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Abstract. The proposed method uses second-order derivatives to derive more infor-
mation from the gray values of the pixels in a scanning electron microscope image. It
represents this information as a histogram of second-order values, which expresses the
variation in pixel values caused by image details and noise. The method uses the his-
togram as the basis for the targeting of pixels for filtering and reallocation to restore the
image. The method controls the number of target pixels to minimize blurring of edges by
imposing a Laplace curve on the histogram and using it together with other equations to
select pixels based on the differences between their second-order derivatives and those of
their neighbours.
Keywords: Second-order derivatives, Laplace curve, Laplacian operator, Histograms,
Pixel reallocation, Noise filter, SEM images

1. Introduction. The proposed method makes use of the effect of noise on the variation
of gray values between pixels of a scanning electron microscope (SEM) image in the spatial
domain. It expresses the variation of gray values between pixels with the second-order
derivatives of each pixel and its neighbours. Image processing has utilized the second-
order derivatives of pixels before, such as in detecting edges in images [1]; the proposed
method uses them to minimize blurring. The proposed method uses the Laplacian op-
erator to generate the second-order derivatives. Existing filtering methods have utilized
the Laplacian operator in manners such as a means for image segmentation and noise
removal [2]. The proposed method presents the second-order derivatives as histograms,
henceforth referred to as “second-order histograms” to differentiate them from histograms
of gray values. The second-order histograms, before and after noise is introduced, express
changes in the distribution of the second-order values. The statistics of these histograms
are used in the processing of the images [3]. Next, the method uses a Laplace curve as a
target for the pixel reallocation phase, similar to the use of probability density functions
to modify histograms [4]. The reallocation phase selects and categorizes pixels according
to the differences between their second-order derivatives and those of neighbours, and
changes their derivatives through a convolution process; this is similar to how the work
of Celestre et al. defined bad pixels and corrected them [5]. The proposed method uses
the changes to generate an image with reduced noise.

The proposed method utilizes several techniques, namely collation of data as his-
tograms, histogram statistics, thresholds, convolution and pixel reallocation; this decision
was made after reviews of the typical use of these techniques [3,6]. The proposed method
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intends to contribute to the use of histograms in image processing by providing proof-of-
concept for the use of second-order derivatives as the data in histograms, instead of the
usual use of gray values and their normalized derivatives.

2. Definitions, Hypothesis, Theory and Problem Statement.

Definition 2.1. Second-order derivatives: The proposed method applies a two-dimen-
sional Laplacian operator on each pixel to obtaining an isotropic second-order derivative
using a 3 × 3 mask [7]. For pixels that are on the edges of the image, it alters the equation
and mask to accommodate the edges.

Definition 2.2. SEM images used for testing: The testing of the filter uses SEM
images with additive noise of increasing severity. The additive noise has a Gaussian
distribution of nominal zero mean and different nominal standard deviations. There are
30 original images and their 300 noise-added versions. The testing also uses SEM images
with different conditions of the SEM machine such as aperture size [8], scan rates [9],
acceleration voltage and chamber pressure [10]. These are 36 images of these images in
total, obtained with permission from other research efforts, such as Sim et al. [9].

Definition 2.3. PSNR, SSIM & RMS contrast: The method calculates the PSNR
ratings of the images according to the description by Salomon [11] and their SSIM ratings
according to the description by Wang et al. [12]. It measures the contrast of the images
in root-mean-square (RMS) contrast, as described by Peli [13].

Definition 2.4. Laplace distribution curve: For the example image in Figure 1(a),
the method generates the histogram of second-order derivatives as shown in Figure 2,
whereas it generates the histogram as shown in Figure 3 for the image in Figure 1(b).
The method imposes a Laplace distribution curve onto the second-order histogram. One
of the steps to generate the curve uses Equation (1), which is the Laplace probability
function.

f(x|µ, b) =
1

2b
exp

(
−|x− µ|

b

)
(1)

The diversity is b = (σ/20.5), where σ is the standard deviation of the second-order deriva-
tives. x represents a second-order derivative value that is in the image. σ can be calculated

(a) (b) (c)

Figure 1. SEM image of a defect in an electronic element: (a) original,
(b) additive noise introduced with a Gaussian distribution of zero mean and
standard deviation of 20, and (c) the second-order derivatives of the image
in (a), represented as a grayscale image
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Figure 2. Second-order derivative histogram of image in Figure 1(a)

Figure 3. Second-order derivative histogram of image in Figure 1(b)

from the data set of the derivatives together with mean (µ). Since b is dependent on σ,
the method uses σ as the representative quantity of the Laplace distribution.

