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Abstract. In this paper, we propose a Factored Grey Wolf Optimizer (FGWO) algo-
rithm by adapting the convergence factor and adding weighted position factor to improve
the existing Grey Wolf Optimizer (GWO). The value of convergence factor is nonlinearly
changed during the iterations over the search process to better adapt the exploration and
exploitation process, and the weighted position factor is linearly changed as the iteration
increases to diverse the hierarchy of grey wolves. The FGWO algorithm is benchmarked
on well-known test functions, and the results are verified by comparing FGWO against
GWO, Particle Swarm Optimization (PSO), and Ant Lion Optimizer (ALO). This paper
also presents an application of the proposed method to solve Resource-Constrained Project
Scheduling Problem (RCPSP). The results show that the FGWO algorithm provides very
competitive performances compared to the meta-heuristics. FGWO obtains 71.4% best
solutions and 14.3% second best solutions of unimodal benchmark functions, 15.6% best
solutions and 21.9% second best solutions of multimodal benchmark functions, as well as
50% best solutions of composite benchmark functions. The results of solving RCPSP also
prove that FGWO can show high performance in solving RCPSP.
Keywords: Factored grey wolf optimizer, Nonlinear convergence factor, Linear-weighted
position factor, RCPSP

1. Introduction. Over the last two decades, meta-heuristic optimization algorithms are
very popular and have been used for obtaining optimal solutions in many scientific or
engineering fields. Among these algorithms, the Bee Algorithm (BA) [1], bat algorithm
[2, 3], Particle Swarm Optimization (PSO) [4, 5], and Genetic Algorithm (GA) [6] are
fairly well-known. Meta-heuristic algorithms search in a search space for a global op-
timum by creating random solutions for a given problem. The random solutions, also
called the set of candidate solutions, are improved during the iteration until satisfying the
terminating condition. The iterative improvement process is considered to find a more ac-
curate approximate value of the global optimum than the original random solutions. The
mechanism makes meta-heuristics become prominent common and intrinsic advantages:
simplicity, flexibility, derivation independency, and escaping from local minima. The
search process of meta-heuristic optimization algorithm can be divided into two phases:
exploration and exploitation [7, 8]. Exploration refers to searching and investigating the
search space as widely as possible while exploitation refers to the local search ability to
find the optimum solution around the obtained promising regions during exploration. It
is challenging to strike a proper balance between exploration and exploitation.
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The Grey Wolf Optimizer (GWO) [9] is a state-of-the-art Swarm Intelligence (SI) al-
gorithm inspired by the social hierarchy and hunting for the prey behavior of grey wolf
packs. However, the linear convergence factor to control the exploration and exploitation
limits the performance of GWO as an algorithm is considered to search as broadly as pos-
sible during the exploration and converge as fast as possible in the exploitation. Besides,
GWO algorithm does not consider the difference between wolves in the social hierarchy.

This work proposes a Factored Grey Wolf Optimizer (FGWO) algorithm to improve the
performance of search process for the optimum solution. The “Factored” of FGWO means
the convergence factor and weighted position factor. The convergence factor is adapted to
achieve better balance between exploration and exploitation, and the weighted position
factor can strengthen the social hierarchy of grey wolves. The main contributions of this
work are described as follows:

• Adapting convergence factor nonlinearly to preferably balance the exploration and
exploitation. The convergence factor in GWO is designed to balance the processes of
exploration and exploitation, and decreases linearly during the iteration, which limits
the performance of search process for optimum solution. The nonlinear dynamic
convergence factor with exponential function can improve the exploitation process
and convergence speed.

• Adding linear weighted position factor to enhance the social hierarchy of grey wolves.
GWO assumes the first three ranks in the social hierarchy of grey wolves know better
about the potential location of prey (optimum solution). So the other grey wolves
should update their positions during each iteration based on the best three solutions
obtained so far. In GWO the first three ranks of grey wolves have the same impact
on position updating process, but it is a proper way to emphasize the difference.

• Testing FGWO with 29 benchmark functions and comparing against well-known
meta-heuristics to evaluate the performance. The benchmark functions consist of
unimodal, multimodal, fixed-dimension multimodal and composite functions. They
are employed with different characteristics to benchmark the performance of algo-
rithms from different perspectives, including exploitation ability, exploration ability,
ability to escape from local minima, and convergence speed.

• Applying FGWO on Resource-Constrained Project Scheduling Problem (RCPSP)
to evaluating the ability to solve engineering problem. RCPSP is a general engi-
neering problem, and various kinds of meta-heuristics have been proposed to solve
RCPSP. FGWO and compared well-known meta-heuristics were benchmarked with
the standard dataset to evaluate the performance of solving RCPSP.

