ∈ R1×4, B ∈ R4×1. For the general system, the above method can be used to construct
the functional observer.

6. Conclusions. This paper addresses the problem of exponential stability analysis of
functional observer for a class of nonlinear systems with interval time-varying mixed delays
by designing a delay-dependent minimum-order functional observer. The sufficient con-
ditions of exponential stability of functional observer have been given. Then, by utilizing
Lyapunov-Krasovskii approach and some well-known inequalities, we have proposed the
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Figure 4. Responses of state ẑ(t) − z(t) in Example 5.2

sufficient conditions of the exponential stability of functional observer in terms of linear
matrix inequality for nonlinear systems with interval time-varying mixed delays. We also
propose the computational method of the parameters of the delay-dependent functional
observer that we have designed. The effectiveness of the proposed method is illustrated
by two numerical examples and simulation results. Our future research may expand to
cover the design of functional observer for uncertain nonlinear systems with interval time-
varying mixed delays and switched nonlinear systems with interval time-varying mixed
delays.
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