The method multiplies the probability with the total number of pixels to produce a
projected number of pixels for that second-order derivative value. Then, it uses the
projected numbers to construct the Laplace curve.

Hypothesis 2.1. Utilization of the second-order histogram and curve. The pro-
posed method makes use of a Laplace distribution curve on the histograms of second-order
derivatives [14]. The hypothesis is that an SEM image without additive noise generates
a histogram of second-order derivatives that closely follows a Laplace distribution. For
an image with low noise and clear contrast, the histogram profile is close to that of the
curve. For example, Figure 2 shows that the profile of the second-order histogram is close
to the imposed Laplace curve. However, there is a wider range of second-order derivatives
for the histogram and a higher σ for the curve in Figure 3. Thus, the distribution of the
second-order has deviated away from the original distribution. There is the observation
that the middle region of the histogram depresses as the severity of the noise increases, as
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highlighted in Figure 3. The method utilizes this change to control the filter, as described
later.

Theory 2.1. Distribution of second-order derivatives in the histogram. The
middle region of the second-order histogram represents uniform visual elements, such as
surfaces of the same texture. The regions beyond this and to trailing ends of the second-
order histogram represent other details such as edges. This idea is similar to how the
divisions of an intensity histogram represent regions of an image that are under-exposed
or over-exposed [15].

Proof: Figure 1(c) shows details such as edges of objects in Figure 1(a). Therefore,
the second-order histogram of the image in Figure 1(a) should contain data on its details.

Problem Statement 2.1. Change in the imposed curve due to the effect of
noise. The Laplace curve which is imposed on the second-order histogram of an image
has a specific standard deviation, as can be observed in Figure 2. As noise increases,
its standard deviation becomes greater. To reduce the noise, the method is to alter the
image such that it lowers the standard deviation. However, during the development of
the method, tests have found that the standard deviations of the curves for images with
excessive blurring are lower than those for images that are not. Therefore, there is Step
3.1 of the methodology, which intends to find a target standard deviation that does not
result in excessive blurring.

3. Methodology. Appendix A shows the process flow of the methodology. The steps in
the methodology are as follows.

Step 3.1. Estimation of target standard deviation. This step utilizes the area
between the imposed curve and the middle region of the second-order histogram. As an
example, Figure 3 highlights this area. Equation (2) expresses this area ∆A.

∆A =
b∑

i=a

(P (x) −H(x)) (2)

where a and b are the second-order derivatives which correspond to the intersections
between the second-order histogram and the curve, with the conditions that these in-
tersections are the closest to the vertical axis, and the adjacent second-order derivatives
have similar frequencies. x is a second-order derivative which is within the range of a to
b. P (x) is the frequency of x in the image, i.e., the height of the interval at x. H(x) is
the height of the curve at the location that corresponds to x.

For an SEM image with low noise, the middle region of the second-order histogram
extends above the curve, as can be seen in Figure 2. In this case, it considers ∆A to be
zero.

The ratio of ∆A to the total number of pixels N in the image increases as the noise
increases. The step uses the ratio to calculate the factor ϕ in Equation (3). In turn, the
step uses the equation to estimate the target standard deviation σtrgt via Equation (4).
The development of Equations (2) to (4) used tests with the images with additive noise.

ϕ =

(
1 − ∆A

N

)(1+∆A
N )(1−∆A

N )
(3)

σtrgt =

(
1 − ∆A

N

)(
1 +

∆A

N

)
σϕ (4)

σ is the standard deviation of the distribution of second-order derivatives in the noisy
image.
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Figure 4. Second-order histogram with an additional Laplace curve of
σ = 46 and the interval (shaded darker) where a pixel is to be reallocated

Step 3.2. Imposition of additional Laplace curve. This step creates an additional
curve, as shown in Figure 4, with the target standard deviation from the previous step.