The rest of this paper is organized as follows. Section 2 presents GWO algorithm.
Section 3 outlines the proposed FGWO algorithm. Experimental results and analysis
of popular benchmark functions are provided in Section 4. Section 5 demonstrates the
applicability of the proposed algorithm for solving RCPSP. A discussion of advantages
and shortcomings of compared meta-heuristics is given in Section 6. Finally, Section 7
concludes the work and analyzes possible future studies.

2. Grey Wolf Optimizer Algorithm. The GWO algorithm was proposed by Mirjalili
et al. in 2014 [9]. The main inspirations of GWO algorithm are the social relationship
and hunting behavior of grey wolves. Grey wolves live in a pack mostly with a very strict
social dominant hierarchy: The leaders called alphas are responsible for decision making.
The second level of grey wolves called betas are the subordinate wolves to help the alphas
making decision or other activities in the pack. The third-ranking in the hierarchy of grey
wolves is delta. Delta wolves submit to alphas and betas and dominate the other ranking
wolves. If a wolf is not in the rankings mentioned above, he/she is called omega. Omega
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wolves play the role of scapegoat and submit to all the other dominant wolves. The group
hunting of grey wolves includes tracking and approaching the prey, encircling the prey
until it stops, attacking towards the prey.

The GWO algorithm mathematically models and simulates the social hierarchy and
group hunting mechanism of grey wolves and performs optimization. The best solution
is considered as the alpha (α) and the second and third optimal solutions are assumed
to be beta (β) and delta (δ), respectively. The rest of the optional solutions are named
omega (ω). The optimization (hunting) process in the GWO algorithm is led by alpha,
beta and delta, and the omega wolves follow these three wolves to update their positions.

During the hunt, the grey wolves firstly encircle prey. The following equations are
designed to mathematically model the encircling behavior:

D = |C · Xp − X(t)| (1)

X(t + 1) = Xp(t) − A · D (2)

where t is the current iteration, Xp(t) indicates the position of the prey, and the position
of the grey wolf is X. A and C indicate coefficient parameters and are calculated as
follows:

A = 2a · r1 − a (3)

C = 2 · r2 (4)

where r1 and r2 are generated randomly in [0, 1]. a indicates the convergence factor
linearly decreased from 2 to 0 during the iterations. The parameter a is calculated as
follows:

a = 2 − t · 2/tmax (5)

where t is the current iteration and tmax indicates the total number of iteration.
When hunting the prey, the wolves are guided by the alpha with beta and delta partici-

pating occasionally. To simulate the hunting behavior in GWO algorithm mathematically,
the alpha (the best optional solution), beta and delta are assumed to know better about
the potential location of prey. Hence during each iteration, the best three solutions ob-
tained so far are saved and force other search agents to update positions in accordance
with the best solution. The position of search agents is updated as follows:

X(t + 1) = (X1 + X2 + X3)/3 (6)

where X1, X2, X3 are calculated as follows respectively:

X1 = Xα − A1 · Dα (7)

X2 = Xβ − A2 · Dβ (8)

X3 = Xδ − A3 · Dδ (9)

where Xα, Xβ, Xδ indicate the best three solutions at a certain iteration t, and Dα, Dβ,
Dδ are determined as following equations respectively:

Dα = |C1 · Xα − X| (10)

Dβ = |C2 · Xβ − X| (11)

Dδ = |C3 · Xδ − X| (12)
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3. Factored Grey Wolf Optimizer Algorithm (FGWO). In GWO, the convergence
factor a to balance exploration and exploitation is linearly decreased from 2 to 0, which
limits the performance of exploitation ability and convergence speed. Besides, according
to the principle of social hierarchy in grey wolves, GWO updates the positions of wolves
with the mean value of alpha, beta and delta during each iteration, while it is more
reasonable to enhance the different impacts. In this session the proposed FGWO algorithm
is discussed, the improvements of GWO algorithm mainly focus on dynamically adapting
the convergence factor with an exponential function and position factor with linear weight.

3.1. Nonlinear convergence factor. The swarm intelligence optimization algorithm
has the process of exploration and exploitation during the search process. In GWO
algorithm the search process firstly creates a random population of candidate solutions.
The alpha, beta, and delta estimate the probable position of prey and each candidate
solution updates the distance from the prey. Generally speaking, a swarm intelligence
algorithm with good performance should be able to search the search space effectively
in the initial iterations to find out optimal solutions as most as possible, while over the
course of iterations the exploitation is more considerable to perform better accuracy and
convergence behavior.

