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Abstract. Vortex-induced vibration (VIV) has been studied over the past decades be-
cause vibration may cause serious damages to structures such as bridges, pipelines,
skyscrapers, and airplanes. Detecting VIV has long been a challenge. For example,
when attempting to detect VIV, inspectors might fail to use multiple hot-wire or hot-film
probes during concurrently measurement of the whole flow field. This study proposes a
novel vision-based method for detecting the wake patterns of VIV; it employs an edge-
feature-description (EFD)-based scheme with a multiclassifier of support vector machines
(SVMs). The proposed hybrid EFD/SVM method detects and adaptively segments wake-
pattern images for effective classification of the patterns. The VIV can be detected on the
basis of the classification results. The experimental results demonstrated that the proposed
method can effectively detect the VIV using a vision-based algorithm, which incorporates
hybrid EFD/SVM for classifying wake-pattern images. The method applies a nondestruc-
tive scheme for detecting the VIV and achieves high recognition rates when classifying
the wake patterns of VIV.
Keywords: Edge feature description, Hybrid vision-based method, Support vector ma-
chines, Vortex-induced vibration

1. Introduction. The flow of fluids around structures is often found in a variety of
engineering equipment, ranging from marine structures, such as marine risers and tension-
leg-platform cables, to units used in various power generation plants and chemical plants,
such as tube bundles in boilers and heat exchangers. Vortex-induced vibration (VIV)
may occur and cause serious damage to such structure when the asymmetric vortices
are shed from the structure and the vortex shedding frequency matches the structure’s
natural frequency. Therefore, understanding VIV, and detecting it, have become higher
priorities because designers are using materials to their limits, delivering structures that
are progressively lighter and more flexible, and thus, more prone to vibration.

The VIV of a flexible circular cylinder or tube subjected to cross flow has been in-
vestigated. For the dynamic response from the VIV, Huera-Huarte et al. [1] presented
towing tank experiments on the VIV of low mass ratio long flexible cylinders. Feng et al.
[2] investigated the nonlinear dynamic behaviors and the characteristics of the response
of a three-dimensional flexible tube to VIV. Recently, flow control methods have been
employed to suppress asymmetric vortices and VIV. Tang et al. [3] used synthetic jet
actuator arrays for controlling flow separation. Wang et al. [4] presented active control
of the wakes and the VIV of a single circular cylinder using a pair of synthetic jets at a
low Reynolds number. Park et al. [5] employed localized surface roughness to suppress
the VIV of an elastically mounted circular cylinder. Existing methods that have been
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proposed to suppress VIV using flow control include active [3,4] and passive [5] schemes.
However, effective detection of VIV has not been solved so far. Serious damages to nu-
merous structures could be avoided if VIV could be reliably detected in advance. Poor
measurements of the flow field are common causes of poor performance in VIV detection.
Employing multiple hot-wire/hot-film probes for concurrently measuring the whole flow
field has long been a challenge. Therefore, the current study proposes a vision-based tech-
nique that uses a nondestructive scheme to detect VIV. The proposed method effectively
employs hybrid EFD/SVM to classify the wake patterns of vibrations and to detect VIV
on the basis of the classification results.

Based on previous studies, SVM-based methods can be used in the work. In this study,
we propose an EFD-based scheme with a multiclassifier of SVMs for the VIV detection.
The contributions of this study are summarized as follows. The method employs a hybrid
vision-based strategy incorporating SVM results for nondestructive detection of object
samples. The hybrid method can adaptively segment and effectively classify the samples.
Finally, the detection system applies a hybrid EFD/SVM algorithm to solving the VIV
detection problem encountered when using multiple hot-wire/hot-film probes for concur-
rently measuring the whole flow field. The remainder of this paper is organized as follows.
Section 2 reviews related work. Section 3 presents the VIV detection system and the pro-
posed method for classifying the samples. Section 4 presents the experimental results
derived from applying the proposed algorithm to various samples, and a comparison of
various existing methods. The final section offers the conclusions of this study.

2. Related Work. This section describes previous methods (including SVM applica-
tions) related to the proposed method, and finally addresses the differences between the
proposed method and the previous approaches.