Step 3.3. Maximum extent of change and determination of the range of search-
ing for pixels to be reallocated. In the methodology, the second-order derivative of
a currently evaluated pixel is changed to a specific value, which is lower than its original
is. Yet, there is risk of excessive blurring if the change is too great. To mitigate excessive
blurring, there has to be a maximum to the extent of change. Two ranges of second-
order derivatives represent this maximum extent. The step searches and selects pixels
for changing within these ranges. It does not select any pixels with derivatives that lie
outside these ranges.

The step uses one of the ranges for searching the pixels that reside in the negative
side of the second-order histogram, while the other range is for the pixels that are in
the positive side. The hypothesis is that this accounts for image details that cause the
second-order histogram to be not symmetrical about the vertical axis, such as secondary
electron emissions.

One of the factors for the ranges is the difference between the extreme ends of the
second-order histogram and the ends of the second Laplace curve. The step incorporates
this into Equations (5) and (6). Equation (7) determines the factor ψ.

∆dpositive =

∣∣∣(∇2f)max, histogram − (∇2f)max, 2nd curve

∣∣∣
ψ

(5)

∆dnegative =

∣∣∣(∇2f)min, histogram − (∇2f)min, 2nd curve

∣∣∣
ψ

(6)

where ∆dpositive is the extent of the range of searching for pixels on the positive side of
the histogram. ∆dnegative is the range extent for the negative side. (∇2f)max, histogram is
the highest positive second-order derivative in the histogram. (∇2f)min, histogram is the
lowest negative second-order derivative. (∇2f)max, 2nd curve is the second-order derivative
that corresponds to the right end of the second Laplace curve, on the positive side of the
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histogram. (∇2f)min, 2nd curve is the second-order derivative that corresponds to the left
end of the second Laplace curve, on the negative side of the histogram.

ψ =



32, if σ < 1.1σtrgt

32 − 80
((

σ
σtrgt

− 1
))

, if 1.1σtrgt < σ < 1.3σtrgt

8 − 20
((

σ
σtrgt

− 1.3
))

, if 1.3σtrgt < σ < 1.45σtrgt

5 −
(

σ
σtrgt

− 1.45
)
, if 1.45σtrgt < σ < 1.9σtrgt

4.45 − (1.45)
σ

σtrgt
−1.1

, if 1.9σtrgt < σ < 2.3σtrgt

1.5, if 2.3σtrgt < σ < 2.85σtrgt

1, if σ > 2.85σtrgt

(7)

where ψ is the factor used in Equations (5) and (6). σ and σtrgt are in Equations (3) and
(4).

The piece-wise equations, different conditions and values for the factor ψ in Equation
(7) were developed through tests with the 330 sample images with additive noise. The
subsequent conditions and corresponding piece-wise equations after the first are used for
images with increasing levels of noise, as indicated by the increasingly greater ratio of σ
to σtrgt . The equations and values in the conditions provide appreciable changes from one
iteration to the next as the images are processed. They prevent excessive blurring across
varying levels of noise in the sample images with additive noise.

Step 3.4. Selection of second-order derivatives under target frequencies. This
step changes the profile of the second-order histogram such that it approaches the second
imposed Laplace curve, as described in Step 3.2. To do so, the second-order derivatives
with frequencies that do not reach the curve are to have their frequencies increased.
Among these second-order derivatives, the step selects the smallest in magnitude, i.e., the
one closest to the vertical axis of the second-order histogram, before the others in order
of increasing magnitude as the steps reiterate. The step passes the selection to Step 3.5.

Step 3.5. Determination of the range of second-order derivatives to search for
eligible pixels. To increase the frequency of the selected second-order derivative in Step
3.4, pixels with second-order derivatives in its vicinity have their derivative value changed
to the value of the selected derivative. The extent of the aforementioned vicinity is not
more than the magnitudes of the ∆d values that have been determined in Step 3.3. If
the selected derivative is negative, the range extent ∆dnegative is used. If it is positive,
∆dpositive is used. If the selected derivative is zero, this step uses half of ∆dnegative for
the search in the negative side and half of ∆dpositive for the positive side. After the step
establishes the searching range, it marks the pixels with second-order values within the
range so as to subject them to the next step.