In GWO algorithm, Equation (3) emphasizes the exploration and exploitation respec-
tively during the optimization. When |A| > 1 the candidate solutions tend to diverge from
the prey for exploration while |A| < 1 converge towards the prey for exploitation. The
value of |A| is decided by the parameter a decreased from 2 to 0 linearly. In the proposed
FGWO algorithm, a nonlinear dynamic convergence factor with exponential function is
adapted to improve the exploration and exploitation. The value of a is calculated as
follows:

a(t) = ρ − exp (−µ · (tmax − t)/tmax)
3 (13)

where t is the current iteration and tmax indicates the total number of iteration. ρ indicates
the initial value of convergence factor, and in this paper the value of ρ is 1.5. µ is the
adjustment coefficient, and in this paper the value of µ is 25. The settings of the values
ρ and µ are justified in the following experiments in Subsection 4.5.

3.2. Linear weighted position factor. In GWO algorithm the best three candidate
solutions are considered having better knowledge of the potential location of the prey,
and oblige other search agents to update positions (by Equations (6)) according to the
position of alpha, beta, and delta. The equation considers the alpha, beta, and delta
having the same impact on the other search agents, while in GWO algorithm the alpha
is the fittest solution and considered to know best of the potential position of the prey,
and beta is fitter than delta as well. In this way, it is more reasonable to reflect the
difference among alpha, beta and delta when updating positions of other search agents.
A linear weight factor of position is added to emphasize the difference mentioned above.
ω1, ω2 and ω3 are the weight factors of alpha, beta and delta respectively, and calculated
as follows:

ω1 = 3 − t/tmax (14)

ω2 = 2 − t/tmax (15)

ω3 = 1 − t/tmax (16)

where t is the current iteration and tmax indicates the total number of iteration.
The positions of other search agents are calculated as follows:

X(t + 1) = (ω1 · X1 + ω2 · X2 + ω3 · X3) / (ω1 + ω2 + ω3) (17)
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4. Results on Benchmark Experiment. In this session the proposed FGWO algo-
rithm is benchmarked on 29 test functions [10, 11]. The benchmark functions used are
employed with different characteristics to benchmark the performance of the FGWO al-
gorithm from different perspectives, and are divided into four groups as listed in Tables 1,
2, 3 and 4: unimodal, multimodal, fixed-dimension multimodal, and composite functions.
As shown in Tables 1, 2, 3 and 4, Dim is dimension of the function, Range indicates the
boundary of the search space, and fmin indicates the optimum.

To verify the results, the FGWO algorithm is compared to basic GWO algorithm and
well-known or recent algorithms: Particle Swarm Optimization (PSO) [12] as the best
swarm-based algorithm, and Ant Lion Optimizer (ALO) [13] algorithm. Each algorithm
is run 30 times on each test function and the collected statistical results (average and

Table 1. Unimodal benchmark functions

Function Dim Range fmin

F1(x) =
∑n

i=1 x2
i 30 [−100, 100] 0

F2(x) =
∑n

i=1 |xi| +
∏n

i=1 |xi| 30 [−10, 10] 0

F3(x) =
∑n

i=1

(∑i
j=1 xj

)2

30 [−100, 100] 0

F4(x) = maxi{|xi|, 1 ≤ i ≤ n} 30 [−100, 100] 0

F5(x) =
∑n−1

i=1

[
100 (xi+1 − x2

i )
2
+ (xi − 1)2

]
30 [−30, 30] 0

F6(x) =
∑n

i=1([xi + 0.5])2 30 [−100, 100] 0

F7(x) =
∑n

i=1 ix4
i + random[0, 1) 30 [−1.28, 1.28] 0

Table 2. Multimodal benchmark functions

Function Dim Range fmin

F8(x) =
∑n

i=1 −xi sin
(√

|xi|
)

30 [−500, 500] −418.9829×5

F9(x) =
∑n

i=1[x
2
i − 10 cos(2πxi) + 10] 30 [−5.12, 5.12] 0

F10(x) = −20 exp
(
−0.2

√
1
n

∑n
i=1 x2

i

)
− exp

(
1
n

∑n
i=1 cos(2πxi)

)
+ 20 + e

30 [−32, 32] 0

F11(x) = 1
4000

∑n
i=1 x2

i −
∏n

i=1 cos
(

xi√
i

)
+ 1 30 [−600, 600] 0

F12(x) = π
n

{
10 sin2(πy1) +

∑n−1
i=1 (yi − 1)2

[
1

+ 10 sin2(πyi+1)
]
+ (yn − 1)2

}
+

∑n
i=1 u(xi, 10, 100, 4)