Recent studies have investigated SVM-based methods in machine learning and com-
puter vision. Researchers have tried to solve detection problems using various SVM-based
learning approaches. Yang and Su [6] used SVMs for automated diagnosis of sewer pipe
defects and showed that SVMs outperformed a Bayesian classifier. Serdio et al. [7] uti-
lized a fuzzy learning system with SVMs to operate in a completely unsupervised manner
for fault detection. Tseng et al. [8] developed a classification model, based on the tuning
of the parameters in different SVM kernels, to predict the outcome of a quality control
process. Instrumentation associated with SVMs has been proposed as highly effective
for classifying samples. Guillermo et al. [9] proposed a technique using SVMs operat-
ing on the power spectrum density of signals to identify noise and types of partial dis-
charges. Barbosa et al. [10] demonstrated that the use of quadrupole inductively coupled
plasma mass spectrometry associated with SVM was possible to predict the authenticity
of organic rice samples. Liang et al. [11] proposed a multi-task ranking SVM model to
simultaneously segment multiple images and demonstrated that the proposed approach
outperformed the existing techniques. Hybrid feature extraction and SVM classifier were
also investigated in computer vision. Yu et al. [12] proposed a method for multifocus
image fusion using hybrid dual-tree complex wavelet transform and SVMs. They showed
that their method outperformed previous methods in terms of visual quality and objective
evaluation. Ebrahimi et al. [13] proposed SVM method with different kernel functions for
classification of parasites and detection of thrips. They demonstrated that incorporation
of the image processing technique with SVM method and choice of suitable region and
color index was successful in detecting the target with an error less than 2.5%. Lekdioui
et al. [14] presented a facial decomposition method based on texture/shape descriptors
with SVM classifier for expression recognition and reached recognition rates more than
92%.
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These published SVM-based methods are similar to the proposed SVM-based method.
However, this study employed an EFD-based scheme combined with SVMs for effective
object detection. This hybrid method uses a vision-based algorithm, which can adaptively
segment images and effectively classify their patterns; this can be used to solve the VIV
detection problem inherent to concurrent measurement of a whole flow field with multiple
hot-wire/hot-film probes. The present study quantitatively compared existing methods
in VIV detection.

3. Proposed Method. A water tunnel was designed and built for this study. The VIV
of a cylinder was conducted in the closed loop water tunnel. Water flow was driven
through this tunnel by a variable speed pump. After passing through a filter, the water
entered a diffuser, which provided a gradual transition from 0.1 m diameter circular pipe
to a rectangular channel of 0.6 m × 0.6 m. A layer of honeycomb wire and several screens
were installed in the rectangular channel to reduce turbulence. At the entrance of the test
section, a pitot tube was used to monitor the inlet flow velocity. A downstream transition
region allowed water to exit the test section and flow into the storage tank. To obtain
image signals, a fluorescent dye was added to the water and the industrial computer
triggered a charge-coupled device (CCD) camera through Wi-Fi to acquire synchronous
images. The synchronous image information was transmitted from the CCD camera to
the industrial computer, which was equipped with a frame grabber for capturing the
synchronous images.

Figure 1 displays a schematic of the VIV detection system. The proposed system
enables sensing and classifying the wake patterns by employing a suitable processing
(segmentation and classification) strategy on the basis of the sensing results. The system
procedure can be summarized as follows: (1) input the wake-pattern images from the
image queue; (2) execute the EFD-based algorithm [including an adaptive region-growing
(ARG) segmentation and EFD-based extraction]; (3) classify patterns using SVMs; (4)
confirm that no image remains in the image queue. Table 1 presents the classes of wake-
pattern samples; 200 samples for each class were used for VIV detection. The EFD-based
algorithm and the SVM adaptively selected suitable threshold Tp and edge descriptors Ci

values for effective inspection of the wake patterns. Based on the selection, for inspecting
the 200 class D synchronous images, the optimal threshold Tp and edge descriptors Ci

were set to 0.52 and {C4, C5, C6, C7}, respectively; Tp and Ci were obtained from the

Figure 1. Schematic of the proposed VIV detection system
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Table 1. Classes of the wake-pattern samples used in the experiments

Inlet flow velocity Class
0.90 m/s A
1.30 m/s B
1.40 m/s C
1.75 m/s D

hybrid EFD/SVM method for the class D samples. The input images were converted to
1024 × 768 pixel images with an 8-bit gray level. The 256 gray levels were normalized to
values within the range from 0 to 1. The hybrid EFD/SVM processing included an EFD-
based algorithm and an SVM classification. The procedure for the EFD/SVM processing
can be summarized as follows: (1) the EFD-based algorithm extracted features as edge
descriptors from the input images; (2) the SVM automatically selected the thresholds
for the descriptors; (3) the most suitable threshold and descriptors were obtained from
among several descriptors. The procedure was complete for a given sample when no image
remained in the image queue. Tp and Ci were reset and other samples were inspected
similarly. The inspection was complete for all samples when the image queue was empty.