Figure 4 shows an example for the results of the procedures from Step 3.3 to Step 3.5. In
this example, Step 3.4 selected the second-order derivative of 15, which is a second-order
derivative on the positive side of the second-order histogram. Therefore, the relevant
range extent is ∆dpositive, which Step 3.3 calculated to be 83. Thus, this step searches
the range of second-order derivatives from 16 to 98 (inclusive of 98) for eligible pixels, as
highlighted with a darker shade of gray in Figure 4.

Step 3.6. Utilization of the differences in second-order derivatives of neigh-
bouring pixels for the selection process. Neighbouring pixels that are part of the
same image detail, such as the edge of an object, have similar second-order derivatives.
Figure 1(c) shows this. This step uses this to mitigate blurring in a way that is similar
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to the use of local minima and maxima intensities in identifying regions for exposure
enhancement [13].

For each of the pixels passed from the previous step, ranges of values are determined
from the derivatives of the currently evaluated pixel and its neighbours. Equation (8)
expresses the extent of each range:

∆
(
∇2f

)
=

(∇2f)max − (∇2f)min

n
(8)

where ∆(∇2f) is the extent of each range. (∇2f)max is the highest second-order derivative
among the currently evaluated pixel and its neighbours; this is usually a positive value.
(∇2f)min is the lowest derivative among the pixels; this is usually a negative value. n is
the number of pixels, inclusive of the currently evaluated pixel and its neighbours.

The first of the ranges is (∇2f)min to (∇2f)min + ∆(∇2f), and the last is (∇2f)max −
∆(∇2f) to (∇2f)max. Thus, there are as many ranges as there are neighbours around the
currently evaluated pixel. The grouping of the pixel and its neighbours is according to
these ranges. This is similar to the labelling and grouping of pixel values in connected-
component labelling techniques [16], except that this uses the second-order derivatives of
the pixels instead of their intensity values.

If the currently evaluated pixel happens to populate a range on its own, the pixel
advances to the next step. Otherwise, this step repeats with the next pixel in the sequence
of selection as established in Step 3.5.

Step 3.7. Changing the second-order derivatives of selected pixels and their
neighbours. Each of the pixels from Step 3.6 has its second-order derivative changed to
the value that Step 3.4 determined. To achieve this, this step changes the gray value of
the pixel such that its second-order derivative, when recalculated, is equal to the target
value. The target value is always lower than the initial second-order value of the pixel,
due to the conditions of Step 3.4. This resulted in a better balance of detail preservation
and noise mitigation than the use of the averages or medians of gray values.

The second-order values of the neighbor pixels are re-calculated. The processing of any
subsequent pixels in the image uses these re-calculated values.

Step 3.8. Iterations and termination conditions. This step repeats the procedures
in Steps 3.6 and 3.7 on every pixel that has been marked in Step 3.5. A single iteration of
this process produces changes that are too small for a noticeable result. Therefore, this
step repeats the procedures from Step 3.5 to Step 3.7 iteratively until they achieve the
termination conditions. Steps 3.3 to 3.6 establish the termination conditions. The main
termination condition is that it is the achievement or surpassing of the target frequency.
The second condition is that none of the pixels within the range of searching satisfies the
conditions in Step 3.6. The third condition is that despite the selection and processing of
pixels, there were no effective changes.

This step repeats Step 3.4 in order to select another second-order derivative value that
is under its target frequency. The steps after Step 3.4 repeat, until they have accounted
for all of the second-order derivative values that have frequencies below their targets. The
number of iterations depends on the range extents and the target frequency as defined in
Steps 3.3 and 3.4 respectively. In other words, noisier images, which cause greater range
extents and higher target frequencies, require more iterations.

Step 3.9. Comparison with Gaussian blur filter, alpha-trimmed filter & hybrid
mean filter. Image filter research has used the Gaussian blur filter for its effect on high
levels of noise [17], the alpha-trimmed filter for its effect on non-Gaussian noise [18] and
the hybrid median filter for impulse noise [19]. Incidentally, SEM images can have these
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noise conditions. Thus, there is the comparison of the proposed method with these filters.
Scripts from LIBROW.com form the basis for the filters that are used for this comparison.
The default settings for the scripts are such that the Gaussian blur has a window size of
5 and the alpha-trimmed filter has an alpha parameter of 6.