30 [−50, 50] 0

yi = 1 + xi+1
4

u(xi, a, k, m) =


k(xi − a)m, xi > a,

0, −a ≤ xi ≤ a,

k(−xi − a)m, xi < −a,

F13(x) = 0.1
{

sin2(3πx1) +
∑n−1

i=1 (xi − 1)2
[
1

+ sin2(3πxi + 1)
]
+ (xn − 1)2

[
1

+ sin2(2πxn)
]}

+
∑n

i=1 u(xi, 5, 100, 4)

30 [−50, 50] 0
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Table 3. Fixed-dimension multimodal benchmark functions

Function Dim Range fmin

F14(x) =
(

1
500

+
∑25

j=1
1

j+
∑2

i=1 (xi−aij)6

)−1

2 [−65, 65] 1

F15(x) =
∑11

i=1

[
ai − x1(b2i +bix2)

b2i +bix3+x4

]2

4 [−5, 5] 0.00030

F16(x) = 4x2
1 − 2.1x4

1 + 1
3
x6

1 + x1x2 − 4x2
2 + 4x4

2 2 [−5, 5] −1.0316

F17(x) =
(
x2 − 5.1

4π2 x
2
1 + 5

π
x1 − 6

)2
+ 10

(
1 − 1

8π

)
cos x1 + 10 2 [−5, 5] 0.398

F18(x) = [1 + (x1 + x2 + 1)2(19 − 14x1 + 3x2
1 − 14x2

+ 6x1x2 + 3x2
2)] × [30 + (2x1 − 3x2)

2

×(18 − 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2)]

2 [−2, 2] 3

F19(x) = −
∑4

i=1 ci exp
(
−

∑3
j=1 aij(xj − pij)

2
)

3 [1, 3] −3.86

F20(x) = −
∑4

i=1 ci exp
(
−

∑6
j=1 aij(xj − pij)

2
)

6 [0, 1] −3.32

F21(x) = −
∑5

i=1

[
(X − ai)(X − ai)

T + ci

]−1
4 [0, 10] −10.1532

F22(x) = −
∑7

i=1

[
(X − ai)(X − ai)

T + ci

]−1
4 [0, 10] −10.4028

F23(x) = −
∑10

i=1

[
(X − ai)(X − ai)

T + ci

]−1
4 [0, 10] −10.5363

standard deviation of the best solution) are reported in Tables 5, 7, 9 and 11. For
unimodal, multimodal and fixed-dimension multimodal functions, each of the benchmark
functions is solved using 30 search agents over 1000 iterations. For composite functions,
each benchmark function is solved using 30 search agents over 100 iterations. The average
and standard deviation show which algorithm behaves more stable. Besides, p-value
of Wilcoxon rank-sum test [14] is conducted to determine the significance level of two
algorithms in Tables 6, 8, 10 and 12. If a p-value is less than 0.05, it shows that the
difference between two compared algorithms is statistically significant.

4.1. Results of FGWO on unimodal test functions. According to the results on
the unimodal benchmark functions of the algorithms in Table 5, it is obvious that the
proposed FGWO algorithm is able to provide very competitive results; this algorithm
outperforms other algorithms on most of the benchmark cases including F1, F2, F3, F4,
and F7. Besides, the p-values in Table 6 are much less than 0.05, thus certify that it is
statistically significant of the superiority. Considering the unimodal functions are suit-
able for benchmarking exploitation, it can be stated the superior performance of FGWO
algorithm in terms of high exploitation. High exploitation helps the FGWO algorithm to
exploit the optimum accurately and converge towards it rapidly.

4.2. Results of FGWO on multimodal test functions. Tables 7 and 9 show the
results of the algorithm running on multimodal benchmark functions. Table 7 shows that
FGWO algorithm outperforms other algorithms on F10, and provides the second best
results on F9, F11. The p-values presented in Tables 8 and 10 also certify that the FGWO
algorithm performs significantly better results. In contrast to unimodal functions, the
multimodal functions are suitable for benchmarking the exploration ability, and the results
show that the FGWO algorithm has competitive performance in terms of exploration.
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Table 4. Composite benchmark functions

Function Dim Range fmin

F24(CF1)

f1, f2, f3, . . . , f10 = Sphere Function

[σ1, σ1, σ3, . . . , σ10] = [1, 1, 1, . . . , 1]

[λ1, λ1, λ3, . . . , λ10] = [5/100, 5/100, 5/100, . . . , 5/100] 30 [−5, 5] 0

F25(CF2)

f1, f2, f3, . . . , f10 = Griewank’s Function

[σ1, σ1, σ3, . . . , σ10] = [1, 1, 1, . . . , 1]