The EFD-based algorithm includes ARG segmentation [15] and EFD-based extraction.
The EFD-based extraction employs an edge feature description for the ARG segmented
image. According to the 3 × 3 mask depicted in Figure 2(a), edge pixels in the segmented
images typically belong to one of eight possible edge patterns [Figure 2(b)]. In the edge
pattern, nine pixels can be divided into two separate groups, namely S0 and S1. For
Edge Patterns 1-4, feature vector x = (d1, d2, d3), where d1 = m1 + m4 + m7 and d2 =

(a)

(b)

Figure 2. (a) 3 × 3 mask and (b) patterns 1-8
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m2 + m5 + m8, d3 = m3 + m6 + m9, is used for edge description. For Edge Patterns 5-8,
two feature vectors x and y = (d4, d5, d6), where d4 = m1 + m2 + m3, d5 = m4 + m5 + m6

and d6 = m7 + m8 + m9, are used for edge description. A value of 1 is set for initial seeds
in the ARG segmentation. The values of the pixels in S0 and S1 are 1 and 0, respectively.
Therefore, the procedures of this method are summarized as follows. (1) Calculate x in
a segmented image. (2) Record x if x is (3, 3, 0), (2, 2, 2), or (0, 3, 3). (3) Record x and
calculate y if x is (1, 2, 3) or (3, 2, 1). (4) Record y if y is (1, 2, 3) or (3, 2, 1). After all
pixels in an image have been processed using the aforementioned procedure, the edge is
classified using feature vectors x and y. The edge descriptor E from the feature description
is expressed as

E = {Ci}, i = 1, 2, . . ., 7 (1)

where Ci represents the seven coefficients of the normalized edge numbers from Edge
Patterns 1, 2(4), 3, 5, 6, 7, and 8, and Ci ranges from 0 to 1.

The hybrid EFD/SVM method was proposed for adaptively selection of suitable Tp and
Ci values for effective inspection of the wake patterns. Consider the set of feature values
belonging to two separate classes (x1, y1), . . . , (xN , yN) with input xi ∈ RN (N -dimensional
input space) and class labels (target output) yi ∈ {1,−1}. An SVM was employed to
implement the wake-pattern classification. An SVM constructs a hyperplane as a decision
surface to maximize the margin of separation between positive and negative examples [16].
The conventional SVM is a tool for solving two-class problems. The common approaches
for applying it to a multiclass problem involve converting the multiclass problem into
several binary-class problems. The SVM algorithm requires only N − 1 SVMs for an
N -class problem, which reduces the computation time during inspection. The SVMs are
SVM 1, SVM 2, and SVM 3; each SVM is trained to function differently. SVM 1 divides
all pattern samples into two classes, {A, B} and {C, D}; SVM 2 and SVM 3 divide {A,
B} and {C, D} into {A}, {B}, {C}, and {D}. The SVMs continue until all the samples
have been identified, after which the classification is stopped. For SVM classifiers, the
parameter C and the Gaussian radial basis function (RBF) kernel parameter γ must be
optimized. High testing accuracy was realized when C = 213 and γ = 2−7 were used
in the SVMs. Table 2 lists the classification results for different sample sizes, indicating
that sample sizes of 280, 400, and 600 in each test class are apparently unrelated to the
classification results.

Table 2. Classification results using different sample sizes for each class

Sample size Training Validation Accuracy rates (%)
70 20 50 83
80 30 50 89
140 40 100 91
280 80 200 96
400 100 300 96
600 200 400 96

As shown in Figure 3, the hybrid EFD/SVM algorithm applies the following steps to
adaptively obtaining Tp and Ci for the wake-pattern inspection.

Step 1: A total of 200 sample images are tested for a given number of descriptors {Ci},
i = 1, 2, . . ., 7.