4. Results and Discussion. Figure 5 shows an example of the application of the filter
on an SEM image with additive noise. Figure 6 shows the second-order histograms of the
images in Figure 5.

Figure 5. Side-by-side comparison of the results of filtering the SEM im-
age in Figure 1(a) with additive Gaussian noise of standard deviation of 8

Figure 6. Side-by-side comparison of histograms for the SEM images in
Figure 5

4.1. Results of testing on SEM images with additive noise. The averaged results
of applying the filter across the 30 samples of SEM images with additive noise are in Table
1. (There are more levels of additive noise used in the tests than shown in the table; the
levels in the table are selected for the most noticeable differences in the results.) The
effectiveness of the filter at reducing noise decreases as the noise level increases. This
also occurs in the SEM images with different machine conditions, wherever there are high
levels of noise.

Explanation: Noise increases the second-order derivatives of affected pixels, thus
expanding the range of the second-order histogram of the image and moving pixels away
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Table 1. Averaged results across 30 sample images with introduced addi-
tive noise

Nominal standard
deviation of distribution

of additive noise
in images

Before application
of filter

After application
of filter

Averaged
PSNR

Averaged
SSIM

Averaged
PSNR

Averaged
SSIM

2 41.23 0.9983 39.91 0.9978
5 33.90 0.9923 34.15 0.9931
10 27.97 0.9707 29.67 0.9815
15 24.48 0.9374 27.26 0.9678
20 22.03 0.8962 25.13 0.9473

from the middle of the histogram, i.e., flattening it. Figure 6(a) shows this. The proposed
method reallocates selected pixels to move them towards the center. This also reduces the
range of second-order derivatives, i.e., restoring the profile of the histogram. As a result,
there are less pixels with noise in the image generated from the changed data. However, as
the proposed method is conservative in its selection of pixels in order to mitigate excessive
blurring, it is not effective at high levels of noise, where considerable blurring would be
needed to reduce the differences in values between pixels.

4.2. Hypothesis testing. The hypothesis is that the proposed method reduces noise in
SEM images. The testing of the hypothesis uses SEM images with introduced additive
noise. The standard deviation of the noise distribution represents the severity of the
additive noise, before and after filtering the image. Table 2 shows the results. Like Table
1, the tests used more levels of noise than shown; the noise levels in the table are selected
for the most noticeable differences in the results. They indicate that the filtering method
causes near-negligible blurring at low levels of noise.

Table 2. Standard deviations of the additive noise across 30 sample images
with introduced additive noise, before and after application of the filter

Nominal standard deviation
of additive noise

Averaged actual standard
deviation of additive noise

Before application
of filter

After application
of filter

2 2.48 2.83
4 4.32 4.27
8 8.19 7.23
10 10.20 8.30
15 15.14 10.87
20 20.01 13.63

Explanation: Due to the conservative selection of pixels, the proposed method does
better at low levels of noise than it does at high levels of noise. At low levels of noise, it
is capable of avoiding the blurring of edges and picking out the few number of pixels that
are affected by noise.

4.3. Observations on ψ factor. The piece-wise function in Equation (7) is developed
through comparing the changes in the PSNR and SSIM of the resulting image after
changing the value of ψ and its associated conditions. Currently, it is composed of a
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significant piece-wise equation with several conditions, but it makes a correlation between
the standard deviation of the second-order derivative values and the maximum change that
can be applied on the second-order values of pixels without causing excessive blurring.

Explanation: As mentioned earlier, Step 3.3 introduces the multiple conditions into
Equation (7) to improve the response of the proposed method to varying levels of noise.
They are not arbitrary, because they have been developed through considerable testing
with the 30 sample images and their 300 noise-added variants and they follow a decreasing
trend in order to extend the range of pixel selection at higher levels of noise.

4.4. Use of iterations. There are multiple consecutive iterations of the filtering process
to compound the changes by a previous iteration onto the next one. This is necessary
for any noticeable change in the image to occur at the end. This is similar to the use of
iterations to compensate for the low amplification factors in the insertion of watermarks
in images [20]. However, as the noise level increases, there have to be more iterations as
there are more pixels to search and process.