[λ1, λ1, λ3, . . . , λ10] = [5/100, 5/100, 5/100, . . . , 5/100] 30 [−5, 5] 0

F26(CF3)

f1, f2, f3, . . . , f10 = Griewank’s Function

[σ1, σ1, σ3, . . . , σ10] = [1, 1, 1, . . . , 1]

[λ1, λ1, λ3, . . . , λ10] = [1, 1, 1, . . . , 1] 30 [−5, 5] 0

F27(CF4)

f1, f2 = Ackley’s Function, f3, f4 = Rastrigin’s Function,
f5, f6 = Weierstrass Function, f7, f8 = Griewank’s Function,

f9, f10 = Sphere Function

[σ1, σ1, σ3, . . . , σ10] = [1, 1, 1, . . . , 1]

[λ1, λ1, λ3, . . . , λ10] = [5/32, 5/32, 1, 1, 5/0.5, 5/0.5, 5/100, 5/100,
5/100, 5/100] 30 [−5, 5] 0

F28(CF5)

f1, f2 = Rastrigin’s Function, f3, f4 = Weierstrass Function,
f5, f6 = Griewank’s Function, f7, f8 = Ackley’s Function,
f9, f10 = Sphere Function

[σ1, σ1, σ3, . . . , σ10] = [1, 1, 1, . . . , 1]

[λ1, λ1, λ3, . . . , λ10] = [1/5, 1/5, 5/0.5, 5/0.5, 5/100, 5/100, 5/32,
5/32, 5/100, 5/100] 30 [−5, 5] 0

F29(CF6)

f1, f2 = Rastrigin’s Function, f3, f4 = Weierstrass Function,
f5, f6 = Griewank’s Function, f7, f8 = Ackley’s Function,
f9, f10 = Sphere Function

[σ1, σ1, σ3, . . . , σ10] = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]

[λ1, λ1, λ3, . . . , λ10] = [0.1 ∗ 1/5, 0.2 ∗ 1/5, 0.3 ∗ 5/0.5, 0.4 ∗ 5/0.5,
0.5 ∗ 5/100, 0.6 ∗ 5/100, 0.7 ∗ 5/32,
0.8 ∗ 5/32, 0.9 ∗ 5/100, 1 ∗ 5/100]

30 [−5, 5] 0

4.3. Results of FGWO on composite test functions. The results of the algorithm
running on composite benchmark functions in Table 11 show that FGWO algorithm out-
performs other algorithms in terms of standard deviation on 5 test functions, and provides
the best average solution on F29. The p-values presented in Table 12 also certify that the
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Table 5. Results of unimodal benchmark functions

F Type FGWO GWO PSO ALO
F1 Ave 5.7e-122 4.74e-59 8.05e-09 1.10e-05

Std 1.9e-121 8.33e-59 1.81e-08 9.87e-06
F2 Ave 3.9e-72 8.79e-35 0.00050 24.631

Std 6.86e-72 8.96e-35 0.00094 38.4351
F3 Ave 9.1e-31 2.43e-15 16.8676 939.593

Std 4.92e-30 8.02e-15 9.1336 471.491
F4 Ave 1.7e-32 1.82e-14 0.63922 11.7768

Std 5.92e-32 4.06e-14 0.19912 4.2592
F5 Ave 27.4121 26.9333 59.7079 213.966

Std 0.84336 0.61989 36.6992 343.899
F6 Ave 1.8377 0.61624 1.26e-08 9.14e-06

Std 0.47875 0.31855 3.41e-08 5.25e-06
F7 Ave 0.00078 0.00088 0.07216 0.09940

Std 0.00040 0.00056 0.02025 0.02796

Table 6. p-values of the Wilcoxon ranksum test over unimodal benchmark functions

F FGWO GWO PSO ALO
F1 N/A 3.0199e-11 3.0199e-11 3.0199e-11
F2 N/A 3.0199e-11 3.0199e-11 3.0199e-11
F3 N/A 3.0199e-11 3.0199e-11 3.0199e-11
F4 N/A 3.0199e-11 3.0199e-11 3.0199e-11
F5 N/A 0.0030339 0.026077 9.5139e-06
F6 N/A 9.9186e-11 3.0199e-11 3.0199e-11
F7 N/A 0.59969 3.0199e-11 3.0199e-11