Step 2: Given a value of 1 for initial seeds in the gray-level image, the threshold
values Ti are set in the range 0.01-0.99 sequentially; {Ti} = {0.01, 0.02, 0.03, . . ., 0.99},
i = 0, 1, 2, . . ., 98.
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Step 3: The ARG segmentation is implemented using a set of initial seeds and groups
neighboring pixels with each initial seed within the growth regions on the basis of {Ti}
[15].

Step 4: EFD-based extraction is implemented on the basis of a given number of de-
scriptors and extract features as edge descriptors {Ci} from the segmented image.

Step 5: The SVMs classify the edge descriptors on the basis of {Ti} and obtain the
classification results.

Step 6: The recognition rate is determined at each adjustable threshold Ti for the given
image.

The recognition rate is defined as follows:

Accuracy =

(
NC

N

)
× 100% (2)

where NC is the number of accurately classified images in the test run, and N is the total
number of test sets (N is 200 in this case). If the recognition rate exceeds a given value
δ, then Step 7 commences; otherwise, Steps 2-6 are repeated.

Step 7: The process stops when the sample images in all cases of the given number
of descriptors {Ci} have been tested; otherwise, Steps 1-6 are repeated. In addition, the
algorithm stops when any Ti fails to satisfy the condition in Step 6.

Figure 3. Flow diagram of the EFD/SVM algorithm
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Suppose, for example, that Step 1 tests some set of sample images with descriptors C4,
C5, C6, and C7. Step 2 sequentially sets Ti in the range 0.01-0.99. Step 3 implements
the ARG segmentation. Step 4 extracts the edge features. Step 5 then classifies the edge
features using the SVMs. When the given value δ is 0.9 (i.e., 90% accuracy rate), the
process repeats Steps 2-6 until Ti exceeds 0.75. Step 7 then stops the process for the C4,
C5, C6, and C7 cases. In this test, the algorithm adaptively obtained suitable Tp and Ci

as 0.76 and {C4, C5, C6, C7}, respectively.

4. Experimental Results. First, the study employed a general classification to test
the EFD/SVM algorithm. Table 3 presents the wrench samples used for the general
classification. The edge descriptors (E1, E2, and E3) of the wrench samples are listed
in Table 4. The E1, E2, and E3 were normalized as {0.03, 0.22, 0.03, 0.32, 0.80, 0.40, 1},
{0.04, 0.24, 0.03, 0.25, 0.86, 0.28, 1}, and {0.04, 0.26, 0.04, 0.26, 1, 0.10, 0.94}, respectively.
For the test case, 80 wrench images were randomly selected as training samples, and
200 wrench images were used for the classification. Table 5 lists the classification results
obtained using the EFD/SVMs algorithm and demonstrates an average accuracy rate of
96%.

Table 3. Classes of wrench samples used for a general classification

Specification Class
305 mm (12′′) E
254 mm (10′′) F
203 mm (8′′) G

Table 4. Numbers of edges (1-8) in the descriptors E1, E2, and E3 for the
corresponding classes E, F, and G, respectively

Descriptor\Edge 1 2(4) 3 5 6 7 8
E1 503 3428 442 4987 12475 6243 15598
E2 463 2898 401 3092 10549 3458 12222
E3 414 2551 353 2573 9953 1012 9342

Table 5. Test results using the EFD/SVM algorithm for a general classi-
fication, T (rows): true values, P (columns): predicted values

T\P E F G
E 192 5 3
F 4 191 5
G 3 4 193

Then, the experiment was conducted to test the accuracy of the proposed algorithm
for VIV detection. As listed in Table 2, 80 sample images were randomly selected as
training samples, and 200 images without any flow and structural information were used
for the classification. Figure 4 displays the segmentation results for class D with the given
descriptors {Ci} = {C6, C7}, {C4, C5, C6, C7}. The segmented images obtained using
the proposed algorithm with the given descriptors {C4, C5, C6, C7} produced details and
continuous contours for the wake patterns [Figure 4(b)]. Table 6 lists the classification
results obtained using the proposed algorithm and demonstrates an average accuracy



840 T.-K. LIN

(a) (b)

Figure 4. Segmentation results for class D with a given number of de-
scriptors using the EFD/SVM algorithm: (a) {C6, C7} and (b) {C4, C5,
C6, C7}