Explanation: The range of selected second-order derivatives, as described in Step 3.5,
increases as the noise level increases. Furthermore, since noise flattens the second-order
histogram of an image, there are more pixels across the range of second-order derivatives.
This in turn increases the number of iterations to search for eligible pixels.

4.5. Results of comparison with Gaussian blur, alpha-trimmed and hybrid me-
dian filters. The other filters reduce the contrast of the images more than the proposed
method does at any level of noise. However, the proposed method performs poorer than
the other methods at high levels of noise. Table 3 shows an example of the comparisons
of the proposed method to different filters.

If the machine conditions result in images with clear edges and region boundaries, the
proposed method preserves these better than the other filters. The results for an SEM
image of leaf cells with different chamber pressures in Table 4 show this. Figure 7 shows
the resulting image produced by the proposed method.

Table 3. Results of application of the proposed method, Gaussian blur,
alpha-trimmed and hybrid median filters on the noise-added variants of the
SEM image in Figure 1

σ
After application of

the proposed method
After application of
Gaussian blur filter

PSNR SSIM RMSC PSNR SSIM RMSC
2 40.5 0.997 0.1041 33.6 0.986 0.0990
6 32.9 0.985 0.1026 32.4 0.982 0.0994
10 29.9 0.971 0.1008 30.6 0.973 0.1003
20 25.5 0.924 0.1041 26.7 0.937 0.1045

σ
After application of
hybrid median filter

After application of
alpha-trimmed filter

PSNR SSIM RMSC PSNR SSIM RMSC
2 35.7 0.992 0.1016 31.7 0.979 0.0992
6 32.5 0.983 0.1021 30.9 0.975 0.0993
10 29.6 0.967 0.1033 29.7 0.967 0.0997
20 24.7 0.905 0.1097 26.7 0.935 0.1025
σ, nominal standard deviation of additive noise distribution in image
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Table 4. Results of application of filters on SEM images with different
chamber pressures; chamber pressure of 10 Pa used as ground truth

Chamber pressure 50 Pa 100 Pa 200 Pa
PSNR SSIM RMSC PSNR SSIM RMSC PSNR SSIM RMSC

Proposed method 22.5 0.699 0.0700 21.6 0.661 0.0790 20.7 0.654 0.0604
Gaussian blur filter 22.4 0.682 0.0667 21.8 0.673 0.0742 20.5 0.648 0.0583
Hybrid median filter 22.4 0.690 0.0429 21.6 0.664 0.0353 20.5 0.646 0.0512
Alpha-trimmed filter 22.3 0.673 0.0658 21.8 0.668 0.0726 20.5 0.640 0.0566

Figure 7. Results of filtering an SEM image of leaf cells with a chamber
pressure of 200 Pa: (a) unfiltered image, (b) proposed method. Image
source for (a): Talbot & White.

Explanation: The other methods do not have the operations as described in Steps 3.3
to 3.5. These steps provide filtering that is more conservative than the other methods,
in order to prevent excessive blurring and loss of contrast. Consequently, at high levels,
it changes fewer pixels than the other methods do, thus leading to lesser performance at
high levels of noise.

5. Conclusions. The proposed method shows that the utilization of a histogram of
second-order derivatives for the selection of pixels for filtering is feasible at preserving
the edges of objects, especially in images with low levels of noise. However, the proposed
method is less effective when used on heavily corrupted images.

5.1. Future direction. The performance of the proposed method at higher levels of
noise is to be improved. One idea is to reduce the conservativeness of the pixel selection
in Step 3.6 by introducing more criteria and exceptions that apply to higher levels of
noise. Another alternative idea would use the histograms of second-order derivatives as
an additional factor for established filter methods, i.e., replacing Steps 3.6 to 3.8 with the
techniques used in the other filters.

5.2. Further research ideas. The current version of the method does not preserve fine
texture details such as surfaces with relatively minor roughness as observed under an
SEM. With refinements to the stage of pixel selection, the method is expected to be able
to differentiate between pixels that form such details and pixels that are affected by noise.
One idea is to implement an algorithm that is more complex than Equation (8) in order
to produce ranges with dissimilar extents, thus easing the determination of pixels that
have significantly different second-order derivative values compared to their neighbours.
Equations (4) to (7) can be developed further so that less iterations are needed.