Table 7. Results of multimodal benchmark functions

F Type FGWO GWO PSO ALO
F8 Ave −3713.11 −6007.66 −6168.29 −5699.08

Std 447.459 909.590 1490.22 1298.96
F9 Ave 10.528 0.6963 50.592 78.3694

Std 26.3122 1.6158 13.4431 21.8135
F10 Ave 7.99e-15 1.58e-14 0.055096 2.2665

Std 0 3.01e-15 0.30052 0.64592
F11 Ave 0.00165 0.00088 0.01157 0.01351

Std 0.00442 0.00270 0.01250 0.01068
F12 Ave 0.15839 0.03255 0.00346 10.5394

Std 0.12165 0.01200 0.01893 4.5593
F13 Ave 1.329 0.49442 0.003265 0.5874

Std 0.22101 0.19481 0.005776 2.6956

FGWO algorithm performs significantly better results on F24 and F26. Composite func-
tions are very challenging test beds for meta-heuristics. Since composite functions test the
exploration and exploitation combined, they are suitable for benchmarking exploration
and exploitation simultaneously. Moreover, due to the massive number of local optima
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Table 8. p-values of the Wilcoxon ranksum test over multi-modal bench-
mark functions

F FGWO GWO PSO ALO
F8 N/A 2.8716e-10 1.8731e-07 1.6179e-11
F9 N/A 0.56012 3.3715e-09 1.7557e-09
F10 N/A 1.5139e-12 1.2118e-12 1.2118e-12
F11 N/A 0.64259 5.2776e-09 1.8801e-09
F12 N/A 3.3384e-11 6.6955e-11 3.0199e-11
F13 N/A 4.5043e-11 3.0199e-11 8.891e-10

Table 9. Results of fixed-dimension multimodal benchmark functions

F Type FGWO GWO PSO ALO
F14 Ave 9.1205 3.7117 3.3276 1.4611

Std 4.6213 3.6931 2.9007 0.81189
F15 Ave 0.00245 0.00366 0.00075 0.00486

Std 0.00608 0.00760 0.00026 0.01241
F16 Ave −1.0316 −1.0316 −1.0316 −1.0316

Std 2.21e-06 5.1e-09 6.71e-16 4.52e-14
F17 Ave 0.39806 0.39792 0.39789 0.39789

Std 0.00022 0.00013 0 4.83e-14
F18 Ave 8.4001 3 3 3

Std 20.5505 1.13e-05 9.37e-16 5.09e-13
F19 Ave −3.8622 −3.8616 −3.8628 −3.8628

Std 0.00034 0.00239 2.71e-15 1.92e-14
F20 Ave −3.2584 −3.2505 −3.2784 −3.2625

Std 0.05351 0.07030 0.05827 0.06047
F21 Ave −6.7933 −9.646 −7.3909 −7.7817

Std 2.4166 1.5462 3.1091 2.5786
F22 Ave −7.9817 −10.2253 −9.365 −6.6613

Std 1.5923 0.97034 2.4084 3.2301
F23 Ave −8.2357 −10.3557 −9.6787 −7.3523

Std 1.7443 0.98727 2.2604 3.5518

Table 10. p-values of the Wilcoxon ranksum test over fixed-dimension
multimodal benchmark functions

F FGWO GWO PSO ALO
F14 N/A 1.107e-06 1.4166e-06 1.4854e-09
F15 N/A 2.5974e-05 0.0033386 1.7479e-05
F16 N/A 3.0199e-11 1.7203e-12 3.018e-11
F17 N/A 4.1825e-09 1.2118e-12 3.0066e-11
F18 N/A 0.46427 9.3482e-12 3.018e-11
F19 N/A 0.0010035 1.2118e-12 3.0161e-11
F20 N/A 0.14945 0.00028918 0.015014
F21 N/A 8.4848e-09 0.075743 0.012212
F22 N/A 4.1997e-10 3.3438e-06 0.42896
F23 N/A 3.8202e-10 4.1727e-07 0.44642
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Table 11. Results of composite benchmark functions

F Type FGWO GWO PSO ALO
F24 Ave 190.804 81.6855 90.1232 129.877

Std 38.1956 81.8135 95.9132 96.8169
F25 Ave 178.786 173.429 158.595 175.207

Std 66.2705 91.0175 109.196 93.8774
F26 Ave 513.137 280.679 259.138 380.618

Std 47.9687 114.429 94.6106 190.806
F27 Ave 507.276 450.472 441.440 522.280

Std 32.3087 134.817 146.365 139.169
F28 Ave 171.420 141.748 105.196 187.603

Std 73.498 150.825 135.713 134.009
F29 Ave 716.851 862.667 780.187 829.026

Std 178.785 117.160 184.985 153.355

Table 12. p-values of the Wilcoxon ranksum test over composite bench-
mark functions

F FGWO GWO PSO ALO
F24 N/A 3.6459e-08 4.084e-05 0.00090307
F25 N/A 0.97052 0.20095 0.56922
F26 N/A 1.8567e-09 5.5727e-10 1.0188e-05
F27 N/A 0.028129 0.0010035 0.56922
F28 N/A 0.14532 0.018368 0.18577
F29 N/A 0.49178 0.42039 0.11882

in such functions, the ability to escape from local minima can be examined. The results
show that the FGWO algorithm has competitive performance in terms of exploration,
ability to escape from local minima and exploitation simultaneously.