Table 6. Classification results using the EFD/SVM algorithm for the
wake-pattern classes, T (rows): true values, P (columns): predicted val-
ues

T\P A B C D
A 192 4 4 0
B 1 191 6 2
C 0 6 192 2
D 0 3 4 193

Table 7. Example of the selection thresholds of samples with a given num-
ber of descriptors {Ci}

Ci A B C D Accuracy rates (%)
C6 0.81 0.75 0.61 0.50 72
C6, C7 0.82 0.74 0.60 0.51 79
C5, C6, C7 0.80 0.75 0.61 0.52 87
C4, C5, C6 0.81 0.76 0.62 0.53 91
C3, C5, C6, C7 0.80 0.77 0.63 0.51 92
C4, C5, C6, C7 0.83 0.76 0.62 0.52 96
C3, C4, C5, C6 0.82 0.77 0.62 0.53 93

rate of 96%. Table 7 illustrates the selection thresholds of the sample images with a given
number of descriptors {Ci}. The thresholds for the descriptors were selected automatically
by the SVMs. The most suitable descriptors {C4, C5, C6, C7} were obtained from among
several descriptors. This study employed the leave-one-out cross-validation (LOO-CV)
with various thresholds to verify the selection threshold of the proposed algorithm. Table
8 shows that classes A, B, C, and D had the lowest mean squared errors (MSEs): 0.1365,
0.1075, 0.1238, and 0.1148, respectively. The threshold Ti = 0.80, 0.75, 0.60, and 0.50
were the optimal selections for class A, B, C, and D in the detection because these values
yielded the highest accuracy rate (Table 7).

The VIV detection was validated by measuring the dynamic response of the cylinder.
The cylinder was equipped with two accelerators, both of which had sensitivity of 4.693
mV/g and a frequency response in the range from 2 to 8 kHz. The accelerometers were
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Table 8. LOO-CV MSE of the descriptor C6 with Ti = 0.85, 0.80, 0.75,
0.70, 0.65, 0.60, 0.55, and 0.50 for the sample images

Ti A B C D
0.85 0.2827 0.3146 0.5067 0.5371
0.80 0.1365 0.2589 0.4462 0.4965
0.75 0.3344 0.1075 0.3978 0.4293
0.70 0.3729 0.2285 0.3354 0.3341
0.65 0.4025 0.3364 0.2473 0.2873
0.60 0.4381 0.3892 0.1238 0.2449
0.55 0.4720 0.4253 0.3062 0.1957
0.50 0.5173 0.4816 0.3643 0.1148

Figure 5. Orbiting responses of the cylinder at an inlet flow velocity 1.75
m/s. D is the diameter of the cylinder.

installed inside the cylinder at the middle of the span. They measured the strength of
the cylinder vibrations and forwarded them to an industrial computer, which converted
the signals to displacements. At a higher inlet flow velocity 1.75 m/s, the cylinder traced
elliptical trajectories in the experiment (Figure 5). The elliptical trajectories implied
that the streamwise and transverse orbiting responses had the same frequency but with a
phase shift. Kheirkhah et al. [17] showed that for a range of flow velocities, referred as the
synchronization region, the transverse and streamwise frequencies lock onto the natural
frequency of the structure, and the cylinder traces elliptical trajectories. As illustrated in
Figure 6, alternating strong vortices were created on the downstream side of the cylinder,
and strong vortex shedding happened behind the cylinder because the vortex-shedding
frequency matched the natural frequency of the cylinder.

Three learning classifiers, based on K-nearest neighbor (KNN) [18], artificial neural
network (ANN) [19], and Bayes classifier (BC) [20] methods, were compared with the
proposed method. Similarly, 80 data sets were randomly selected as training samples,
and the other 200 sets were used as validation samples for evaluating the performance of
the classifiers. In the KNN classification, the input data were a set of {C4, C5, C6, C7},
and the output was a class membership ({A}, {B}, {C}, {D}). The input images were
classified by a majority vote of their k = 5 nearest neighbors. The ANN was a three-layer
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Figure 6. Wake patterns caused by cylinder vibrations at an inlet flow
velocity 1.75 m/s

Figure 7. Comparison of the accuracy rates (%) from various classifiers

neural network with four neurons ({C4, C5, C6, C7}) in the input layer, six neurons in
the hidden layer, and four neurons ({A}, {B}, {C}, {D}) in the output layer. The BC is
given as follows:

D(x) = −1

2
ln |Cj| −

1

2

[
(x − mj)

T C−1
j (x − mj)

]
(3)

where x was a set of {C4, C5, C6, C7} derived from an input image. The mean vectors mj

and the covariance matrix Cj of the coefficients for the j class were derived. The input
images were identified as the j class by minimizing the calculated value of D(x). Figure
7 provides the experimental accuracy rates. The accuracy rates were 96% for the SVMs,
90% for the KNN, 87% for the ANN, and 85% for the BC, demonstrating that the SVMs
classified images with the greatest accuracy. This may be because the SVMs mapped the
input data sets into a high-dimensional feature space and maximized the margin between
two classes in the feature space. The high-dimensional feature space is suitable even for
cases with small sample sizes (e.g., small number of training samples).



AN EFD-BASED SCHEME COMBINED WITH SVMS 843

Then, hybrid schemes of feature extraction methods combined with SVMs were com-
pared to test the proposed method. The feature extraction methods combined with the
SVMs for the EFD, discrete wavelet transform (DWT) [21], and moment invariants (INV)
[22] were denoted as EFD-SVMs, DWT-SVMs, and INV-SVMs, respectively. For the
DWT feature extraction, an image signal was decomposed into various scales at different
levels of resolution. The relationships among the DWT coefficients were expressed as
follows:

A0 = Aj +
i∑

j=1

Dj (4)

where Aj and Dj were approximation and detail coefficients at j-level decomposition,
respectively. For the process of the decomposition, the initialization of A0 was the original
image signal and j was set to 6. For the INV feature extraction, a segmented image f
with gray pixel values at pixel (x, y) was denoted as f(x, y), and the central moment was
expressed as

µpq =

∫ ∞

−∞

∫ ∞

−∞
(x − xc)

p(y − yc)
qf(x, y)dxdy (5)

where (xc, yc) were the coordinates of the segmented image centroid. The seven Hu-type
INVs derived from the central moments of the second or third order (p + q = 2 or 3),
[ϕi]i=1,2,3,...,7, were used as features.

To evaluate the hybrid methods, the same block diagram (Figure 1) used in the proposed
method was employed. (1) The 200 validation samples for each type were input from
the image queue. (2) The input images were converted and passed to a feature-based
algorithm (EFD, DWT, and INV). (3) SVMs classified images. (4) The image queue was
checked for remaining images. A time-cost function T (n) approximately quantified the
amount of time required for an algorithm used in binary search tree operations, and it
was described by

T (n) = O(log n), (6)

where O(log n) bounded the logarithmic time required by an algorithm for all n-sized in-
puts in the big-O notation, excluding coefficients and lower-order terms. Figure 8 presents

Figure 8. Time-cost function T (n) and accuracy rates from hybrid meth-
ods in VIV detection
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the time-cost function T (n) and classification accuracy rates in VIV detection. The ac-
curacy rates were 96% for the proposed algorithm, 93% for the DWT-SVMs method,
and 88% for the INV-SVMs method. The time-cost function T (n) for the proposed al-
gorithm was lower than that in the other two methods because the hybrid EFD/SVM
method could directly use the edge descriptors in the ARG segmented image to recognize
the wake patterns. Therefore, the proposed algorithm outperformed the other hybrid
methods.

5. Conclusions. This paper proposes a hybrid vision-based method for adaptively seg-
menting and effectively classifying object samples. The proposed method can detect the
patterns caused by VIV. The proposed algorithm can employ suitable image parameters
to inspect objects. The proposed algorithm can solve the VIV detection problem asso-
ciated with concurrently measuring the whole flow field. The results demonstrate that
the proposed algorithm can adaptively segment the sample images and determine con-
tinuous contours by using suitable descriptors. The detection system can sense image
patterns and apply suitable image parameters to attaining an average recognition rate
of 96%. The proposed method outperformed existing hybrid methods (DWT-SVMs and
INV-SVMs). However, pattern detection in a multisensor system may be a challenge in
computer vision. The data from multiple sensors include noise and irrelevant information;
this impedes signal processing. Further research directions include creating a processing
framework for establishing indicators and corresponding thresholds to detect patterns in
the system.
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