926 W. T. CHAN, K. S. SIM AND F. S. ABAS

REFERENCES

[1] R. Rani and S. Kumari, An approach of detecting discontinuities in images, International Journal
of Science and Research (IJSR), vol.5, no.7, pp.745-753, 2016.

[2] Y. Wan, T. Lu, W. Yang and W. Huang, A novel image segmentation algorithm via neighbor-
hood principal component analysis and Laplace operator, International Conference on Network and
Information Systems for Computers (ICNISC), 2015.

[3] H. Kaur and N. Sohi, A study for applications of histogram in image enhancement, The International
Journal of Engineering and Science (IJES), vol.6, no.6, pp.59-63, 2017.

[4] L. Y. Zhuang and Y. P. Guan, Image enhancement via sub image histogram equalization based on
mean and variance, Computational Intelligence and Neuroscience, 2017.

[5] R. Celestre, M. Rosenberger and G. Notni, A novel algorithm for bad pixel detection and correction
to improve quality and stability of geometric measurements, Journal of Physics: Conference Series,
no.772, 2016.

[6] S. Kaur and R. Singh, Image de-noising techniques: A review paper, International Journal for
Technological Research in Engineering, vol.2, no.8, 2015.

[7] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd Edition, Prentice-Hall, NJ, 2002.
[8] C. J. R. Sheppard and C. J. Cogswell, Signal strength and noise in confocal microscopy: Factors

influencing selection of an optimum detector aperture, Scanning, vol.13, no.3, pp.233-240, 1991.
[9] K. S. Sim, M. A. Kiani, M. E. Nia and C. P. Tso, Signal-to-noise ratio estimation on SEM images

using cubic spline interpolation with Savitzky-Golay smoothing, Journal of Microscopy, vol.253,
no.1, pp.1-11, 2014.

[10] M. J. Talbot and R. G. White, Cell surface and cell outline imaging in plant tissues using the
backscattered electron detector in a variable pressure scanning electron microscope, Plant Methods,
vol.9, no.40, 2013.

[11] D. Salomon, Data Compression: The Complete Reference, 4th Edition, Springer, 2007.
[12] Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, Image quality assessment: From error

visibility to structural similarity, IEEE Trans. Image Progressing, vol.13, no.4, pp.600-612, 2004.
[13] E. Peli, Contrast in complex images, Journal of the Optical Society of America A, vol.7, no.10,

pp.2032-2040, 1990.
[14] W. T. Chan and K. S. Sim, Adaptive pixel targeting and filtering with adjacency variations in second-

order derivatives of pixel values for SEM images, International Conference on Robotics, Automation
and Sciences (ICORAS), no.3, 2016.

[15] K. Singh, R. Kapoor and S. Sinha, Enhancement of low exposure images via recursive histogram
equalization algorithms, International Journal for Light and Electron Optics, vol.126, no.20, pp.2619-
2625, 2015.

[16] E. S. A. Silva and H. Pedrini, Connected-component labeling based on hypercubes for memory
constrained scenarios, Expert Systems with Applications, vol.61, pp.272-281, 2016.

[17] E. S. Gedraite and M. Hadad, Investigation on the effect of a Gaussian blur in image filtering and
segmentation, International Symposium Electronics in Marine (ELMAR), 2011.

[18] R. Oten and R. J. P. Figueiredo, Adaptive alpha-trimmed mean filters under deviations from assumed
noise model, IEEE Trans. Image Processing, vol.13, no.5, pp.627-639, 2004.

[19] M. R. Rakesh, B. Ajeya and A. R. Mohan, Hybrid median filter for impulse noise removal of an
image in image restoration, International Journal of Advanced Research in Electrical, Electronics
and Instrumentation Engineering, vol.2, no.10, 2013.

[20] R. K. Jha and R. Chouhan, Dynamic stochastic resonance-based grayscale logo extraction in hybrid
SVD-DCT domain, Journal of the Franklin Institute, vol.351, no.5, pp.2938-2965, 2014.



PIXEL FILTERING AND REALLOCATION WITH HISTOGRAMS 927

Appendix A: Flow Chart of Program.
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