4.4. Analysis of FGWO algorithm. In this subsection, four new metrics are employed
to further observe the performance of the proposed FGWO algorithm. The quantitative
metrics are shown as follows:

• Search history – the position of grey wolves from the first to the final iteration;
• Trajectory – the position of grey wolves of the first dimension from the first to the

final iteration;
• Fitness history – the average fitness of grey wolves from the first to the final iteration;
• Convergence – the fitness of alpha from the first to the final iteration.

Some of the benchmark functions are chosen and solved by 30 search agents over 200
iterations. The results are shown in Figure 1. The search history of position during opti-
mization, as depicted in the second column in Figure 1, shows that the FGWO algorithm
tends to search the promising regions and exploit the optimum of the search space. The
fourth column in Figure 1 depicts the position of the first dimension of the first grey wolf
over 200 iterations. It can be seen abrupt changes during initial iterations while over the
course of iterations they decrease gradually. It can guarantee that the algorithm eventu-
ally converges to a point of the search space. In addition, the last two columns of Figure 1
illustrate the average fitness history of all grey wolves and the convergence curve which
represents the fitness of the alpha, respectively. It can be observed that there are similar
descending behaviors of average fitness and convergence curves, which demonstrate that
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Figure 1. Search history, trajectory in the first dimension, average fitness
of all grey wolves, and convergence rate



892 W. XIAO, H. DENG, Y. SHENG AND L. HU

the proposed FGWO algorithm can improve the overall fitness of the initial population.
It can also be seen the accelerated trend in convergence curve and the approximation of
the global optimum as iteration increases. This is due to the emphasis on exploitation by
adjusting the convergence factor and enhancing the weight factor of alpha over iteration,
which accelerate the convergence towards the optimum.

4.5. Experiments on the settings of values ρ and µ. In this subsection, the settings
of values ρ and µ in Equation (13) are evaluated. Considering there are two types of values
to be evaluated in an equation, one of the values is changed while the other one stays the
same in the experiments to verify the impact on the search process. In the experiments
on the settings of value ρ, ρ is set to be 0.5, 1.0, 1.5, 2.0, 2.5 respectively, and µ is set
to be 25. In the experiments on the settings of value µ, µ is set to be 15, 20, 25, 30,
35 respectively, and ρ is set to be 1.5. Each setting is benchmarked 10 times on the test
functions with 30 search agents over 100 iterations, and some of the results are shown in
Figure 2 and Figure 3. The results show that FGWO performs better when ρ is set 1.5
and µ is set 25.

Figure 2. Experiments on the settings of value ρ (ρ = 0.5, 1.0, 1.5, 2.0,
2.5, µ = 25, on F3, F7, F9, F11, F15, F22)

5. Application of FGWO on RCPSP. Resource-Constrained Project Scheduling Pro-
blem (RCPSP) is a general problem containing resources of limited availability, activities
of certain resource requests and durations. RCPSP is confined to meet the resources and
durations constraints and achieves a certain objective. Since RCPSP is an NP-hard prob-
lem, various kinds of meta-heuristics have been proposed to search for optimal solutions
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Figure 3. Experiments on the settings of value µ (µ = 15, 20, 25, 30, 35,
ρ = 1.5, on F3, F7, F9, F11, F15, F22)

[15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]. Some of the most popular algorithms are Ge-
netic Algorithm (GA) [21], Particle Swarm Optimization (PSO) [18, 22, 23, 24], Cuckoo
Search (CS) [26], Ant Colony Optimization (ACO) [19], and Simulated Annealing (SA)
[25]. These meta-heuristics are benchmarked with the standard dataset of the Project
Scheduling Problem Library (PSPLIB) [27].

The typical RCPSP studied in this paper is described as follows: (1) Finding the
minimal makespan schedule is the objective; (2) The number of activities is N + 2, and
each activity i has processing duration di (i = 0, . . . , N+1). Activities are non-preemptive
during management. The activity 0 and N + 1 are pseudo activities which indicate the
start and finish of schedule, respectively. (3) Activities have precedence constraint. For
example, if Pi is the set of immediate predecessors of activity i, activity i is not allowed
to start until the finish of all the immediate predecessors Pi. (4) There are renewable
resources in various types with constant amount at each time or period. Let R be the
available amount of resource Q. Each activity i requires resource rik unit of resource
k (k = 1, . . . , q) per unit of activities’ execution time di. An activity-on-node network
of RCPSP example is shown in Figure 4, and the parameters (di, rik) of activity i are
illustrated to indicate the activity duration and required amounts of various types of
resources.

Considering the above description of RCPSP and the activity-no-node representation
example, RCPSP can be formulated as follows:

min{max fi|i = 1, 2, . . . , N} (18)
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subject to:
fj − fi ≥ di ∀j ∈ Pi; i = 1, 2, . . . , N (19)∑

At

rik ≤ Rk, k = 1, 2, . . . , K; t = s1, s2, . . . , sN (20)

where N represents the number of activities involved in a project, fi is the finish time
of activity i, di indicates the duration time of activity i, and Pi is the set of preceding
activities. Rk represents available amount of resource k, and rik is the amount of resource
k required by activity i. At indicates the set of ongoing activities at t and si is the start
time of activity i. Equation (18) represents the objective, Equation (19) and Equation (20)
represent precedence constraints and resource constraints, respectively.
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Figure 4. Example of RCPSP activity graph

In order to investigate the FGWO algorithm for RCPSP, the typical project example
shown in Figure 4 is analyzed, and PSPLIB standard datasets are used as benchmark.
Figure 5 shows the solutions achieved using 4 algorithms (FGWO, GWO, PSO and ALO)
to solve the project example above. The corresponding optimal schedules described se-
quences and start times (or finish times) of the activities (dummy activities not included),
as well as the allocation profiles of the resources required. The schedule with smaller latest
finish time is the better. The results show that FGWO can perform scheduling the same
as GWO, PSO and ALO in duration time.

For comparing the performances of FGWO to other algorithms on RCPSP, the instances
in the well-known PSPLIB are used as benchmark and simulated. The standard dataset
of PSPLIB contains subset J30, J60 and J120, which include 30, 60 and 120 activities
respectively. In PSPLIB benchmark, the number of instances for J30 and J60 is 480,
respectively, and that for J120 is 600. Hence, there are total of 1560 instances. For each
instance, FGWO and comparing algorithms were run independently with 30 search agents
over 200 iterations. Statistical results (optimal found and average deviation) are collected
and reported in Table 13. FGWO was compared with GWO, PSO and ALO.

For all dataset, FGWO performs best compared to other algorithms in optimal found
and average deviation. The results show that the FGWO is better than other algorithms
for solving RCPSP with different scales.
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Figure 5. Solutions by 4 algorithms (FGWO, GWO, PSO and ALO)

Table 13. Results of PSPLIB standard dataset

Dataset Statistic FGWO GWO PSO ALO

J30
Opt.Found 341 335 328 331
AvDev. (%) 0.433 0.5636 0.6417 0.6039

J60
Opt.Found 202 200 196 197
AvDev. (%) 13.1466 13.4039 14.4017 14.2636

J120
Opt.Found 119 114 118 116
AvDev. (%) 35.1466 36.636 36.5756 36.6017

Table 14. Discussion of advantages and shortcomings (High > Medium > Low)

FGWO GWO PSO ALO
Exploitation ability High Medium Medium Low
Exploration ability Medium High High Medium
Ability to escape from local minima Medium Low High Low
Convergence speed High Medium Medium Low

6. Discussion. In this section the advantages and shortcomings of compared algorithms
are discussed and shown in Table 14. Firstly, the results on unimodal benchmark functions
showed the superior exploitation of FGWO. Secondly, the exploration ability of FGWO
was tested by the multimodal functions, and the results showed FGWO outperformed
ALO, but was not better than GWO and PSO. Thirdly, the results of the composite
functions showed high ability to escape from local minima, but was not better than PSO.
Finally, the convergence analysis showed the superior convergence ability of FGWO.
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7. Conclusions. This work proposed a factored grey wolf optimization algorithm called
FGWO. A nonlinear convergence factor was adapted and linear weighted position factor
was added to improve the optimization. The performance of FGWO algorithm was tested
on 29 benchmark functions. The FGWO algorithm was compared to three well-known and
recent algorithms: GWO, PSO, and ALO. The p-values of Wilcoxon statistical tests were
also conducted to compare the algorithms. The FGWO algorithm was finally applied
to RCPSP. The results showed that FGWO provides highly competitive performances
and outperforms other algorithms in most of the benchmark functions and engineering
problems. For future work, we intend to research on better performance of the ability to
escape from local minima.
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